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ABSTRACT
In this paper, we propose a new semantic clone detection
technique by comparing programs’ abstract memory states,
which are computed by a semantic-based static analyzer.
Our experimental study using three large-scale open source
projects shows that our technique can detect semantic clones
that existing syntactic- or semantic-based clone detectors
miss. Our technique can help developers identify inconsis-
tent clone changes, find refactoring candidates, and under-
stand software evolution related to semantic clones.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—restructuring, reverse engineering, and
reengineering ; F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages—program analysis

General Terms
Languages, Algorithms, Experimentation

Keywords
Clone detection, abstract interpretation, static analysis, soft-
ware maintenance

1. INTRODUCTION
Detecting code clones is useful for software development

and maintenance tasks including identifying refactoring can-
didates [11], finding potential bugs [15, 14], and understand-
ing software evolution [19, 6].
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Most clone detectors [12, 18, 23, 9, 21] are based on tex-
tual similarity. For example, CCFinder [18] extracts and
compares textual tokens from source code to determine code
clones. Deckard [12] compares characteristic vectors ex-
tracted from abstract syntax trees (ASTs).

Although these detectors are good at detecting syntactic
clones, they are not effective to detect semantic clones that
are functionally similar but syntactically different.

A few existing approaches to detect semantic clones (e.g.,
those based on program dependence graphs (PDGs)[21, 9,
24] or by observing program executions via random test-
ing [13]) have limitations. PDGs can be affected by syntac-
tic changes such as replacing statements with a semantically
equivalent procedure call. Hence, the PDG-based clone de-
tectors miss some semantic clones. The clone detectability of
random testing-based approaches may depend on the limited
test coverage, covering only up to 60 ∼ 70% of software [26,
27, 34].

To detect semantic clones effectively, we propose a new
clone detection technique: (1) we first use a path-sensitive
semantic-based static analyzer to estimate the memory states
at each procedure’s exit point; (2) then we compare the
memory states to determine clones. Since the abstract mem-
ory states have a collection of the memory effects (though
approximated) along the execution paths within procedures,
our technique can effectively detect semantic clones, and our
clone detection ability is independent of syntactic similarity
of clone candidates.

We implemented our technique as a clone detection tool,
Memory Comparison-based Clone detector (MeCC), by ex-
tending a semantic-based static analyzer[17, 16]. The ex-
tension is to support path-sensitivity and record abstract
memory states. Our experiments with three large-scale open
source projects, Python, Apache, and PostgreSQL (Section 4)
show that MeCC can identify semantic clones that other ex-
isting methods miss.

The semantic clones identified by MeCC can be used for
software development and maintenance tasks such as iden-
tifying refactoring candidates, detecting inconsistencies for
locating potential bugs, and detecting software plagiarism
(as discussed in Section 5.1).

This paper makes the following contributions:

• Abstract memory-based clone detection
technique: We show that using abstract memory states
that are computed by semantic-based static analysis is
effective to detect semantic clones.



• Semantic clone detector MeCC: We implemented
the proposed technique as a tool, MeCC (http://ropas.
snu.ac.kr/mecc). We show the effectiveness of the
proposed technique by experimentally evaluating MeCC.

• Clone benchmark: For our experimental study, we
manually inspect and classify code clones of three open
source projects. We make these data publicly avail-
able, and it can serve as a benchmark set for other
clone related research (http://ropas.snu.ac.kr/mecc).

The rest of this paper is organized as follows: We first re-
visit and refine code clone definitions in Section 2, and then
propose our approach in Section 3. Section 4 evaluates our
approach, and Section 5 discusses our limitations and ap-
plications of our technique. Section 6 surveys related work,
and Section 7 concludes our paper.

2. CLONE TYPES
Basically, clones are code pairs or groups that have the

same or similar functionality [31, 29]. Some code clones are
syntactically similar, but some are different.

Based on syntactic similarity, Roy et al. [29] classify clones
into four types:

• Type-1 (Exact clones): Identical code fragments ex-
cept for variations in whitespace, layout, and com-
ments.

• Type-2 (Renamed clones): Syntactically identical frag-
ments except for variations in identifiers, literals, and
variable types in addition to Type-1’s variations.

• Type-3 (Gapped clones): Copied fragments with fur-
ther modifications such as changed, added, or deleted
statements in addition to Type-2’s variations.

• Type-4 (Semantic clones): Code fragments that per-
form similar functionality but are implemented by dif-
ferent syntactic variants.

These definitions are widely used in the literature [31, 30,
15], and we also use them in this paper.

The definitions of Type-1 and Type-2 clones are straight-
forward. Mostly, they are copies (from other code) that re-
main unchanged (Type-1) or have a small variance (Type-2).
These clones can be easily detected by comparing syntactic
features such as tokens in source code [18].

On the other hand, Type-4 (semantic) clones are syntac-
tically different. Since there is no clear consensus on Type-4
clones, some researchers define subtypes of Type-4 clones
such as statement reordering, control replacement, and un-
related statement insertion [31, 9, 24]. Similarly, we define
subtypes of Type-4 clones as follows:

• Control replacement with semantically equivalent con-
trol structures (Refer to Figure 5.)

• Statement reordering without modifying the semantics
(Refer to Figure 6.)

• Statement insertion without changing computation (Re-
fer to Figure 8.)

• Statement modification with preserving memory be-
havior (Refer to Figure 7.)

Like Type-4 clones, there is no consensus on Type-3 clones.
Stefan Bellon et al. [1] define Type-3 clones as all clones that
are neither Type-1 nor Type-2. Similarly, in this paper, we
define Type-3 clones as all clones that are not Type-1, Type-
2, and Type-4 clones.

