Type Systems
for Programming Languages

Benjamin C. Pierce
bcpierce@cis.upenn.edu

Working draft of January 15, 2000

This is preliminary draft of a book in progress. Comments, suggestions, and corrections are welcome.
Contents

Preface .. 8

1 Introduction .. 13
 1.1 What is a Type System? 13
 1.2 A Brief History of Type 14
 1.3 Applications of Type Systems 16
 1.4 Related Reading ... 16

2 Mathematical Preliminaries 18
 2.1 Sets and Relations 18
 2.2 Induction ... 18
 2.3 Term Rewriting ... 19

3 Untyped Arithmetic Expressions 20
 3.1 Basics ... 20
 Syntax ... 21
 Evaluation .. 21
 3.2 Formalities ... 21
 Syntax ... 21
 Evaluation .. 25
 3.3 Properties ... 27
 3.4 Implementation ... 27
 Syntax ... 27
 Evaluation .. 28
 3.5 Summary .. 28
 3.6 Further Reading ... 30

4 The Untyped Lambda-Calculus 31
 4.1 Basics ... 32
 Syntax ... 33
 Operational Semantics 34
 4.2 Programming in the Lambda-Calculus 34
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>Is the Lambda-Calculus a Programming Language?</td>
<td>39</td>
</tr>
<tr>
<td>4.4</td>
<td>Formalities</td>
<td>39</td>
</tr>
<tr>
<td>Substitution</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Operational Semantics</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>Summary</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>4.5</td>
<td>Further Reading</td>
<td>44</td>
</tr>
<tr>
<td>5</td>
<td>Implementing the Lambda-Calculus</td>
<td>45</td>
</tr>
<tr>
<td>5.1</td>
<td>Nameless Representation of Terms</td>
<td>45</td>
</tr>
<tr>
<td>Syntax</td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>Shifting and Substitution</td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>Evaluation</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>5.2</td>
<td>A Concrete Realization</td>
<td>49</td>
</tr>
<tr>
<td>Syntax</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Shifting and Substitution</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Evaluation</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>5.3</td>
<td>Ordinary vs. Nameless Representations</td>
<td>51</td>
</tr>
<tr>
<td>6</td>
<td>Typed Arithmetic Expressions</td>
<td>52</td>
</tr>
<tr>
<td>6.1</td>
<td>Syntax</td>
<td>52</td>
</tr>
<tr>
<td>6.2</td>
<td>The Typing Relation</td>
<td>52</td>
</tr>
<tr>
<td>6.3</td>
<td>Properties of Typing and Reduction</td>
<td>53</td>
</tr>
<tr>
<td>Typing Derivations</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>Typechecking</td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>Safety = Preservation + Progress</td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>6.4</td>
<td>Implementation</td>
<td>55</td>
</tr>
<tr>
<td>6.5</td>
<td>Summary</td>
<td>56</td>
</tr>
<tr>
<td>7</td>
<td>Simply Typed Lambda-Calculus</td>
<td>58</td>
</tr>
<tr>
<td>7.1</td>
<td>Syntax</td>
<td>58</td>
</tr>
<tr>
<td>7.2</td>
<td>The Typing Relation</td>
<td>59</td>
</tr>
<tr>
<td>7.3</td>
<td>Summary</td>
<td>61</td>
</tr>
<tr>
<td>7.4</td>
<td>Properties of Typing and Reduction</td>
<td>62</td>
</tr>
<tr>
<td>Typechecking</td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>Typing and Substitution</td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>Type Soundness</td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>7.5</td>
<td>Implementation</td>
<td>65</td>
</tr>
<tr>
<td>7.6</td>
<td>Further Reading</td>
<td>66</td>
</tr>
</tbody>
</table>
Extensions

8.1 Base Types ... 67
8.2 Unit type ... 67
8.3 Let bindings ... 68
8.4 Records and Tuples 68
8.5 Variants ... 72
8.6 General recursion 72
8.7 Lists ... 73
8.8 Lazy records and let-bindings 75

References

9.1 Further Reading 79

Exceptions

10.1 Errors ... 80
10.2 Exceptions ... 80

Type Equivalence

11

Definitions

12.1 Type Definitions 83
12.2 Term Definitions 85

Subtyping

13.1 The Subtype Relation 87
 Variance ... 88
 Summary ... 89
13.2 Metatheory of Subtyping 91
 Algorithmic Subtyping 91
 Minimal Typing 92
13.3 Implementation 96
13.4 Meets and Joins 97
13.5 Primitive Subtyping 99
13.6 The Bottom Type 99
13.7 Other stuff 99

Imperative Objects

14.1 Objects ... 100
14.2 Object Generators 102
14.3 Subtyping ... 103
14.4 Basic classes 104
14.5 Extending the Internal State 105
14.6 Classes with “Self” 106
Preface

The study of type systems for programming languages has emerged over the past decade as one of the most active areas of computer science research, with important applications in software engineering, programming language design, high-performance compiler implementation, and security of information networks.

This text aims to introduce the area to beginning graduate students and advanced undergraduates. A broad range of core topics are covered in detail, including simple type systems, type reconstruction, universal and existential polymorphism, subtyping, bounded quantification, recursive types, and type operators. Early chapters on the untyped lambda-calculus help make the book self-contained, allowing it to be used in courses for students with no background in the theory of programming languages.

The book adopts a strongly pragmatic approach throughout: a typical chapter begins with programming examples motivating a new typing feature, develops the feature and its basic metatheory, adduces typechecking algorithms, and illustrates these with executable ML typecheckers. The underlying semantic formalism is almost entirely operational, for a close correspondence with familiar programming languages.

A repeated theme is the theoretical properties required to build sound and complete typechecking algorithms. Both the proofs and the algorithms themselves are presented in detail. Moreover, each chapter is accompanied by a running implementation that can be used as a basis for experimentation by students, class projects, etc.

Audience

The book is aimed at graduate students, including both the general graduate population as well as students intending to specialize in programming language research. For the former, it should serve to introduce a number of key ideas from the design and analysis of programming languages, with type systems as an organizing structure. For the latter, it should provide sufficient background to proceed directly on to the research literature. The book is suitable for self-study by
researchers in other areas who want to learn something about type systems, and should be a useful reference for experts. The first several chapters should be usable in upper-division undergraduate courses.

Goals

The main goals of the book are:

- **Accessibility.** A reader should be able to approach the book with little or no background in theory of programming languages.

- **Coverage of core topics.** By the end of the book, the reader should fully equipped to tackle the research literature in type systems.

- **Pragmatism.** The book stays as close as possible to programming languages (sometimes at the expense of topics that might be included in a book written from the perspective of typed lambda-calculi and logic). In particular, the underlying computational substrate is a call-by-value lambda-calculus.

- **Diversity.** The book tries to show the leafiness of the topic rather than trying to unify all the threads addressed in the book. (Of course, I’ve unified as many of the threads as I could manage.)

- **Honesty.** Every type system discussed in the book must be implemented. Every example must run.

To achieve all this, a few other desirable properties have been sacrificed.

- **Completeness of coverage** (probably impossible in one book, certainly in a textbook).

- **Efficiency** (as opposed to termination) of the typechecking algorithms described. This is not a book about industrial-strength typechecker implementation.

Required Background

No background in the theory of programming languages is assumed, but students should approach the book with a degree of prior mathematical maturity (in particular, rigorous undergraduate coursework in discrete mathematics, algorithms, and elementary logic).

Readers should also be familiar with some higher-order functional programming language (Scheme, ML, Haskell, etc.), and basic concepts of programming languages and compilers (abstract syntax, Backus-Naur grammars, evaluation, abstract machines, etc.). This material is available in many excellent undergraduate texts. I particularly like the one by Friedman, Wand, and Haynes [FWH92].
Course Outlines

In an advanced graduate course, it should be possible to cover essentially the whole book in a semester. For an undergraduate or beginning graduate course, there are two basic paths through the material:

- type systems in programming (omitting implementation chapters), and
- basic theory and implementation (omitting or skimming the end of the book).

