
February 2002 109

S E C U R I T Y

I nformation security is increasingly
making headlines these days, and
usually the news is not good—
some new Internet worm, virus, or
Trojan is devastating corporate

networks. After more than 25 years of
research and engineering, why is our
information infrastructure more at
risk than ever? Unfortunately, there is
no simple answer to this question, and
there are no simple solutions.

Addressing the problem requires
understanding the nature of security
and appreciating the need for a more
scientific approach. A long-term solu-
tion involves significantly improving
the design and implementation of soft-
ware, which demands collaboration
between security professionals and
software engineers.

A CONTINUOUS PROCESS
What exactly is security? The term

itself means little. Many assume that a
single security mechanism such as
cryptography provides “security,” but
this is not the case. Effective security is
a continuous process involving the
design, installation, and operation of a
system. In short, security is multidi-
mensional.

The dynamic nature of security
makes protecting information system
resources difficult. Every aspect of the
life cycle of all protected systems is
involved. A single design or imple-
mentation error can quickly render a
presumably secure corporate network

insecure. Consider the vulnerabilities
associated just with electronic mail and
Web browsers: One infected e-mail
attachment or piece of malicious
downloaded code can spread rapidly,
corrupting files, knocking out servers,
and crashing computer systems.

RISK MANAGEMENT
Corporate security architects spend

countless hours and money building the
cyberspace equivalent of the Maginot
line—the fortifications the French built
after World War I to prevent another
German invasion. Then these architects
watch helplessly as hackers, like the
German Blitzkrieg, circumvent their
costly static defenses and attack them
at their weakest point—in this case,
consumer applications. Today’s secu-
rity professionals face a conundrum:
how to protect everything all of the
time as transparently as possible.

As William R. Cheswick and Steven
M. Bellovin explained in Firewalls and
Internet Security: Repelling the Wily
Hacker (Addison-Wesley, Reading,
Mass., 1994), “any program, no mat-

ter how innocuous it seems, can har-
bor security holes….” Not only can
such holes appear in any piece of soft-
ware (or hardware for that matter),
they can be introduced at any point
within a product’s life cycle. Because
security architects have little or no con-
trol over most of the life cycle of the
products they rely on to protect their
infrastructure, they must use risk man-
agement daily.

Risk management is a familiar
process in the financial and insurance
communities, but it is not well under-
stood within the information security

community. In fact, risk management
as practiced today involves more art
than science.

Rules and standards for information
security best practices exist, but they
are usually ad hoc and based on expe-
rience rather than empirical evidence.
Insurance underwriters, for example,
base life insurance policy decisions on
actuarial tables describing the life
expectancy of the individuals they
insure. However, no such tools are cur-
rently available to compute the likeli-
hood that a given information system
will suffer a security breach.

A SCIENTIFIC APPROACH
For the security community to make

such reliable estimates, it must be able
to quantify

• the value of the protected infor-
mation,

• the threat to that information, and
• the assurance level.

One way to quantify the assurance
level is through its dual work factor—

Security: Technical,
Social, and Legal
Challenges
Bill Arbaugh, University of Maryland at College Park

Risk management is not
well understood within
the information security
community.

kwang
nformation

kwang
security

kwang
is

kwang
increasingly

kwang
making headlines these days, and

kwang
usually the news is not good—

kwang
소프트웨어 벅 때문에문제가 되었던 기억?개인적으로도 많았을 것입니다.전세계적으로 센세이셜한 뉴스거리가 된 경우도 많이 있었죠.벅을 없애고자 하는 노력,이 노력에 프로그래밍 언어분야에서 이룩한 것들은지금까지 가장 과학적이고믿을만한 성과들이었습니다.타입시스템이 대표적입니다.

110 Computer

S e c u r i t y

the work required by an adversary to
successfully exploit a targeted system.
The information security community
universally recognizes the work factor
as a concept for measuring a crypto-
graphic algorithm’s security because all
possible attacks against the algorithm
are direct and measurable, such as a
brute-force strategy to exhaust the key
space.

Work factor does not, however, apply
to the implementation of cryptographic
algorithms—it is quantifiable in theory
but not in practice because implemen-
tations are susceptible to indirect
attacks, usually against external inter-
faces, which are difficult to quantify.

Paul C. Kocher’s calculations of the
subtle variations in the time required to
perform certain private-key operations
demonstrated an entire new series of
indirect attacks against presumably
protected private keys (“Timing
Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Sys-
tems,” http://www.cryptography.com/
timingattack/paper.html). Similarly,
Mike Bond and Ross Anderson
demonstrated a new class of indirect
attacks against a tamper-resistant cryp-
tographic system by manipulating its
software application programming
interface, causing the system to leak
information about its secret keys (“API-
Level Attacks on Embedded Systems,”
Computer, Oct. 2001, pp. 67-75).