This paper proposes an abstract memory comparison-based
clone detector, which can identify all four clones discussed
in this section.

3. CLONE DETECTION BASED ON MEM-
ORY COMPARISON

Our goal is to detect clones by comparing the functional-
ity of code fragments regardless of their syntactic similarity.
A naive way to achieve this goal is to perform exhaustive
testing on a given set of clone candidates (programs). We
may determine semantic similarities of programs by gener-
ating all possible inputs for programs, observing all possible
executions using the inputs, and comparing their execution
results. However, such exhaustive testing is often infeasi-
ble, since there might be infinitive many numbers of inputs
and/or execution paths.

For this reason, we use semantic-based static analysis [3,
4, 35, 17, 16] to determine semantic similarities of given pro-
grams, because static analysis soundly and finitely estimates
the dynamic semantics of programs. In our case, we use a
path-sensitive semantic-based static analyzer that symboli-
cally estimates the memory effects of procedures.

Our overall approach is shown in Figure 1. We compute
abstract memory states from given programs via static anal-
ysis. Then we compare the abstract memory states to de-
termine code clones.

clone 
candidate

memory
comparison

abstract 
memory state

semantic-based
static analyzer

clone 
candidate

abstract 
memory state

semantic-based
static analyzer

while(y<n)
{
  bar()
}

if(x>0)
  bar()
else
  goto L;

Figure 1: Our clone detection approach: abstract
memory states for each clone candidate are com-
puted by a path-sensitive semantic-based static an-
alyzer. These abstract memory states are compared
for detecting code clones

We build a semantic-based static analyzer on top of com-
mercialized analyzer Sparrow [17, 16], which can summa-
rize each procedure after analyzing the procedure based on
the abstract interpretation framework [3], and these proce-
dural summaries have been carefully tuned to capture all
memory-related behaviors in real-world C programs [17].
However, Sparrow does not support path-sensitive anal-
ysis. We extend Sparrow to be path-sensitive like [35] by
adding guards and guarded values to the abstract domain.

The path-sensitivity is crucial for semantic code clone de-
tection. A path-insensitive analyzer loses the relation be-
tween condition expressions and corresponding statements.
For example, a path-insensitive analyzer considers the fol-



M ∈ Mem = Addr
fin−→ GV

GV ∈ GV = 2Guard×Value

g ∈ Guard = Value × Rel×Value +
Guard ∧Guard + Guard ∨Guard

v ∈ Value = N + Addr + (Uop×Value)
+ (Value × Bop×Value) +>

x, α, ` ∈ Addr = Var + Symbol + AllocSite
+ Addr × Field

Var = Global + Param + Local

Figure 2: Abstract domains: the abstract semantics
of procedure is estimated as abstract memory state
over domain Mem.

lowing two different if-else codes as the same, since it does
not know which statements are belonging to which condition
expressions. This insensitivity leads to detecting false posi-
tive clones.

“if(a > 0) A else B” 6= “if(a > 0) B else A”

3.1 Collecting Abstract Memory States
We compute abstract memory states at every program

point of a given procedure by the conventional fixpoint it-
eration over abstract semantics (à la abstract interpreta-
tion [3]).

Memory State Representation Our abstract domains
for memory states are presented in Figure 2. Our analy-
sis is flow- and path-sensitive; it summarizes possible ab-
stract memory states for each program point and all execu-
tion paths to the point. An abstract memory state (M in
Figure 2) is a finite mapping from abstract (symbolic) ad-
dresses to guarded values. A guarded value (GV in Figure 2)
is a set of pairs of a guard and a symbolic value, where the
guard is the accumulated symbolic condition that leads to
the accompanying value. The set of all variables (Var) con-
sists of three disjoint sets, all global variables (Global), all
parameters (Param), and all local variables (Local) except
procedure parameters. This partitioning enables us to define
three equivalence classes for variables when defining equiva-
lent addresses in Section 3.2. Symbols (Symbol) are used to
indicate symbolic values or symbolic addresses in global in-
put memories of the current procedure. Allocated addresses
(AllocSite) denote all addresses allocated (including arrays)
at each allocation site (a static call program point for al-
locations). Field addresses (Addr × Field) represent field
variables of structures.

A symbolic value can be a number (N ), an address (Addr),
a binary value (Value × Bop×Value), or a unary value (Uop
×Value). Bop and Uop denote a set of binary and unary op-
eration symbols respectively. A guard (Guard) can be gener-
ated from the relations between values (Value × Rel×Value),
where Rel denotes the set of comparison operators (e.g., =,
≤). Some guards can also be connected by logical operators
(conjunction ∧ and disjunction ∨).

The next step is estimating the semantics of the program
as elements in this domain.

Abstract Semantics Our analysis starts from the en-
try point of a procedure without knowing the input memory
states. The unknown input memory states are constructed
by observing which locations and values are accessed by the
procedure [17]. Abstract memory states are updated by eval-
uating each statement in the procedure, and the updates are
decided by the predefined abstract semantics of each state-
ment. For example, one abstract semantics of the assign-
ment statement is defined as follows:

M ` e1 : {(g, x)} M ` e2 : {(gi, vi)}i
M ` ∗e1 := e2 :M

{
x 7→ {(g ∧ gi, vi)}i

}
M ` e : GV denotes that expression e evaluates to a guarded
value GV given the memory state M. This abstract seman-
tics illustrates the destructive update case, in which the pre-
vious guarded values of the updated address is overwritten.
The rule indicates the destructive update can happen only
when the address value of e1 is a single variable (note that
the singleton set for the value in M ` e1 : {(g, x)}). As
a result, the value of variable x is updated by the value of
e2 in memory M. The guards for the new values are the
conjunctions of guard g of the address and guards gi of the
values.