Shorter courses can also be constructed by selecting particular chapters of interest. In a course where term projects are a major part of the work, it may be desirable to postpone some of the theoretical material (e.g., denotational semantics, and perhaps some of the deeper chapters on implementation) so that a broad range of examples can be covered before the point where students have to choose project topics.

Chapter Dependencies

The major dependencies between chapters are outlined in Figure 1. Solid lines indicate that the later chapter is best read after the earlier. Dotted lines mean that the chapters can be read out of order except for some sections.

Typographic Conventions

Most chapters develop the features of some type system in a discursive way, then define the system formally as a collection of inference rules with brackets above and below to set them off from the surrounding text. For the sake of completeness, these definitions are usually presented in full, including not only the new rules for the features under discussion at the moment, but also the rest of the rules needed to constitute a complete calculus. The new parts are set on a gray background to make the “delta” from previous systems visually obvious.

An unusual feature of the book’s production is that all the examples are mechanically checked during typesetting: an automatic script goes through each chapter, extracts the examples, generates and compiles a custom typechecker containing just the features under discussion, applies it to the examples, and inserts the checker’s responses in the text. The system that does the hard parts of this, called TinkerType, was developed by Michael Levin and myself [LP99].

Electronic resources

A collection of implementations for the typecheckers and interpreters described in the text is available at http://www.cis.upenn.edu/~bcpierce/typesbook. These
Figure 1: Chapter dependencies
implementations have been carefully polished for readability and modifiability, and have been used very successfully by my students as the basis of both small implementation exercises and larger course projects. The implementation language is the Objective Caml dialect of ML, freely available through http://caml.inria.fr.

Corrections for any errors discovered in the text will also be made available at http://www.cis.upenn.edu/~bcpierce/typesbook.

Acknowledgements

Many!
Chapter 1

Introduction

Proofs of programs are too boring for the social process of mathematics to work.
— Richard DeMillo, Richard Lipton, and Alan Perlis [DLP79]

...So don’t rely on social processes for verification.
— David Dill

Despite decades of concern in both industry and academia, expensive failures of large software projects are common. Proposed approaches to improving software quality include—among other ideas—a broad spectrum of techniques for helping ensure that a software system behaves correctly with respect to some specification, implicit or explicit, of its desired behavior. On one end of this spectrum are powerful frameworks such as algebraic specification languages, modal logics, and denotational semantics; these can be used to express very general correctness properties but are cumbersome to use and demand significant involvement by the programmer not only in the application domain but also in the formal subtleties of the framework itself. At the other end are techniques of much more limited power—so limited that they can be built into compilers or linkers and thus “applied” even by programmers unfamiliar with the underlying theories. Such methods often take the form of type systems.

1.1 What is a Type System?

Type systems are generally formulated as collections of rules for checking the “consistency” of programs.

This kind of checking exposes not only trivial mental slips, but also deeper conceptual errors, which frequently manifest as type errors.

A useful—though rough—distinction divides the world of programming languages into two parts:
• Untyped — programs simply execute flat out; there is no attempt to check “consistency of shapes”

• Typed — some attempt is made, either at compile time or at run-time, to check shape-consistency

Among typed languages, we can break things down further:

<table>
<thead>
<tr>
<th>Strongly typed</th>
<th>Statically checked</th>
<th>Dynamically checked</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML, Haskell, Pascal (almost), Java (almost)</td>
<td>Lisp, Scheme</td>
<td></td>
</tr>
<tr>
<td>Weakly typed</td>
<td>C, C++</td>
<td>Perl</td>
</tr>
</tbody>
</table>

1.2 A Brief History of Type

The following table presents a (rough and incomplete) chronology of some important high points in the history of type systems in computer science. Related developments in logic are also included (in italics), to give a sense of the importance of this field’s contributions.

<table>
<thead>
<tr>
<th>late 1800s</th>
<th>Origins of formal logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>early 1900s</td>
<td>Formalization of mathematics</td>
</tr>
<tr>
<td>1930s</td>
<td>Untyped lambda-calculus</td>
</tr>
<tr>
<td>1940s</td>
<td>Simply typed lambda-calculus</td>
</tr>
<tr>
<td>1950s</td>
<td>Fortran</td>
</tr>
<tr>
<td>1950s</td>
<td>Algol</td>
</tr>
<tr>
<td>1960s</td>
<td>Automath project</td>
</tr>
<tr>
<td>1960s</td>
<td>Simula</td>
</tr>
<tr>
<td>1960s</td>
<td>Martin-Löf type theory</td>
</tr>
<tr>
<td>1960s</td>
<td>Curry-Howard isomorphism</td>
</tr>
<tr>
<td>1970s</td>
<td>System F, Fω</td>
</tr>
<tr>
<td>1970s</td>
<td>polymorphic lambda-calculus</td>
</tr>
<tr>
<td>1970s</td>
<td>CLU</td>
</tr>
<tr>
<td>1970s</td>
<td>polymorphic type inference</td>
</tr>
<tr>
<td>1970s</td>
<td>ML</td>
</tr>
<tr>
<td>1970s</td>
<td>intersection types</td>
</tr>
<tr>
<td>1980s</td>
<td>NuPRL project</td>
</tr>
<tr>
<td>1980s</td>
<td>subtyping</td>
</tr>
<tr>
<td>1980s</td>
<td>ADTs as existential types</td>
</tr>
<tr>
<td>1980s</td>
<td>calculus of constructions</td>
</tr>
<tr>
<td>1980s</td>
<td>linear logic</td>
</tr>
<tr>
<td>1980s</td>
<td>bounded quantification</td>
</tr>
</tbody>
</table>
In computer science, the earliest type systems, beginning in the 1950s (e.g., FORTRAN), were used to improve efficiency of numerical calculations by distinguishing between natural-number-valued variables and arithmetic expressions and real-valued ones, allowing the compiler to use different representations and generate appropriate machine instructions for arithmetic operations. In the late 1950s and early 1960s (e.g., ALGOL), the classification was extended to structured data (arrays of records, etc.) and higher-order functions. Beginning in the 1970s, these early foundations have been extended in many directions...

- **parametric polymorphism** allows a single term to be used with many different types (e.g., the same sorting routine might be used to sort lists of natural numbers, lists of reals, lists of records, etc.), encouraging code reuse;

- **module systems** support programming in the large by providing a framework for defining (and automatically checking) interfaces between the parts of a large software system;

- **subtyping** and **object types** address the special needs of object-oriented programming styles;

- connections are being developed between the type systems of programming languages, the **specification languages** used in program verification, and the **formal logics** used in theorem proving.

All of these (among many others) are still areas of active research.

I’d like to include here a longer discussion of the historical origins of various ideas in type systems. This is usually how I use the whole first lecture of my graduate course, and it goes down very well, but to put it all in writing will require a bit of research.
1.3 Applications of Type Systems

Beyond their traditional benefits of robustness and efficiency, type systems play an increasingly central role in computer and network security: static typing lies at the core of the security models of Java and JINI, for example, and is the main enabling technology for Proof-Carrying Code. Type systems are used to organize compilers, verify protocols, structure information on the web, and even model natural languages.

Short sketches of some of these diverse applications...

- In programming in the large (module systems, interface definition languages, etc.)
- In compiling and optimization (static analyses, typed intermediate languages, typed assembly languages, etc.)
- In “self-certification” of untrusted code (so-called “proof-carrying code” [NL96, Nec97, NL98])
- In security
- In theorem proving
- In databases
- In linguistics (categorial grammar [Ben95, vBM97, etc.], and maybe something seminal by Lambek)
- In Y2K conversion tools
- DTDs and other “web metadata” (note from Henry Thompson: DTDs were originally designed for SGML because of the expense of cancelling huge typesetting runs due to errors in the markup!)