Both types of attacks result in the
recovery of the secret key the crypto-
graphic algorithm uses—the same end
as a brute-force strategy—yet they are
not included in the initial work factor
computation. Arguably, we could
quantify timing and API attacks, but
what about currently unknown types
of attacks? How can we quantify the
potential of a trusted insider to inad-
vertently or maliciously release sensi-
tive information?

SIMPLIFYING DESIGN
We cannot overlook the role of

humans in the security equation. One
of the 10 security principles that
Jerome H. Saltzer and Michael D.

Schroeder introduced in their 1975
article, “The Protection of Information
in Computer Systems” (Proceedings of
the IEEE, vol. 63, no. 9, pp. 1278-
1308), is psychological acceptance.
They correctly recognized that users
often either operate security protec-
tions incorrectly or, worse, do not use
them at all if the mechanisms are diffi-
cult to operate or are otherwise an
impediment. For example, users com-
monly fail to secure a product with an
insecure default configuration even
when the problem is well known.

Designing complex systems has
never been easy, and security systems
are no exception. Security can only be
effective if it is transparent to both users
and administrators. Unfortunately, this
is hard to achieve in both commercial
and specialized security systems.

Albert Einstein best articulated a gen-
erally accepted design principle when
he said, “Everything should be as sim-
ple as possible, but no simpler.” In his
1980 ACM Turing Award lecture,
“The Emperor’s Old Clothes” (Comm.
ACM, vol. 24, no. 2, Feb. 1981, pp. 75-
83), C.A.R. Hoare applied this philos-
ophy to software design. According to
Hoare, “…there are two ways of con-
structing a software design: One way
is to make it so simple that there are
obviously no deficiencies, and the other
way is to make it so complicated that
there are no obvious deficiencies.”

Unfortunately, the vast majority of
software designed today falls into the
latter category. Radically simplifying
modern software design to significantly
improve the way all software is con-
structed is critical to achieving effective
security.

INTEGRATING SECURITY
An even greater problem is persuad-

ing architects of consumer systems to
incorporate security into their designs
from the beginning rather than retro-
fitting solutions once vulnerabilities are
found. The telephone, cellular, and
wireless local area networking indus-
tries all had major security problems.
Eliminating them required spending
considerable time and effort to revise
the initial design.

Systems are designed without secu-
rity as a major concern for many rea-
sons, primarily related to a misunder-
standing of economics and perfor-
mance. Vendors usually do not include
robust security in their systems because
doing so incurs additional direct costs.
Unfortunately, little data is available to
indicate whether the lack of a secure
design increases the long-term indirect
costs. As a result, new ways of measur-
ing security impact and risk are critical.

In his Turing Award lecture, Hoare
described four design principles he
used to implement Algol 60. The first
principle for implementing this algo-
rithmic language was security. “A con-
sequence of this principle,” Hoare said,
“is that every occurrence of every sub-
script of every subscripted variable was
on every occasion checked at runtime
against both the upper and the lower
declared bounds of the array.”

Yet today, approximately one-half of
all security-related vulnerabilities occur
due to buffer overflows. We know how
to avoid buffer overflows, commercial
and open source tools are available to
help identify them (although admit-
tedly they are not sufficient yet), and
we can use programming languages
that provide robust bounds checking
at runtime. Why does this problem
continue to occur?

I believe, as do many others, that
vendors have thus far determined that
the cost of developing software cor-
rectly far exceeds the potential costs of
the downstream problems that not
doing so creates. To make any signifi-
cant improvements in the security of
systems, the security and software engi-

The security and
software engineering

communities must find
ways to develop software
correctly in a timely and
cost-effective fashion.

kwang
Radically simplifying

kwang
modern

kwang
software

kwang
all

kwang
design

kwang
to

kwang
significantly

kwang
improve

kwang
way

kwang
the

kwang
software

kwang
constructed

kwang
critical

kwang
achieving

kwang
effective

kwang
is

kwang
to

kwang
security.

kwang
번역하면,"오늘날 소프트웨어를 만드는과정을 획기적으로 간단히 만들어주는 방안이만들어 지지 않으면안전한 소프트웨어 시스템을만드는 것은 불가능 할 것이다. "이에 프로그래밍 언어에서부터모든 프로그래밍 환경들이[간단한]것을 향해 가지 않으면않될 것입니다.

kwang
We know how

kwang
to

kwang
avoid

kwang
buffer

kwang
overflows,

kwang
commercial

kwang
and

kwang
open

kwang
source

kwang
tools

kwang
available

kwang
are

kwang
to

kwang
help

kwang
identify

kwang
them

kwang
although

kwang
admittedly

kwang
they

kwang
are

kwang
not

kwang
sufficient

kwang
yet),

kwang
and

kwang
we

kwang
can

kwang
use programming languages

kwang
that provide robust bounds checking

kwang
at

kwang
runtime. Why does this problem

kwang
continue to occur?

kwang
두가지 때문에 하이라이트했습니다.1. 지금의 buffer overflow를 첵크해주는 도구들이 아직은 별볼일 없다는 사실2. 프로그래밍 언어의 도움이란 무엇이 될지?를 고민해 보세요.