1 int* foo(list *a,

2 int b){

3 int res = 0;

4 if (a->len > 5)

5 res = bar(b);

6 return res;

7 }

8 int* bar(int x){

9 int *m = 0;

10 if (x > 0)

11 m = malloc(x);

12 return m;

13 }

Abstract memory state (line 6)
a {〈true, α〉}
α.len {〈true, β〉}
b {(true, γ)}

{〈β > 5 ∧ γ > 0, `〉,
res 〈((β ≤ 5)∨

(β > 5 ∧ γ ≤ 0)), 0〉
}

The procedural summary of bar
x > 0 return alloc

x ≤ 0 return 0

Figure 3: Procedure bar with its procedural sum-
mary and procedure foo with its abstract memory
state at the exit point (line 6).

Consider the procedure foo in Figure 3. The abstract
memory state at the exit point (line 6) is presented on
the right side. At line 3, variable res has guarded value
{〈true, 0〉} which means variable res always has the value
zero at the program point. Parameter a is accessed in the
condition expression at line 4, however the value of param-
eter a is unknown. Hence a new symbol α is created to
represent the value of parameter a. For the field value of
a->len which is also unknown, new symbol β is created.
From the condition expression, guards β > 5 and β ≤ 5 are
kept for true and false branches respectively.

Inter-procedural Analysis The procedural summary
information enables the analyzer to capture the semantics
of procedure calls without analyzing the procedures again.
At line 5, procedure bar is called. According to the proce-
dural summary, the procedure returns an allocated address
` when the value of parameter x is greater than 0, other-
wise it returns 0. The procedural summary keeps conditions
(as extended from [17]) for memory behaviors of procedure.



This procedural summary is instantiated with the abstract
memory state at the call site (line 5). At line 5, the value
of formal parameter x in procedure bar is instantiated with
γ (the value of actual parameter b). With this instantiation
of the procedural summary, we obtain the result memory
state of the procedure call. Now, variable res points to the
result guarded value, {〈β > 5∧γ > 0, `〉, 〈β > 5∧γ ≤ 0, 0〉}.
Here guard β > 5 comes from the condition on true branch
at line 4 and guards γ > 0 and γ ≤ 0 come from the pro-
cedural summary of bar. At line 6, the abstract memory
states on both true and false branches are joined. Variable
res points to a guarded value {〈β ≤ 5, 0〉} in the memory
state from the false branch. The joined memory state at the
return point of foo (line 6) is shown as the table in Figure 3.
The procedural summary of procedure foo is automatically
generated from this abstract memory state [17].

Handling Loops The termination of the fixpoint itera-
tions is guaranteed by a widening operator [3]. Without the
widening operator, fixpoint iterations may diverge because
the heights of the number domain N and the symbolic-value
domain Value×Bop×Value are infinite. After five iterations
(delayed widening [2]), changing values go into the special
value > (indicating an unknown value). When we compare
memory states, the unknown values are considered as not
equivalent. Hence our clone detection may miss some clones.

Example for Comparison The abstract memory states
at the exit point of procedures are compared for code clone
detection. As an example, procedure foo2 in Figure 4 is a
semantic clone of procedure foo in Figure 3. If we disregard
the names of variables, symbols, field variables, and vari-
able types then two memories are equivalent. Note that two
guards β ≤ 5∨ γ ≤ 0 and β ≤ 5∨ (β > 5∧ γ ≤ 0) are equiv-
alent. This equivalence is attained by function simple [5]
presented in Section 3.2.

1 int* foo2(list2 *x,

2 int y){

3 int ret = 0;

4 if (x->val>5 && y>0)

5 ret = malloc(y);

6 return ret;

7 }

Abstract memory state (line 6)
x {〈true, α〉}
α.val {〈true, β〉}
y {(true, γ)}

{〈β > 5 ∧ γ > 0, `〉,
ret 〈β ≤ 5 ∨ γ ≤ 0, 0〉}

Figure 4: Procedure foo2 with its abstract memory
state at the exit point (line 6).

3.2 Comparing Abstract Memory States
Given estimated abstract memory states, we need to quan-

tify their similarities. Algorithm 1 presents the quantifi-
cation steps. First, we calculate the similarities between
guarded value pairs of all possible combinations on the given
memoriesM1 andM2 (line 2 to 8). We compare addresses

using the equivalence relation
L
= on addresses (as defined be-

low). If addresses are equivalent, then we calculate the sim-
ilarity of two guarded values by function simGV(GV1,GV2)
(line 4). If addresses are not equivalent, the similarity is zero
(line 5). For all combinations, the similarities of pairs are
recorded in map S (line 6). Then the find best matching(S)
function finds a subset of S that exclusively spans the two
memories such that the total similarities of matched pairs

Algorithm 1: simM(M1,M2)

Input: abstract memory states M1 and M2

Output: similarity value of M1 and M2

1 S := {};
2 foreach address a1 ∈ dom(M1) do
3 foreach address a2 ∈ dom(M2) do

4 if a1
L
= a2 then

v := simGV(M1(a1),M(a2));
5 else v := 0;
6 S := S{(a1, a2) 7→ v};
7 end

8 end
9 best = find best matching(S);

10 if | dom(M1) | + | dom(M2) |= 0 then return 0;

11 return
2 · best

| dom(M1) | + | dom(M2) |

becomes the biggest (line 9). Finally, the algorithm returns
the ratio of similarity to the total size of memories. If both
memories are empty (the denominator becomes zero), then
the similarity is zero (line 10 to 11).