1.4 Related Reading

While this book attempts to be self contained, it is far from comprehensive: the area is too large, and can be approached from too many angles, to do it justice in one book. Here are a few other good entry points:

- Handbook articles by Cardelli [Car96] and Mitchell [Mit90] offer quick introductions to the area. Barendregt’s article [Bar92b] is for the more mathematically inclined.
- Mitchell’s massive textbook on programming languages [Mit96] covers basic lambda calculus, a range of type systems, and many aspects of semantics.
Abadi and Cardelli’s *A Theory of Objects* [AC96] develops much of the same material as this present book, de-emphasizing implementation aspects and concentrating instead on the application of these ideas in a foundation treatment of object-oriented programming. Kim Bruce’s forthcoming *Foundations of Object-Oriented Programming Languages* will cover similar ground. Introductory material on object-oriented type systems can also be found in [PS94, Cas97].

Reynolds [Rey98] *Theories of Programming Languages*, a graduate-level survey of the theory of programming languages, includes beautiful expositions of polymorphic typing and intersection types.

Girard’s *Proofs and Types* [GLT89] treats logical aspects of type systems (the Curry-Howard isomorphism, etc.) thoroughly. It also includes a description of System F from its creator, and an appendix introducing linear logic.

The Structure of Typed Programming Languages, by Schmidt [?], develops core concepts of type systems in the context of programming language design, including several chapters on conventional imperative languages. Simon Thompson’s *Type Theory and Functional Programming* [Tho91] focuses on connections between functional programming (in the “pure functional programming” sense of Haskell or Miranda) and constructive type theory, viewed from a logical perspective.

Semantic foundations for both untyped and typed languages are covered in depth in textbooks by Gunter [Gun92] and Winskel [Win93].

Hindley’s monograph *Basic Simple Type Theory* [Hin97] is a wonderful compendium of results about the simply typed lambda-calculus and closely related systems. Its coverage is deep rather than broad.

If you want a single book besides the one you’re holding, I’d recommend either Mitchell or Abadi and Cardelli.
Chapter 2

Mathematical Preliminaries

This chapter mostly still needs to be written. I do not intend to go into a great deal of detail (a student that needs a real introduction to these topics is going to be lost in a couple of chapters anyway) — just remind the reader of basic concepts and notations.

Before getting started, we need to establish some common notation and state a few basic mathematical facts. Most readers should be able to skim this chapter and refer back to it as necessary.

2.1 Sets and Relations

2.2 Induction

2.2.1 Definition: A partially ordered set S is said to be well founded if it contains no infinite decreasing chains—that is, if there is no infinite sequence s_1, s_2, s_3, \ldots of elements of S such that each s_{i+1} is strictly less than s_i.

2.2.2 Theorem [Principle of well-founded induction]: Suppose that the set S is well founded and that P is some predicate on the elements of S. If we can show, for each $s : S$, that $(\forall s' < s. P(s'))$ implies $P(s)$, then we may conclude that $P(s)$ holds for every $s : S$.

2.2.3 Corollary [Principle of induction on the natural numbers]: Suppose that P is some predicate on the natural numbers. If we can show, for each m, that $(\forall i < m. P(i))$ implies $P(m)$, then we may conclude that $P(n)$ holds for every n.

Proof: The set of natural numbers is well founded.
2.2.4 Corollary [Principle of lexicographic induction]: Define the following “dictionary ordering” on pairs of natural numbers: \((m, n) < (m', n')\) iff \(m < m'\) or \(m = m'\) and \(n < n'\).

Now, suppose that \(P\) is some predicate on pairs of natural numbers. If we can show, for each \((m, n)\), that \((\forall (m', n') < (m, n). P(m', n'))\) implies \(P(m, n)\), then we may conclude that \(P(m, n)\) holds for every pair \((m, n)\).

(A similar principle holds for lexicographically ordered triples, quadruples, etc.)

Proof: The lexicographic ordering on pairs of numbers is well founded.

2.3 Term Rewriting

(or maybe this material should be folded into the next chapter...)
Chapter 3

Untyped Arithmetic Expressions

Quite a bit of text and a few technical definitions are still missing here. The idea is to introduce the basic ideas of defining a language and its operational semantics formally, and proving some simple properties by structural induction, before getting to the complexities (esp. name binding) of the full-blown lambda-calculus.

3.1 Basics

We begin with a very simple language for calculating with numbers and booleans.

 true;
 ▷ true
 if false then true else false;
 ▷ false
 0;
 ▷ 0
 succ (succ (succ 0));
 ▷ 3
 succ (pred 0);
 ▷ 1
 iszero (pred (succ 0));
Throughout the book, the symbol \(\uparrow\) will be used to display the results of evaluating examples. You can think of the lines marked with \(\uparrow\) as the responses from an interactive interpreter when presented with the preceding inputs.

For brevity, the examples use standard arabic numerals as shorthand for nested applications of \(\text{succ}\) to 0, writing \(\text{succ} \text{(succ} (\text{succ} (0)))\) as 3.

Syntax

The syntax of arithmetic expressions comprises several kinds of terms. The constants \(\text{true}\), \(\text{false}\), and 0 are terms. If \(t\) is a term, then so are \(\text{succ} \ t\), \(\text{pred} \ t\), and \(\text{iszero} \ t\). Finally, if \(t_1\), \(t_2\), and \(t_3\) are terms, then so is \(\text{if} \ t_1 \ \text{then} \ t_2 \ \text{else} \ t_3\). These forms are summarized in the following abstract grammar:

\[
\begin{align*}
t & ::= \quad \text{(terms...)} \\
 & \quad \text{true} \quad \text{constant true} \\
 & \quad \text{false} \quad \text{constant false} \\
 & \quad \text{if} \ t \ \text{then} \ t \ \text{else} \ t \quad \text{conditional} \\
 & \quad 0 \quad \text{constant zero} \\
 & \quad \text{succ} \ t \quad \text{successor} \\
 & \quad \text{pred} \ t \quad \text{predecessor} \\
 & \quad \text{iszero} \ t \quad \text{zero test}
\end{align*}
\]

Evaluation

3.2 Formalities

Syntax

3.2.1 Definition [Terms]: The set of terms is the smallest set \(\mathcal{T}\) such that

1. \(\{\text{true}, \text{false}, 0\} \subseteq \mathcal{T}\);
2. if \(t_1 \in \mathcal{T}\), then \(\{\text{succ} \ t_1, \text{pred} \ t_1, \text{iszero} \ t_1\} \subseteq \mathcal{T}\);
3. if \(t_1 \in \mathcal{T}, t_2 \in \mathcal{T}\), and \(t_3 \in \mathcal{T}\), then \(\text{if} \ t_1 \ \text{then} \ t_2 \ \text{else} \ t_3 \in \mathcal{T}\).

These three clauses capture exactly what is meant by the productions in the more concise and readable “abstract grammar” notation that we used above. \(\Box\)
Definition 3.2.1 is an example of an inductive definition. Since inductive definitions are ubiquitous in the study of programming languages, it is worth pausing for a moment to examine this one in detail. Here is an alternative definition of the same set, in a more concrete style.