February 2002 111

security claims. Legislation such as the
1988 Digital Millennium Copyright
Act (http://www.loc.gov/copyright/
legislation/dmca.pdf) and the Uniform
Computer Information Transactions
Act (http://www.ucitaonline.com/)
makes it a crime to reverse engineer a
product containing security mecha-
nisms designed to protect intellectual
property, as in the case of the DMCA,
and in general as in the case of UCITA.

These overly broad and vague laws
have created a cloud of legal uncer-
tainty over an important area of secu-
rity research and engineering. When,
or if, that cloud will clear is difficult to
forecast because both the government
and advocates of the legislation are
happy with the current state of confu-
sion.

T he security and privacy commu-
nity faces a wide range of difficult
technical, social, and legal chal-

lenges. In future issues of Computer,
guest columnists will join me every
other month in presenting opinions
and overviews of ongoing research
related to information security and pri-
vacy, highlighting both problems and
solutions. �

Bill Arbaugh is an assistant professor
in the Department of Computer Sci-
ence and at the University of Maryland
Institute for Advanced Computer
Studies at the University of Maryland
at College Park. Contact him at waa@
cs.umd.edu.

neering communities must work closely
to find ways to demonstrate that they
can develop software correctly in a
timely and cost-effective fashion rather
than rely on an ineffective penetrate-
and-patch strategy (William A. Arbaugh,
William L. Fithen, and John McHugh,
“Windows of Vulnerability: A Case
Study Analysis,” Computer, Dec.
2000, pp. 52-59).

PRIVACY
Although it is a necessary condition

for privacy, security alone is not suffi-
cient. Security provides only the means
of controlling the release of sensitive
information. It does not prevent pre-
sumably trusted parties from releasing
that information outside the scope of the
agreement that provided the basis for
giving it to them—trust is transititive.

Those who wittingly share sensitive
data with another assume that the
recipient

• will use that information only in
accordance with an explicit or
implicit privacy agreement, and

• has the means—security mecha-
nisms—in place to protect the
information.

Today, unfortunately, both assump-
tions are seldom true. Several large
companies have abruptly revised their
privacy policies, using information
about their customers in a fashion out-
side the original privacy agreement,
and hackers have electronically stolen
identities from company databases and
Web sites.

Protecting privacy requires formal-
izing the nature of the trust relation-
ship between the owner and the holder
of information through improved laws
and agreements as well as drastically
improving security mechanisms and
systems.

LEGAL OBSTACLES
As if the technical hurdles facing the

security community were not enough,
ill-conceived laws severely hamper
researchers’ ability to verify vendors’

Innovative technology for computer professionals

How to Reach
Computer
Writers
We welcome submissions. For
detailed information, write for a
Contributors’ Guide (computer@
computer.org) or visit our Web site:
http://computer.org/computer/.

News Ideas
Contact Lee Garber at lgarber@
computer.org with ideas for news
features or news briefs.

Products and Books
Send product announcements to
products@computer.org. Contact
computer-ma@computer.org with
book announcements.

Letters to the Editor
Please provide an e-mail address or
daytime phone number with your
letter. Send letters to Letters,
Computer, 10662 Los Vaqueros
Cir., PO Box 3014, Los Alamitos,
CA 90720-1314; fax +1 714 821
4010; computer@computer.org.

On the Web
Visit http://computer.org for infor-
mation about joining and getting
involved with the Society and
Computer.

Magazine Change of Address
Send change-of-address requests
for magazine subscriptions to
address.change@ieee.org. Make
sure to specify Computer.

Missing or Damaged Copies
If you are missing an issue or
received a damaged copy, contact
membership@computer.org.

Reprint Permission
To obtain permission to reprint
an article, contact William Hagen,
IEEE Copyrights and Trademarks
Manager, at whagen@ieee.org.
To buy a reprint, send a query to
computer@computer.org or a fax
to +1 714 821 4010.

Overly broad and
vague laws have created

a cloud of legal
uncertainty over an
important area of
security research
and engineering.