Equivalent Addresses Two addresses are equivalent with

the relation
L
= if one of the following conditions is satisfied:

x
L
= y if x, y∈Global ∨ x, y∈Param ∨ x, y∈Local

`
L
= `′ if `, `′ ∈ AllocSite

a.f
L
= a′.f ′ if a

L
= a′

α
L
= β if origin(α)

L
= origin(β)

When two variables are compared, the names and types
of the variables are ignored (Var). We only check if both
variables are parameters, global variables, or non-parameter
local variables. All dynamically allocated addresses ` are
considered as equivalent regardless of their allocation sites
(AllocSite). For field addresses (Addr × Field), the names
of field variables are ignored and only structural equiva-

lences are considered. For example, x.val
L
= x.len holds

even if the address uses different field names. However,

(x.next).len
L
= x.len is not true because the former one has

an additional field dereference. All symbolic addresses are
equivalent only when their origins are the same (Symbol).
The origin address origin(α) is the address pointing to sym-
bolic address α. As an example, the following origin(α) = a

and origin(β) = α.len hold in Figure 3.

Similarity Between Guarded Values A guarded value
GV is a set of pairs which consist of a guard and a value.
Function simGV(GV1,GV2) compares all guards and values
in GV1 with those in GV2, and then counts the number of



matched pairs n. Finally, the similarity of two guarded val-
ues is computed as follows:

simGV(GV1,GV2) =
2 · n

| GV1 | + | GV2 |

n = maximum of |M | s.t. M ⊆ S and
∀〈(g1, v1), (g2, v2)〉 ∈M,

(g1, v1) and (g2, v2) appear only once

S =
⋃
{〈(g1, v1), (g2, v2)〉 | g1

G
= g2 ∧ v1

V
= v2}

∀(g1, v1) ∈ GV1 and ∀(g2, v2) ∈ GV2

The similarity is the ratio of the number of matched pairs to
the total size of two guarded values. We seek for the maxi-
mum number of matched pairs trying to match all possible

combinations GV1 × GV2. Equivalent values
V
= and equiva-

lent guards
G
= are defined as the following.

Equivalent Values Relation
V
= establishes the equiva-

lence on values:

n1
V
= n2 if n1 = n2

v1 ⊕ v2
V
= v3 ⊕′ v4 if v1

V
= v3 ∧ (⊕ = ⊕′) ∧ v2

V
= v4

	v1
V
= 	′v2 if v1

V
= v2 ∧ 	 = 	′

`
V
= `′ if `

L
= `′

Equivalence of numbers is determined by numerical equiv-
alence (N ). Binary values are equivalent when both the
pair of values and the operators are equivalent (Value ×
Bop × Value). From our definition of

V
=, we may miss se-

mantically equivalent values due to their syntactic expres-
sion differences. For example, x > 0 and 0 < x should
be regarded as equivalent, but it is regarded as not equiv-

alent because of x
V
6= 0, > 6=<, and 0

V
6= x. To address this

problem, we canonicalize the symbolic values. The canoni-
calization gives certain partial orders on both operators and
values then sorts the binary values by the orders. Hence
all semantically equivalent binary values have their unique
representations.

Equivalent Guards Relation
G
= determines equivalent

guards:

v1 ∼ v2
G
= v3 ∼′ v4 if v1

V
= v3 ∧ (∼=∼′) ∧ v2

V
= v4

g1
G
= g2 if unify(simple(g1), simple(g2))

true
G
= true

false
G
= false

Two relation guards v1 ∼ v2 and v3 ∼′ v4 in domain (Value×
Rel × Value) are equivalent when their value pairs are the
same and their relations (e.g., <,=) are the same. However,
one formula can be presented as several different forms. For
example, formulas x > 5 ∧ (x < 10 ∨ x > 0) and x > 5 look
different, but are actually equivalent because x > 5 implies
x > 0. To remedy this, we use a simplify function simple [5]
that simplifies guards so that they do not contain any redun-
dant sub-formulas using a decision procedure [7]. Further-
more, we want to assume x > 5 and z > 5 are equivalent if

x
L
= z holds. This process is done by unification algorithm

unify, which is widely used in type systems [25]. The algo-
rithm returns true if there exists a substitution which makes

two different structures the same while preserving relations
L
= and

V
=.

Best Matching Function find best matching(S) at line
9 in Algorithm 1 finds the best matching (i.e. the matching
that maximizes the sum of similarities), and then returns
the maximum sum of similarities. Consider this similarity
table as an example.

XXXXXXXM2

M1 (a1
1,GV

1
1) (a2

1,GV
2
1) (a3

1,GV
3
1) (a4

1,GV
4
1)

(a1
2,GV

1
2) 0.8

1
0.1 0.5 0.6

(a2
2,GV

2
2) 0.7 0.7

2
0.6 0.5

(a3
2,GV

3
2) 0.6 0.5 0.6

3
0.4

The boxed ones represent the best matching, since it max-
imizes the sum of similarities. Suppose our matching func-
tion finds this best matching. The value of best at line 9 in
Algorithm 1 is the sum of similarities, 2.1 = 0.8+0.7+0.6 of
all matched pairs. Hence the similarity, 0.6 = 2 · 2.1/(4 + 3)
of these two memories is returned at line 11 in Algorithm 1.