3.2.2 Definition [Terms, more concretely]: For each natural number \(n \), define a set \(S_n \) as follows:

\[
S_0 = \emptyset
\]

\[
S_{i+1} = \{ \text{true, false, 0} \} \cup \{ \text{succ } t_1, \text{pred } t_1, \text{iszero } t_1 | t_1 \in S_i \} \cup \{ \text{if } t_1 \text{ then } t_2 \text{ else } t_3 | t_1, t_2, t_3 \in S_i \}.
\]

Finally, let

\[
S = \bigcup_i S_i.
\]

That is, \(S_0 \) is empty; \(S_1 \) contains just the constants; \(S_2 \) contains the constants plus the phrases that can be built with constants and just one succ, pred, iszero, or if; \(S_3 \) contains these plus all phrases that can be built using succ, pred, iszero, and if on phrases in \(S_2 \); and so on. \(S \) collects together all the phrases that can be built in this way—i.e., all phrases built by some finite number of applications and abstractions, beginning with just variables.

3.2.3 Exercise [Quick check]: List the elements of \(S_3 \).

3.2.4 Exercise: Show that the sets \(S_i \) are cumulative—that is, that for each \(i \) we have \(S_i \subseteq S_{i+1} \).

Now let us check that the two definitions of terms actually define the same set. We’ll do the proof in quite a bit of detail, to show how all the pieces fit together.

3.2.5 Proposition: \(\mathcal{T} = S \).

Proof: \(\mathcal{T} \) was defined as the smallest set satisfying certain conditions. So it suffices to show (a) that \(S \) satisfies these conditions, and (b) that any set satisfying the conditions has \(S \) as a subset (i.e., that \(S \) is the smallest set satisfying the conditions).

For part (a), we must check that each of the three conditions in Definition 3.2.1 holds of \(S \). First, since \(S_1 = \{ \text{true, false, 0} \} \) and \(S_1 \subseteq \bigcup_i S_i \), it is clear that the constants are in \(S \). Second, if \(t_1 \in S \), then (since \(S = \bigcup_i S_i \)) there must be some \(i \) such that \(t_1 \in S_i \). But then, by the definition of \(S_{i+1} \), we must have \(\text{succ } t_1 \in S_{i+1} \), hence \(\text{succ } t_1 \in S \); similarly, we see that \(\text{pred } t_1 \in S \) and \(\text{iszero } t_1 \in S \). Third, if \(t_1 \in S \), \(t_2 \in S \), and \(t_3 \in S \), then if \(t_1 \text{ then } t_2 \text{ else } t_3 \in S \), by a similar argument.

For part (b), suppose that some set \(S' \) satisfies the three conditions in Definition 3.2.1. We will argue, by induction on \(n \), that every \(S_n \subseteq S' \), from which it
will clearly follow that $S \subseteq S'$. Suppose that $S_m \subseteq S'$ for all $m < n$; we must then show that $S_n \subseteq S'$. Since the definition of S_n has two clauses (for $n = 0$ and $n = i+1$), there are two cases to consider.

- If $n = 0$, then $S_n = \emptyset$. But $\emptyset \subseteq S'$ trivially.
- Otherwise, $n = i+1$ for some i. Let t be some element of S_{i+1}. Since S_{i+1} is defined as the union of three smaller sets, t must come from one of these sets, and there are three possibilities to consider:

 1. t is a constant, hence $t \in S'$ by condition (1).
 2. t has the form $\text{succ } t_1, \text{pred } t_1, \text{or iszero } t_1$, for some $t_1 \in S_i$. But then, by the induction hypothesis, $t_1 \in S'$, and so, by condition (2), $t \in S'$.
 3. t has the form $\text{if } t_1 \text{ then } t_2 \text{ else } t_3$, for some $t_1, t_2, t_3 \in S_i$. Again, by the induction hypothesis, t_1, t_2, and t_3 are all in S', and hence, by condition (3), so is t.

Thus, we have shown that each $S_i \subseteq S'$. By the definition of S as the union of all the S_i, this gives $S \subseteq S'$, completing the argument. ☐

The explicit characterization of T justifies an important principle for reasoning about its elements. If $t \in T$, then one of three things must be true about t—either

1. t is a constant, or
2. t has the form $\text{succ } t_1, \text{pred } t_1, \text{or iszero } t_1$ for some smaller term t_1, or
3. t has the form $\text{if } t_1 \text{ then } t_2 \text{ else } t_3$ for some smaller terms t_1, t_2, and t_3.

We can put this observation to work in two ways: we can give inductive definitions of functions over the set of terms, and we can give inductive proofs of properties of terms. For example, here is a simple inductive definition of a function mapping each term t to the set of constants used in t.

3.2.6 Definition: The set of constants appearing in a term t, written $\text{Consts}(t)$, is defined as follows:

<table>
<thead>
<tr>
<th>$\text{Consts}(t)$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>${\text{true}}$</td>
</tr>
<tr>
<td>false</td>
<td>${\text{false}}$</td>
</tr>
<tr>
<td>iszero</td>
<td>${\text{iszero}}$</td>
</tr>
<tr>
<td>$\text{succ } t_1$</td>
<td>$\text{Consts}(t_1)$</td>
</tr>
<tr>
<td>$\text{pred } t_1$</td>
<td>$\text{Consts}(t_1)$</td>
</tr>
<tr>
<td>$\text{iszero } t_1$</td>
<td>$\text{Consts}(t_1)$</td>
</tr>
<tr>
<td>$\text{if } t_1 \text{ then } t_2 \text{ else } t_3$</td>
<td>$\text{Consts}(t_1) \cup \text{Consts}(t_1) \cup \text{Consts}(t_1)$</td>
</tr>
</tbody>
</table>
Another property of terms that can be calculated by an inductive definition is their size.

3.2.7 Definition: The size of a term \(t \), written \(\text{size}(t) \), is defined as follows:

\[
\begin{align*}
\text{size}(\text{true}) &= 1 \\
\text{size}(\text{false}) &= 1 \\
\text{size}(\text{iszero}) &= 1 \\
\text{size}(\text{succ } t_1) &= \text{size}(t_1) + 1 \\
\text{size}(\text{pred } t_1) &= \text{size}(t_1) + 1 \\
\text{size}(\text{iszero } t_1) &= \text{size}(t_1) + 1 \\
\text{size}(\text{if } t_1 \text{ then } t_2 \text{ else } t_3) &= \text{size}(t_1) + \text{size}(t_1) + \text{size}(t_1) + 1
\end{align*}
\]

That is, the size of \(t \) is the number of nodes in its abstract syntax tree. Similarly, the depth of a term \(t \), written \(\text{depth}(t) \), is defined as follows:

\[
\begin{align*}
\text{depth}(\text{true}) &= 1 \\
\text{depth}(\text{false}) &= 1 \\
\text{depth}(\text{iszero}) &= 1 \\
\text{depth}(\text{succ } t_1) &= \text{depth}(t_1) + 1 \\
\text{depth}(\text{pred } t_1) &= \text{depth}(t_1) + 1 \\
\text{depth}(\text{iszero } t_1) &= \text{depth}(t_1) + 1 \\
\text{depth}(\text{if } t_1 \text{ then } t_2 \text{ else } t_3) &= \max(\text{depth}(t_1), \text{depth}(t_1), \text{depth}(t_1)) + 1
\end{align*}
\]

Equivalently, \(\text{depth}(t) \), is the smallest \(i \) such that \(t \in S_i \).

Here is an inductive proof of a simple fact relating the number of constants in a term to its size.

3.2.8 Lemma: The number of distinct constants in a term \(t \) is always smaller than the size of \(t \) \(|\text{Consts}(t)| \leq \text{size}(t) \). \(\square \)

Proof: The property in itself is entirely obvious, of course. What’s interesting is the form of the inductive proof, which we’ll see repeated many times as we go along.

The proof proceeds by induction on the size of \(t \). That is, assuming the desired property for all terms smaller than \(t \), we must prove it for \(t \) itself; if we can do this, we may conclude that the property holds for all \(t \). There are three cases to consider:

Case: \(t \) is a constant
Immediate: \(|\text{Consts}(t)| = |t| = 1 = \text{size}(t) \).