We develop a lightweight greedy algorithm to heuristically
try finding the best matching which runs in O(n2), where
n is the number of elements. After calculating the similari-
ties of all pairs, the pair which has the maximum similarity
is chosen as a matched one. Then the algorithm continues
to choose another maximum pair among the remaining pairs
until all addresses in eitherM1 orM2 are matched. The or-
der of choices for the above table is annotated over the boxes.
The algorithm is not guaranteed to find the best match-
ing, but has the advantage of the running time. There is a
combinatorial optimization algorithm called the Hungarian
method [22] which is guaranteed to find the best matching
but runs in O(n3), much slower than ours. In our experi-
ments, we found that our algorithm yields the same results
as the Hungarian method. This is because similarities of
pairs are usually near 1 or 0.

3.3 Judgement of Clones
We allow parametrization by MinEntry to filter small clones

such as a procedure containing just one line as its body.
Though the similarity function simM(M1,M2) gives high
values to similar memories, this function does not reflect the
size of memories. So we give a penalty to small size mem-
ories. Note that the value of the similarity function ranges
over [0, 1].

simM(M1,M2)

log MinEntry

log(| dom(M1) | + | dom(M2) |)

The above formula is proportional to the size of memories
and inversely proportional to MinEntry. Log function is used
to smoothen the amount of the penalty. Here parameter
MinEntry is given by users depending on target program
size. The parameter is similar to parameter minT which de-
termines the minimum number of tokens for clone candidates
in Deckard [12].

We evaluate similarities for all possible pairs of abstract
memories. There is a high probability that procedures with
high similarity are true clones. Hence we sort all pairs ac-
cording to their similarities. We allow another parameter
Similarity, which determines the threshold of similarities
of clones to be reported. If Similarity is set to 80% then
pairs with similarity less than 0.8 are not reported.



Sometimes the similarity of two memories M1 and M2

never exceeds the given Similarity if there are a big differ-
ence in the entry numbers of the two memories. Hence we
can skip the comparison of two memories where,

2× min(| dom(M1) |, | dom(M2) |)
| dom(M1) | + | dom(M2) | ≤ Similarity.

This strategy significantly reduces the memory comparison
time.

Users can choose parameters MinEntry and Similarity to
pick thresholds to determine clones. One could set MinEntry
high, if one wants to ignore small clones. One could set
Similarity high, if one wants less false positives.

4. EXPERIMENTS
In this section, we evaluate our code clone detector MeCC.

We apply MeCC to detect clones in large-scale open source
projects, Python, Apache, and PostgreSQL as shown in Ta-
ble 1.

Projects KLOC Procedures Application
Python 435 7,657 interpreter
Apache 343 9,483 web server
PostgreSQL 937 10,469 database

Table 1: Properties of the subject projects.

We design our experiments to address the following re-
search questions:

RQ1 (detectability): How many Type-3 and Type-4 clones
can be detected by MeCC?

RQ2 (accuracy): How accurately (in terms of false posi-
tives and false negatives) can MeCC detect clones?

RQ3 (scalability): How does MeCC scale (in terms of de-
tection time and detectable program size)?

RQ4 (comparison): How many gapped and semantic clones
identified by MeCC can be detected by previous clone
detectors, CCFinder [18], Deckard [12], and a PDG-
based detector [9]?

4.1 Detectability
We apply MeCC to detect clones to evaluate the detectabil-

ity. In our experiments, we set Similarity=80% and MinEntry

=50. Then the detected clones by MeCC are manually in-
spected and categorized into four clone types as discussed in
Section 2 by one author who has experience with C/C++
development in industry more than eight years. The other
two authors review and confirm the inspected clones.

Type-1 Type-2 Type-3 Type-4
Python 3 127 82 13
Apache 2 84 71 10
PostgreSQL 9 120 88 14

Table 2: The distribution of detected clone types by
MeCC.

The numbers of detected and classified clones are shown
in Table 2. MeCC can detect all four types of clones. Type-4
(semantic) and some Type-3 (gapped) clones in Table 2 have

noticeable syntactic differences. Nevertheless, MeCC can
detect these clones because it only compares abstract mem-
ory states. MeCC also detects Type-1 (exact) and Type-2
(renamed) clones since syntactic similarity is usually accom-
panied by semantic similarity.

Figure 5 shows one Type-4 clone detected by MeCC. This
is a typical example of control replacement. The if-else

statements in Figure 5(a) are replaced by semantically equiv-
alent statement using the ternary conditional ‘? :’operator in
Figure 5(b). MeCC detects this clone, since their function-
alities are the same and thus the abstract memory states are
the same.

1 PyObject *PyBool_FromLong(long ok){

2 PyObject *result;

3 if (ok) result = Py True;

4 else result = Py False;

5 Py_INCREF(result);

6 return result;

7 }

(a)

1 static PyObject *get_pybool(int istrue){

2 PyObject *result = istrue? Py True : Py False;

3 Py_INCREF(result);

4 return result;

5 }

(b)

Figure 5: Type-4 clone, control replacement from
Python. The statement if-else is changed by us-
ing the ternary conditional ? : operator. Syntactical
differences are underlined.

A more complex Type-4 clone detected by MeCC is pre-
sented in Figure 6. The clone has two syntactic differences.
One difference is statement reordering. Two statements from
line 4 to 7 in Figure 6(a) are reordered into the statements
from line 3 to 6 in Figure 6(b). The second difference comes
from using intermediate variables. The local variable sconf

is introduced at line 3 in Figure 6(a) and then used as a pa-
rameter of the ap_get_module_config function call at line
5. The local variable proto is introduced at line 7 in Fig-
ure 6(b). The return value of the apr_pstrdup function call
at line 11 in Figure 6(b) is assigned to this variable. This
value is assigned to a field address at line 13 via the lo-
cal variable. These syntactic changes make it difficult for
textual-based clone detectors to identify such clones [18].