Case: \(t = \text{succ } t_1, \text{pred } t_1, \text{iszero } t_1 \)
By the induction hypothesis, \(|\text{Consts}(t_1)| \leq \text{size}(t_1) \). We now calculate as follows: \(|\text{Consts}(t)| = |\text{Consts}(t_1)| \leq \text{size}(t_1) < \text{size}(t) \).
Case: \(t = \text{if } t_1 \text{ then } t_2 \text{ else } t_3 \)

By the induction hypothesis, \(|\text{Consts}(t_1)| \leq \text{size}(t_1) \) and \(|\text{Consts}(t_2)| \leq \text{size}(t_2) \) and \(|\text{Consts}(t_3)| \leq \text{size}(t_3) \). We now calculate as follows: \(|\text{Consts}(t)| = |\text{Consts}(t_1) \cup \text{Consts}(t_2) \cup \text{Consts}(t_3)| \leq |\text{Consts}(t_1)| + |\text{Consts}(t_2)| + |\text{Consts}(t_3)| \leq \text{size}(t_1) + \text{size}(t_2) + \text{size}(t_3) < \text{size}(t) \). □

The form of this proof can be clarified by restating it as a general reasoning principle. (Compare this principle with the induction principle for natural numbers on p. 18.)

3.2.9 Theorem [Principle of induction on terms]: Suppose that \(P \) is some predicate on terms. If we can show, for each \(s \), that \(\forall r. \text{size}(r) < \text{size}(s) \) implies \(P(r) \) implies \(P(s) \), then we may conclude that \(P(t) \) holds for every term \(t \). □

Proof: Exercise.

Evaluation

3.2.10 Definition: The set of \textit{values} is the subset of terms defined by the following abstract grammar:

\[
\begin{align*}
\text{v} & ::= (\text{values...}) \\
\text{true} & \quad \text{value true} \\
\text{false} & \quad \text{value false} \\
0 & \quad \text{zero value} \\
\text{succ v} & \quad \text{successor value}
\end{align*}
\]

3.2.11 Definition: The \textit{one-step evaluation} relation \(\rightarrow \) is the smallest relation containing all instances of the following rules:

\[
\begin{align*}
\text{if true then } t_2 \text{ else } t_3 & \rightarrow t_2 \quad \text{(E-BOOLBETAT)} \\
\text{if false then } t_2 \text{ else } t_3 & \rightarrow t_3 \quad \text{(E-BOOLBETAF)} \\
\text{if } t_1 \text{ then } t_2 \text{ else } t_3 & \rightarrow \text{if } t'_1 \text{ then } t_2 \text{ else } t_3 \quad \text{(E-If)} \\
\text{succ } t_1 & \rightarrow \text{succ } t'_1 \quad \text{(E-Succ)} \\
\text{pred } 0 & \rightarrow 0 \quad \text{(E-BETANatPZ)} \\
\text{pred } (\text{succ v}) & \rightarrow v \quad \text{(E-BETANatPS)} \\
\text{pred } t_1 & \rightarrow \text{pred } t'_1 \quad \text{(E-Pred)}
\end{align*}
\]
3.2.12 Definition: The **multi-step evaluation** relation \rightarrow^* is the reflexive, transitive closure of one-step evaluation. That is, it is the smallest relation such that

- if $t \rightarrow t'$ then $t \rightarrow^* t'$,
- $t \rightarrow^* t$ for all t, and
- if $t \rightarrow^* t'$ and $t' \rightarrow^* t''$, then $t \rightarrow^* t''$. □

3.2.13 Exercise [Quick check]: Rewrite the previous definition using a set of inference rules to define the relation \rightarrow^*. (Solution on page 253.) □

3.2.14 Definition: A term t is in **normal form** if no evaluation rule applies to it—i.e., if there is no t' such that $t \rightarrow t'$. □

3.2.15 Definition: An **evaluation sequence** starting from a term t is a (finite or infinite) sequence of terms t_1, t_2, \ldots, such that

- $t \rightarrow t_1$
- $t_1 \rightarrow t_2$
- etc. □

3.2.16 Definition: A term is said to be **stuck** if it is a normal form but not a value. □

3.2.17 Exercise: Write an abstract grammar that generates all (and only) the stuck arithmetic expressions. □

"Stuckness" gives us a simple notion of "run-time type error" for this rather abstract abstract machine. Intuitively, it characterizes the situations where the operational semantics does not know what to do because the program has reached a "meaningless state." A more serious implementation might choose other behavior in these cases, such as dumping core.
3.3 Properties

3.3.1 Proposition: Every value is in normal form.

Proof: By inspection of the definitions of values and one-step evaluation.

3.3.2 Proposition [Determinacy of evaluation]: If \(t \rightarrow t' \) and \(t \rightarrow t'' \), then \(t' = t'' \).

Proof: Exercise. (Solution on page 253.)

3.3.3 Definition: A value \(v \) is the result of a term \(t \) if \(t \rightarrow^* v \).

3.3.4 Proposition [Uniqueness of results]: If \(v \) and \(w \) are both results of \(t \), then \(v = w \).

Proof: Exercise.

3.4 Implementation

Explanatory text still needs to be written.

Note that this implementation is optimized for readability and for correspondence with the mathematical definitions, not for efficient execution! We’ll ignore parsing and printing, the top-level read-eval-print loop, etc. Interested readers are encouraged to have a look at the ML code for the whole typechecker.

Syntax

```ml
type info

type term =
    TeTrue of info
  | TeFalse of info
  | TeIff of info * term * term * term
  | TeIff of info
  | TeSucc of info * term
  | TePred of info * term
  | TeIsZero of info * term
```

The `info` components of this datatype are extracted, as necessary, by the error printing functions.
Evaluation

exception No

let rec eval1 t =
 match t with
 TmIf(fi, t1, t2, t3) when not (isval t1) ->
 let t1' = eval1 t1 in
 TmIf(fi, t1', t2, t3)
 | TmIf(fi, TmTrue(_), t2, t3) ->
 t2
 | TmIf(fi, TmFalse(_), t2, t3) ->
 t3
 | TmSucc(fi, t1) when not (isval t1) ->
 let t1' = eval1 t1 in
 TmSucc(fi, t1')
 | TmPred(fi, t1) when not (isval t1) ->
 let t1' = eval1 t1 in
 TmPred(fi, t1')
 | TmPred(_, TmZero(_)) ->
 TmZero(unknown)
 | TmPred(_, TmSucc(_, v1)) ->
 v1
 | TmIsZero(fi, t1) when not (isval t1) ->
 let t1' = eval1 t1 in
 TmIsZero(fi, t1')
 | TmIsZero(_, TmZero(_)) ->
 TmTrue(unknown)
 | TmIsZero(_, TmSucc(_, _)) ->
 TmFalse(unknown)
 | _ -> raise No

let rec eval t =
 try let t' = eval1 t
 in eval t'
 with No -> t

3.5 Summary
Booleans

Syntax

\[
\begin{align*}
t & ::= \text{true} \\
 & \mid \text{false} \\
 & \mid \text{if } t \text{ then } t \text{ else } t
\end{align*}
\]

\[
\begin{align*}
v & ::= \text{true} \\
 & \mid \text{false}
\end{align*}
\]

Evaluation \((t \rightarrow t') \)

\[
\begin{align*}
\text{if true then } t_2 \text{ else } t_3 & \rightarrow t_2 \\
\text{if false then } t_2 \text{ else } t_3 & \rightarrow t_3
\end{align*}
\]

\[
\begin{align*}
t_1 & \rightarrow t'_1 \\
\text{if } t_1 \text{ then } t_2 \text{ else } t_3 & \rightarrow \text{if } t'_1 \text{ then } t_2 \text{ else } t_3
\end{align*}
\]