Understanding the semantics of procedure calls is one ad-
vantage of MeCC. An interesting Type-4 clone detected by
MeCC in Figure 7 highlights this strength. The major syn-
tactic difference between the two procedures is that the as-
signment statement at line 6 in Figure 7(a) is substituted by
the procedure memcpy call at line 7 Figure 7(b). Most previ-
ous clone detection techniques cannot capture this semantic
similarity between a procedure call and similar assignment
statements.

4.2 Accuracy
The next question is how accurately MeCC can detect

clones. We manually inspected the detected clones and iden-
tified false positives, which are not real clones, but are de-
tected as clones by MeCC.

Table 3 presents the false positive clones and their ratio
from three subjects (when Similarity=80% and MinEntry=50).



1 static const char *set_access_name(cmd_parms *cmd, void *dummy,

2 const char *arg){

3 void *sconf = cmd->server->module config;

4 core server config *conf = ap get module config(

5 sconf, &core module);

6 const char *err = ap check cmd context(cmd,

7 NOT IN DIR LOC FILE | NOT IN LIMIT);

8 if (err != NULL) {

9 return err;

10 }

11 conf->access name = apr pstrdup(cmd->pool, arg);

12 return NULL;

13 }

(a)

1 static const char *set_protocol(cmd_parms *cmd, void *dummy,

2 const char *arg){

3 const char *err = ap check cmd context(cmd,

4 NOT IN DIR LOC FILE | NOT IN LIMIT);

5 core server config *conf = ap get module config(

6 cmd->server->module config, &core module);

7 char *proto;

8 if (err != NULL) {

9 return err;

10 }

11 proto = apr pstrdup(cmd->pool, arg);

12 ap str tolower(proto);

13 conf->protocol = proto;

14 return NULL;

15 }

(b)

Figure 6: Type-4 clone, statement reordering from
Apache

1 void appendPQExpBufferChar(PQExpBuffer str, char ch){

2 /* Make more room if needed */

3 if (!enlargePQExpBuffer(str, 1))

4 return;

5 /* OK, append the data */

6 str->data[str->len] = ch;

7 str->len++;

8 str->data[str->len] = ’\0’;

9 }

(a)

1 void appendBinaryPQExpBuffer(PQExpBuffer str, const char *data,

2 size t datalen){

3 /* Make more room if needed */

4 if(!enlargePQExpBuffer(str, datalen))

5 return;

6 /* OK, append the data */

7 memcpy(str->data + str->len, data, datalen);

8 str->len += datalen;

9 str->data[str->len] = ’\0’;

10 }

(b)

Figure 7: Type-4 clone, preserving memory behavior
from PostgreSQL

Total FP FP ratio
Python 264 39 14.7%
Apache 191 24 12.5%
PostgreSQL 278 47 16.9%

Table 3: Detected clones and false positives. Total:
total number of detected clones, FP: number of false
positive clones, and FP ratio: false positive ratio.

In Python, the total number of found clones is 264, the num-
ber of false positive clones is 39, and hence the false positive
ratio is around 14.7%. Similarly, the false positive ratio for
Apache is 12.5%, and for PostgreSQL is around 16.9%.

The most common case of false positive clones is data
structure initialization. In those clones, a structure is allo-
cated and then field variables are initialized according to the
structure type. Some of them can be viewed as clones, but
we scrupulously mark these initialization code pairs as false
positives.

These false positive ratios look slightly higher than previ-
ous approaches [18, 12, 9]. However, one could set Similarity
higher to reduce the false positive ratio. As an example,
the false positive ratio is only 3% for Python when we set
Similarity=90%.

In the next step, we measure the ratio of false negative
clones — real clones, but missed by MeCC. For this ex-
periment, since we need an oracle clone set, we use the
benchmark provided by Roy et al. [31]. This benchmark
includes three Type-1, four Type-2, five Type-3, and four
Type-4 clones. We apply MeCC on the benchmark with
Similarity=80%. Since the sizes of procedures in the bench-
mark are small, we set MinEntry=2.

Type-1 Type-2 Type-3 Type-4
Benchmark 3 4 5 4
MeCC 3 4 4 4

Table 4: False negatives on the benchmark set [31].
MeCC misses only one clone in Type-3.

Table 4 shows that MeCC has almost no false negatives.
MeCC misses only one Type-3 clone, which has an insertion
of an if statement that is related to a procedure call, and
it changes the memory state. However, MeCC detects this
clone if we set Similarity=79%.

Overall, our experimental results in this section show that
MeCC can detect clones accurately, with almost no false neg-
atives and with a reasonable false positive ratio.

4.3 Scalability
In this section, we measure scalability of MeCC. We al-

ready showed that MeCC can detect clones in large-scale
open source projects accurately in Section 4.1 and Section 4.2.

We measure the time spent to detect the clones for three
subjects. Our experiments were conducted on an Ubuntu
64-bit machine with a 2.4 GHz Intel Core 2 Quad CPU and
8 GB RAM.

KLOC Analysis Comparison
Python 435 63m32s 1m54s
Apache 343 308m58s 1m36s
PostgreSQL 937 422m04s 6m28s

Table 5: Time spent for the detection process.

Table 5 shows the results. Static analysis took about
63 minutes for Python and 422 minutes for PostgreSQL.
Since our static analysis includes preprocessing, summariza-
tion/instantiation of procedural summaries, and fixpoint it-
erations for collecting memory states, it is computationally
expensive. However, this is usually one-time cost. When



software changes, we can incrementally recompute memory
states of the changed parts including impacted parts accord-
ing to the call relationship. If the changed part in a proce-
dure does not cause observable changes to memory behav-
iors of the procedure, then callers of the procedure do not
need to be re-analyzed. Though the dependency can, in the
worst case, expand to all the procedures, such situation (a
procedure’s change in memory effects, combined with that
procedure as a hub in the call-graph) would not be that
common.