Arithmetic expressions

New syntactic forms

\[
\begin{align*}
t & ::= \ldots \\
 & \mid 0 \\
 & \mid \text{succ } t \\
 & \mid \text{pred } t \\
 & \mid \text{iszero } t
\end{align*}
\]

\[
\begin{align*}
v & ::= \ldots \\
 & \mid 0 \\
 & \mid \text{succ } v
\end{align*}
\]

New evaluation rules \((t \rightarrow t') \)

\[
\begin{align*}
\text{succ } t_1 & \rightarrow \text{succ } t'_1 \\
\text{pred } 0 & \rightarrow 0
\end{align*}
\]

\[
\begin{align*}
\text{pred } (\text{succ } v) & \rightarrow v \\
\text{pred } t_1 & \rightarrow \text{pred } t'_1
\end{align*}
\]
3.6 Further Reading
Chapter 4

The Untyped Lambda-Calculus

There may, indeed, be other applications of the system than its use as a logic.
— Alonzo Church, 1932

In the mid 1960s, Peter Landin observed that a complex programming language can often be understood very cleanly by formulating it as a tiny “core calculus” capturing its essential mechanisms, together with a collection of convenient “derived forms” whose behavior is understood by translating them into the core [Lan64, Lan65, Lan66] (also cf. [Ten81]). The core language used by Landin was the lambda-calculus, a formal system in which all computation is reduced to the basic operations of function definition and application. Since the 60s, the lambda-calculus has seen widespread use in the specification of programming language features, language design and implementation, and the study of type systems. Its importance arises from the fact that it can be viewed simultaneously as a simple programming language in which computations can be described and as a mathematical object about which rigorous statements can be proved.

The lambda-calculus is just one of a large number of core calculi that have been used for these purposes. For example, the pi-calculus of Robin Milner, Joachim Parrow, and David Walker [MPW92, Mil91] has become a popular core language for defining the semantics of message-based concurrent languages, while Martin Abadi and Luca Cardelli’s object calculus [AC96] distills the core features of many object-oriented languages. The concepts and techniques we will develop for the lambda-calculus can, in most cases, be transferred quite directly to other calculi.

The lambda-calculus can be enriched in a variety of ways. First, it is often convenient to add special concrete syntax for features like tuples and records whose behavior can already be simulated in the core language. More interestingly, we may want to provide more complex features such as mutable reference cells or nonlocal exception handling, which can be modeled in the core language only via rather heavy translations. Such extensions make the calculus look more like a full-
blown high-level programming language in its own right, and lead eventually to
languages such as ML [GMW79, MTH90, WAL+89, MTHM97] and Scheme [SJ75,
KCR98]. As we shall see, extensions to the core language often involve extensions
to the type system as well.

This chapter reviews the definition and some basic properties of the pure or
untyped lambda-calculus.

4.1 Basics

Procedural abstraction is a key feature of most programming languages. Instead of
writing the same calculation over and over, we write a procedure or function that
performs the calculation abstractly, in terms of one or more named parameters; we
then instantiate this function as needed, providing values for the parameters in
each case. For example, it is second nature for a programmer to take a long and
repetitive expression like

\[
(5*4*3*2*1) + (7*6*5*4*3*2*1) - (3*2*1)
\]

and rewrite it as

\[
\text{factorial}(5) + \text{factorial}(7) - \text{factorial}(3),
\]

where:

\[
\text{factorial}(n) = \begin{cases}
1 & \text{if } n = 0 \\
 n \times \text{factorial}(n-1) & \text{otherwise}
\end{cases}
\]

For each nonnegative number \(n \), instantiating the function \text{factorial} with the
argument \(n \) yields a number, the factorial of \(n \), as result. Writing “\(\lambda n. \ldots \)” as a
shorthand for “the function that, for each \(n \), yields...,” we can restate the definition
of \text{factorial} as:

\[
\text{factorial} = \lambda n. \begin{cases}
1 & \text{if } n = 0 \\
 n \times \text{factorial}(n-1) & \text{otherwise}
\end{cases}
\]

Then \text{factorial}(0) means “the function \(\lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } \ldots \)’ applied
to the argument 0,” that is, “the value that results when the bound variable \(n \)
in the function body \(\lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } \ldots \)’ is replaced by 0,” that is
“if 0=0 then 1 else ...”, that is, 1.

In the 1930s, Alonzo Church invented a mathematical system called the lambda-
calculus (or \(\lambda \)-calculus) that embodies this kind of function definition and appli-
cation in a pure form [Chu36, Chu41]. In the lambda-calculus \textit{everything} is a func-
tion: the arguments accepted by functions are themselves functions and the result
returned by a function is another function.
Syntax

The syntax of the lambda-calculus comprises three kinds of terms. A variable \(x \) by itself is a lambda-term; the application of a lambda-term \(t_1 \) to another lambda-term \(t_2 \), written \(t_1 \ t_2 \), is a lambda-term; and the abstraction of a variable \(x \) from a lambda-term \(t_1 \), written \(\lambda x. \ t_1 \), is a lambda-term. These forms are summarized in the following abstract grammar:

\[
\begin{align*}
 t & ::= (\text{terms...}) \\
 & \mid x \quad \text{variable} \\
 & \mid \lambda x. t \quad \text{abstraction} \\
 & \mid t \ t \quad \text{application}
\end{align*}
\]

The letters \(x, y, z \) (with or without subscripts) are used throughout to stand for arbitrary lambda-terms, while \(x, y, z \) are used to stand for arbitrary variable names. We call \(x, y, z \) metavariables: they are “variables” in the sense that they stand for terms of the lambda-calculus, and “meta” in the sense that they are part of the metalanguage (i.e. English plus ordinary mathematical notations) in which an object language, the lambda-calculus, is being discussed. Since the set of short names is limited, we will also sometimes use \(x, y, \) etc. as object-language variables, but the context of the discussion will always make it clear which is which. For example, in a statement like “The term \(\lambda z. \ \lambda y. \ x \ (y \ x) \) has the form \((\lambda z. \ s) \), where \(z = x \) and \(s = \lambda y. \ x \ (y \ x), \)” the names \(z \) and \(s \) are metavariables, whereas \(x \) and \(y \) are object-language variables. A complete summary of metavariable conventions appears in Appendix B.

The words “lambda-term” (or just “term”) and “lambda-expression” are often used as synonyms.

Note that what we’ve defined is only the abstract syntax of lambda-terms. In a full-scale programming language, we would also need to address concrete syntax issues of lexing, parsing, operator precedence, etc. For present purposes, though, it is better to avoid such issues by concentrating on the abstract syntax, using parentheses informally as necessary to clarify the tree structure of examples. Application is taken to “associate to the left”—that is, \(t \ s \ u \) is considered the same as \((t \ s) \ u \). Also, the bodies of abstractions are assumed to extend as far to the right as possible, so that writing \(\lambda n. \ \lambda m. \ n \ m \) is the same as writing \(\lambda n. \ \lambda m. \ (x \ y) \ x \).

The variable \(x \) is said to be bound in the body \(t \) of the abstraction \(\lambda x. t \). Conversely, we say that a variable \(x \) is free in a term \(s \) if \(x \) appears at some position in \(s \) where it is not bound by an enclosing abstraction on \(x \). For example, \(x \) is free in \(x \ y \) and \(\lambda y. \ x \ y \), but not in \(\lambda x. \ x \) or \(\lambda z. \ \lambda y. \ x \ (y \ z) \).

A term with no free variables is said to be closed; closed terms are also sometimes called combinators. The simplest combinator is called the identity function:

\[
id = \lambda x. x;
\]
Operational Semantics

In its pure form, the lambda-calculus has no built-in constants or operators—no numbers, arithmetic operations, records, loops, sequencing, I/O, etc. The sole means by which terms “compute” is the application of functions to arguments, which is captured in the following evaluation rule, traditionally called beta-reduction.

\[(\lambda x . t_{12})\ v_2 \rightarrow (x \mapsto v_2)t_{12}\] \hspace{1cm} (E-Beta)

This rule says that an application of the form \((\lambda x . t_1)\ v_2\) (where the argument has already been evaluated to a value), is evaluated by substituting the argument \(v_2\) for the bound variable \(x\) in the body \(t_1\). For example, \((\lambda x . x)\ y\) evaluates to \(y\) and \((\lambda x . x\ y)\ (u\ x)\) evaluates to \(u\ x\ y\), while \((\lambda x . \lambda y . x)\ z\ u\) evaluates (by the underlined redex) to \((\lambda y . z)\ u\), which further evaluates to \(z\).

4.2 Programming in the Lambda-Calculus

The lambda-calculus is much more powerful than its tiny definition might suggest. For example, there is no built-in provision for multi-argument functions, but it is easy to achieve the same effect using higher-order functions that yield functions as results.

Suppose that \(s\) is a term involving two free variables \(x\) and \(y\) and we want to write a function \(f\) that, for each pair \((p, q)\) of arguments, yields the result of substituting \(p\) for \(x\) and \(q\) for \(y\) in \(s\). Instead of writing \(f = \lambda (x, y).s\), as we might in a higher-level programming language, we write \(f = \lambda x . \lambda y . s\). That is, \(f\) is a function that, given a value \(p\) for \(x\), yields a function that, given a value \(q\) for \(y\), yields the desired result. We then apply \(f\) to its arguments one at a time, writing \(f\ p\ q\), which reduces to \((\lambda y . (p \mapsto x)s)\ q\) and then to \((q \mapsto y)(p \mapsto x)s\). This transformation of multi-argument functions into higher-order functions is often called Currying after its popularizer, Haskell Curry. (It was actually invented by Schönfinkel, but the term “Schönfinkeling” has not caught on.)

Another common language feature that can easily be encoded in the lambda-calculus is boolean values and conditionals. Define the terms \(\text{tru}\) and \(\text{fis}\) as follows:

\[\text{tru} = \lambda t . \lambda f . t;\]
\[\text{fis} = \lambda t . \lambda f . f;\]

The only way to “interact” with combinators is by applying them to other terms. For example, we can use application to define a combinator \(\text{test}\) with the property that \(\text{test} \ b\ m\ n\) reduces to \(m\) when \(b = \text{tru}\) and reduces to \(q\) when \(b = \text{fis}\).

\[\text{test} = \lambda l . \lambda m . \lambda n . l\ m\ n;\]
The test combinator does not actually do much: \((\text{test } b \ m \ n)\) just reduces to \((b \ m \ n)\). In effect, the boolean value \(b\) itself is the conditional: it takes two arguments and chooses the first (if it is \(\text{tr}u\)) or the second (if it is \(f1s\)). For example, the term \((\text{test } \text{tr}u \ m \ n)\) reduces as follows:

\[
\begin{align*}
\text{test } \text{tr}u \ m \ n \\
= & \ (\lambda l. \lambda m. \lambda n. \ l \ m \ n) \ \text{tr}u \ m \ n & \text{by definition} \\
\rightarrow & \ (\lambda m. \lambda n. \ \text{tr}u \ m \ n) \ m \ n & \text{reducing the underlined redex} \\
\rightarrow & \ (\lambda n. \ \text{tr}u \ m \ n) \ n & \text{reducing the underlined redex} \\
\rightarrow & \ \text{tr}u \ m \ n & \text{reducing the underlined redex} \\
= & \ (\lambda t. \lambda f. t) \ m \ n & \text{by definition} \\
\rightarrow & \ (\lambda f. m) \ n & \text{reducing the underlined redex} \\
\rightarrow & \ m & \text{reducing the underlined redex}
\end{align*}
\]

We can also write boolean operators like logical conjunction as functions:

\[
\text{and} = \lambda b. \lambda c. \ b \ c \ f1s;
\]

That is, \(\text{and}\) is a function that, given two boolean arguments \(b\) and \(c\), returns \(c\) if \(b\) is \(\text{tr}u\) or \(f1s\) if \(b\) is \(f1s\); thus \(b\ c\) yields \(\text{tr}u\) if both \(b\) and \(c\) are \(\text{tr}u\) and \(f1s\) if either \(b\) or \(c\) is \(f1s\).

\[
\begin{align*}
\text{and } \text{tr}u \ \text{tr}u; \\
\rightarrow & \ (\lambda t. \lambda f. t) \\
\text{and } \text{tr}u \ f1s; \\
\rightarrow & \ (\lambda t. \lambda f. f) \\
\text{and } f1s \ \text{tr}u; \\
\rightarrow & \ (\lambda t. \lambda f. f) \\
\text{and } f1s \ f1s; \\
\rightarrow & \ (\lambda t. \lambda f. f)
\end{align*}
\]

4.2.1 Exercise: Define logical or and not functions. \(\square\)

Using booleans, we can encode pairs of values as lambda-terms. Define:

\[
\begin{align*}
\text{pair} & = \lambda f. \lambda s. \lambda b. \ b \ f \ s; \\
\text{fst} & = \lambda p. \ p \ \text{tr}u; \\
\text{snd} & = \lambda p. \ p \ f1s;
\end{align*}
\]

That is, \(\text{pair } m \ n\) is a function that, when applied to a boolean \(b\), applies \(b\) to \(m\) and \(n\). By the definition of booleans, this application yields \(m\) if \(b\) is \(\text{tr}u\) and \(n\) if \(b\) is \(f1s\), so the first and second projection functions \(\text{fst}\) and \(\text{snd}\) can be implemented.
simply by supplying the appropriate boolean. To check that \(\text{fst} \ (\text{pair} \ m \ n) \rightarrow^* m \), calculate as follows:

\[
\begin{align*}
\text{fst} \ (\text{pair} \ m \ n) &= \text{fst} \ (\lambda f. \lambda e. \lambda b \ f \ e) \ m \ n) \quad \text{by definition} \\
&\rightarrow \text{fst} \ (\lambda s. \lambda b. b \ m \ s) \ n) \quad \text{reducing the underlined redex} \\
&\rightarrow \text{fst} \ (\lambda b. \ b \ m \ n) \quad \text{reducing the underlined redex} \\
&= (\lambda p. \ p \ \text{tru}) \ (\lambda b. \ b \ m \ n) \quad \text{by definition} \\
&\rightarrow (\lambda b. \ b \ m \ n) \ \text{tru} \quad \text{reducing the underlined redex} \\
&\rightarrow \text{tru} \ m \ n \quad \text{reducing the underlined redex} \\
&\rightarrow^* m
\end{align*}
\]

The encoding of numbers as lambda-terms is only slightly more intricate than what we have just seen. Define the **Church numerals** \(c_0, c_1, c_2, \) etc., as follows:

\[
\begin{align*}
c_0 &= \lambda s. \lambda z. z; \\
c_1 &= \lambda s. \lambda z. s \ z; \\
c_2 &= \lambda s. \lambda z. s \ (s \ z); \\
c_3 &= \lambda s. \lambda z. s \ (s \ (s \ z)); \\
c_4 &= \lambda s. \lambda z. s \ (s \ (s \ (s \ z))); \\
\text{etc.}
\end{align*}
\]

That is, each number \(n \) is represented by a combinator \(c_n \) that takes two arguments, \(z \) and \(s \) (for “zero” and “successor”), and applies \(s \) \(n \) times, to \(z \). As with booleans and pairs, this encoding makes numbers into active entities: the number \(n \) is represented by a function that does something \(n \) times—a kind of active unary numeral.