4.4 Comparison
Section 4.1 shows that MeCC can detect all four types

of clones including Type-3 (gapped) and Type-4 (semantic)
clones. In this section, we discuss if other clone detectors
can also identify these clones.

Python Apache PostgreSQL

Type-3

MeCC 82 71 88
Deckard 21 12 25
CCFinder 0 0 0
PDG-based 10 8 11

Type-4

MeCC 13 10 14
Deckard 0 0 2
CCFinder 0 0 0
PDG-based 1 0 1

Table 6: The numbers of detected Type-3 and
Type-4 clones by MeCC, Deckard, CCFinder,
and a PDG-based detector [9].

For the comparison, we use two publicly available syntac-
tic clone detectors, Deckard, a AST-based detector, and
CCFinder, a token-based detector. We also use a result set
from a PDG-based semantic clone detector [9].

For Deckard, we set the options as used in [12], mint=30
(minimum token size), stride=2 (size of the sliding win-
dow), and Similarity=0.9. For CCFinder, we also use the
default options, Minimum Clone Length=30, Minimum TKS=12

(token set size), and Shaper Level=Soft shaper. For the
PDG-based detector [9], we directly used the clone detec-
tion results provided by the authors of the detector, since
the tool is not publicly available at the time of this writing.

Table 6 compares Type-3 and Type-4 clone detectabil-
ity of Deckard, CCFinder, the PDG-based detector. We
assume these detectors can detect all Type-1 and Type-2
clones, since these clones are syntactically almost the same.
CCFinder is a scalable and fast tool which detects Type-

1 and Type-2 clones accurately. However, CCFinder could
not identify any Type-3 and Type-4 clones. The main reason
is that CCFinder extracts and compares syntactic tokens,
but usually Type-3 and Type-4 clones are significantly dif-
ferent in the token level.
Deckard detects about 24% of Type-3 clones. Since

Deckard uses the characteristic vectors of AST, it can
detect clones with small syntactic variations. Surprisingly,
Deckard identifies two Type-4 clones in PostgreSQL. The
two detected Type-4 clones are classified as the statement
reordering subtype shown in Figure 6. Since Deckard ex-
tracts characteristic vectors of these reordered ASTs, the
vector only captures the number of elements in AST. How-
ever, Deckard still misses a large portion of Type-3 and
Type-4 clones.

The PDG-based detector identifies about 12% of Type-3
clones. Only one Type-4 clone is identified in each Python
and PostgreSQL. The detected Type-4 clones are statement
reordering. Since PDGs capture program semantics using
data dependency and control flows, the PDG-based detector
can detect some Type-4 clones like statement reordered ones.

However, these PDG-based approaches [9, 21, 24] have
some limitations. (1) First, inter-procedural semantics via
procedure calls cannot be supported, which means that se-
mantic clones that differ in respect to procedure calls (e.g.,
function inlining) are missed. MeCC captures memory be-
havior of procedure calls by procedural summaries as de-
scribed in Section 3. (2) Second, PDGs cannot be com-
pletely free from changes on syntactic structures, while our
technique reliably determines the semantic similarity of code
because we use purely semantic information (path-sensitive
abstract memory effects) of programs.

Overall, the comparison results in this section suggest that
MeCC, an abstract memory-based clone detector is effective
in detecting all four types (including Type-3 and Type-4) of
clones.

5. DISCUSSION
We discuss potential applications and limitations of our

approach. We also identify threats to validity of our exper-
imental results.

5.1 Applications
Detecting code clones is useful for software development

and maintenance tasks such as finding inconsistencies [15,
14] and identifying potential bugs or code smells [10].

We used MeCC to identify potential bugs and code smells
caused by inconsistencies. Figure 8 shows one example of
Type-4 clones identified by MeCC. This clone was not de-
tected by other clone detectors (e.g. [18, 12, 9]). It clearly
shows an inconsistency: the procedure PQparameterStatus

in Figure 8 (b) checks whether parameter paramName is not
null, but the procedure GetVariable in (a) does not check.
This inconsistency shows an exploitable bug, which mani-
fests when null is passed as the second parameter, name.

# Type-3 Exploitable Code
& Type-4 bugs (%) smells (%)

Python 95 26 (27.4%) 23 (24.2%)
Apache 81 8 (9.9%) 27 (33.3%)
PostgreSQL 102 21 (20.6%) 20 (19.6%)
Total 278 55 (19.8%) 70 (25.2%)

Table 7: Exploitable bugs and code smells in Type-3
and Type-4 clones found by MeCC.

We manually inspected all Type-3 and Type-4 clones iden-
tified by MeCC to check if they were caused by inconsisten-
cies, and if these inconsistencies lead to potential problems.
When we identified problems caused by inconsistencies, we
classified them in two categories, exploitable bugs and code
smells: A bug is exploitable if it causes unexpected behav-
iors, for example when a particular variable is used as pro-
cedure input as shown in Figure 8 (a). Conversely, a code
smell occurs when an inconsistency has no demonstrated un-
expected behaviors, but refactorings or consistent changes
(with other clone pairs) are highly recommended.



1 const char *GetVariable(VariableSpace space, const char *name){

2 struct _variable *current;

3 if (!space) return NULL;

4 for (current = space->next; current; current = current->next){

5 if (strcmp(current->name, name) == 0){

6 return current->value;

7 }

8 }

9 return NULL;

10 }

(a)

1 const char *PQparameterStatus(const PGconn *conn, const char *paramName){

2 const pgParameterStatus *pstatus;

3 if(!conn || !paramName) return NULL;

4 for (pstatus=conn->pstatus; pstatus!=NULL; pstatus=pstatus->next){

5 if (strcmp(pstatus->name, paramName) == 0)

6 return pstatus->value;

7 }

8 return NULL;

9 }

(b)

Figure 8: One Type-4 clone, statement insertion
without changing computation from PostgreSQL. It
includes an exploitable bug due to an inconsistency.

Table 7 shows the manual inspection results1. Among 278
Type-3 and Type-4 clones, 55 exploitable bugs and 70 code
smells were found. About 45% of Type-3 and Type-4 clones
are either exploitable bugs or code smells. These bugs and
code smells would be missed by previous approaches (e.g.
[18, 12, 9]), since most of these Type-3 and Type-4 clones
were not detected by them as discussed in Section 4.4.

Overall, Table 7 implies that MeCC and its identified
Type-3 and Type-4 clones are very useful for detecting in-
consistencies, exploitable bugs, and code smells.

MeCC can be used for plagiarism detection and common
bug pattern identification. Syntactic plagiarism detection
tools (e.g. Moss [33] and JPlag [28]) cannot detect plagia-
rism if code is copied and intentionally changed with some
syntactic obfuscations. MeCC is able to detect plagiarism as
long as the semantics of the copied code remains similar re-
gardless of its syntactic changes. Similarly, MeCC can help
identify common bug patterns. Kim et al. proposed Bug-
Mem [20], which identifies common bug fix patterns and
locates similar bugs in other code. However, they only cap-
ture syntactic bug patterns using tokens of code. MeCC
can improve their work by identifying common semantic bug
patterns.

5.2 Limitations
Since our current implementation compares abstract mem-

ory states at the exit points of procedures, MeCC detects
only procedure-level clones. However it is possible to extend
MeCC to find clones with a finer granularity such as basic
blocks adapting a code fragments generation technique [13]
to prepare code clone candidates of finer granularity. Then
we can calculate every abstract memory state for each can-
didate and compare them to identify clones.

Collecting abstract memory states from programs is a
computationally expensive task in both time and memory.
Analyzing the semantics of programs takes longer than syn-

1More detailed data is available at http://ropas.snu.ac.
kr/mecc

tactic comparison. However, the current implementation of
MeCC showed that MeCC scales to detect clones in Post-
greSQL, which is around 1M LOC.

Similar abstract memory states do not always imply sim-
ilar concrete behaviors, which may cause false positives. In
the abstract interpretation framework [3], one element in
an abstract domain can represent several concrete elements.
Procedural summaries record memory related behaviors [17],
but do not capture all concrete procedure behaviors. This
limitation is inevitable since determining semantic equiva-
lence between two programs is generally undecidable [8].

5.3 Threats to Validity
We identify the following threats to validity to our work:

Open source projects may not be representative. The
three projects used in this paper are all open source
and not representative of all software systems, and
hence we cannot currently generalize the results of our
study across all projects. However, these projects are
chosen because they are commonly used in other code
clone related research.

Manually inspected and classified clones. One author
manually inspected and classified clones, and they are
used to evaluate MeCC. Since there is no consensus
about Type-3 and Type-4 clones, there is ambiguity
in the classified clones. However, two other authors
confirmed the classified clones, and we made these data
publicly available.

Default options are used. Deckard, CCFinder, and the
PDG-based detector have various options to tune their
clone detectability. In this paper, we use their default
options. However, careful option tuning may allow
these tools to detect more Type-3 or Type-4 clones.

6. RELATED WORK
Most clone detection techniques are syntactic clone de-

tectors ones [31, 29, 12, 18, 23, 32, 9, 30, 1] leveraging
line-based [32], token-based [18, 23], or tree-based [12] ap-
proaches. These detectors are good at identifying Type-1
and Type-2 clones, but they miss most of the Type-4 and
some of the Type-3 clones as discussed in Section 4.4.

Existing semantic clone detectors have limitations. For
example, as we discussed in Section 4.4, PDG-based detec-
tors [9, 21, 24] miss some semantic clones due to, for exam-
ple, ignorance of inter-procedural semantics. A PDG-based
technique [9] maps slices of PDGs to syntax subtrees and ap-
plies DECKARD [12] to detect similar subtrees. Although
slicing enables one to detect more gapped clones, clones in
each clone cluster still need to be syntactically similar. Jiang
et al. [13] proposed a clone detector using random testing
techniques. They conclude two code fragments are clones
when their outputs are the same just for a number of ran-
domly generated inputs. Since random testing cannot cover
all program paths or inputs - usually around up to 60 ∼
70% [26, 27, 34], false positives are inevitable. Furthermore,
the inter-procedural behaviors are not considered in their
approach.

7. CONCLUSIONS AND FUTURE WORK



We proposed an abstract memory-based code clone detec-
tion technique, presented its implementation, MeCC, and
discussed its applications. Since MeCC compares abstract
semantics (as embodied in abstract memory states), its clone
detection ability is independent of syntactic similarity. Our
empirical study shows that MeCC can accurately detect all
four types of code clones. We also show that most of Type-
4 and some of Type-3 clones identified by MeCC cannot be
detected by previous approaches [18, 12, 9].

We anticipate that MeCC will allow developers to find
inconsistencies as shown in Section 5.1, identify refactor-
ing candidates, and understand software evolution related
to semantic clones which would be neglected by previous
approaches.

Overall, we expect that future clone detection approaches
will exploit more deep semantics of code via static analysis
program logic, and/or other program verification technolo-
gies. MeCC is one step forward in this direction.
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