We can define some common arithmetic operations on Church numerals as follows:

\[
\begin{align*}
\text{plus} &= \lambda m. \lambda n. \lambda s. \lambda z. \ m \ s \ (n \ s \ z); \\
\text{times} &= \lambda m. \lambda n. \ m \ (\text{plus} \ n) \ c_0;
\end{align*}
\]

Here, \(\text{plus} \) is a combinator that takes two Church numerals, \(m \) and \(n \), as arguments, and yields another Church numeral—i.e., a function that accepts arguments \(z \) and \(s \), applies \(s \) iterated \(n \) times to \(z \) (by passing \(s \) and \(z \) as arguments to \(n \)), and then applies \(s \) iterated \(m \) more times to the result.

4.2.2 Exercise: Verify that \((\text{plus} \ c_2 \ c_1) \rightarrow^* c_3 \). \(\square \)

The definition of \(\text{times} \) uses another trick: since \(\text{plus} \) takes its arguments one at a time, applying it to just one argument \(n \) yields the function that adds \(n \) to whatever argument it is given. Passing this function as the second argument to \(m \) and \(c_0 \) as the first argument means “apply the function that adds \(n \) to its argument, iterated \(m \) times, to zero,” i.e., “add together \(m \) copies of \(n \).”

4.2.3 Exercise [Recommended]: Define a similar term for calculating the successor of a number. (Solution on page 254.) \(\square \)
4.2.4 Exercise: Define a similar term for raising one number to the power of another.

To test whether a Church numeral is zero, we must apply it to a pair of terms \(zz\) and \(ss\) such that applying \(ss\) to \(zz\) one or more times yields \(\text{fls}\), while not applying it at all yields \(\text{tru}\). Clearly, we should take \(zz\) to be just \(\text{tru}\). For \(ss\), we use a function that throws away its argument and always returns \(\text{fls}\).

\[
iszro = \lambda m. m (\lambda x. \text{fls}) \text{tru};
\]

Surprisingly, it is quite a bit more difficult to subtract using Church numerals. It can be done using the following rather tricky "predecessor function," which, given \(c_0\) as argument, returns \(c_0\) and, given \(c_{i+1}\), returns \(c_i\):

\[
zz = \text{pair } c_0 \ c_0;
\]
\[
ss = \lambda p. \text{pair } (\text{snd } p) \ (\text{plus } c_i \ (\text{snd } p));
\]
\[
\text{prd} = \lambda m. \text{fst } (m \ ss \ zz);
\]

This definition works by using \(m\) as a function to apply \(m\) copies of the function \(ss\) to the starting value \(zz\). Each copy of \(ss\) takes a pair of numerals \(\text{pair } c_i \ c_j\) as its argument and yields \(\text{pair } c_j \ c_{i+1}\) as its result. So applying \(ss\) \(m\) times to \((\text{pair } c_0 \ c_0)\) yields \((\text{pair } c_0 \ c_0)\) when \(m = 0\) and \((\text{pair } c_{m-1} \ c_m)\) when \(m\) is positive. In both cases, the predecessor of \(m\) is found in the first component.

4.2.5 Exercise:

1. Use \(\text{prd}\) to define a subtraction function.

2. How many steps of evaluation (as a function of \(n\)) are required to calculate the result of \((\text{prd } c_n)\)?

4.2.6 Exercise: Write a function \(\text{equal}\) that tests two numbers for equality and returns a boolean. For example,

\[
\text{equal } c_3 \ c_3;
\]
\[
\ (\lambda t. \lambda f. \ t)
\]
\[
\text{equal } c_3 \ c_2;
\]
\[
\ (\lambda t. \lambda f. \ f)
\]

(Solution on page 254.)

Other common datatypes like lists, trees, arrays, and variant records can be encoded using similar techniques. Of course, in most programming languages based on the lambda-calculus, such basic data types are added as primitive constants, rather than being encoded.
4.2.7 Exercise [Recommended]: Build an encoding of lists in the pure lambda-calculus by defining a constant \texttt{n1} (the empty list) and operations \texttt{cons} (for constructing a list from a new head element and an old list), \texttt{head} and \texttt{tail} (for extracting the parts of a list), and \texttt{isNull} (for testing whether a list is empty).

One straightforward way to do this is to generalize the encoding of numbers as follows. A list is represented by a function that takes two arguments, \texttt{h} and \texttt{t}. If the list is empty, this function simply returns \texttt{t}. On the other hand, if the list has head \texttt{h} and tail \texttt{t}, the function calls \texttt{h}, passing it \texttt{h} and (\texttt{t \ h \ t}) as parameters. (In other words, a list is represented by its own \texttt{fold} function.)

Can you think of any different ways of encoding lists? (Solution on page 254.)

Recall that a term that cannot take a step under the evaluation relation is said to be in normal form. Interestingly, in the untyped lambda-calculus, not every term can be evaluated to a normal form. For example, the divergent combinator

\[
\text{omega} = (\lambda x . x x) \ (\lambda x . x x);
\]
can never be reduced to a value. It contains just one redex, and reducing this redex yields exactly \texttt{omega} again! Terms with no normal form are sometimes said to diverge.

The \texttt{omega} combinator has a useful generalization called the fixed-point combinator (or \texttt{Y-combinator}), which can be used to define recursive functions such as factorial.

\[
\text{fixpoint} = \lambda f . \ (\lambda x . f \ (\lambda y . (x \ x) \ y)) \\
\quad \ (\lambda x . f \ (\lambda y . (x \ x) \ y));
\]
The crucial property of \texttt{fixpoint} is that \texttt{fixpoint ff} has the same behavior as \texttt{ff} (\texttt{fixpoint ff}) for any term \texttt{ff}.

(\text{i.e.}, \texttt{call-by-value} fixed point combinator, since we using a call-by-value reduction strategy. The simpler call-by-name fixed point combinator

\[
\text{fixpoint}_n = \lambda f . \ (\lambda x . f \ (x \ x)) \\
\quad \ (\lambda x . f \ (x \ x));
\]
is useless in a call-by-value setting, since an expression like \texttt{fixpoint}_n \texttt{ff} always diverges, no matter what \texttt{ff} is.)

Now, suppose we want to write a recursive function definition of the form

\[
\text{ff} = \text{(body containing \texttt{ff})}—\text{i.e., we want to write a definition where the term on the right-hand side of the \texttt{=} uses the very function that we are defining, as in the definition of factorial on page 32. The intention is that the recursive definition should be \text{“unrolled”} at the point where it occurs; for example, the definition of factorial would intuitively be:}
\]

\[
\begin{align*}
\text{if } n=0 \text{ then } &1 \\
\text{else } n \ast \text{ (if } n-1=0 \text{ then } &1 \\
\quad \text{else } \ (n-1) \ast \text{ (if } n-2=0 \text{ then } &1 \\
\quad \quad \text{else } \ (n-2) \ast \ldots))
\end{align*}
\]
This effect can be achieved using \texttt{fixpoint} by defining \(gg = \lambda f. (\text{body containing } f) \) and \(ff = \text{fixpoint } gg \). For example, we can define the factorial function by

\[
ff = \lambda f. \lambda n. \\
\text{test} \\
\text{(iszro } n\text{) } (\lambda x. c_1) \ (\lambda x. (\text{times } n (f (\text{prd } n)))) c_0; \\
\text{factorial } = \text{fixpoint } ff;
\]

We then have:

\[
\begin{align*}
\text{equal } (\text{factorial } n_0) c_0; \\
\text{ (lt. } \lambda f. t)
\end{align*}
\]

4.2.8 Exercise [Recommended]: Use the \texttt{fixpoint} combinator and the encoding of lists from Exercise 4.2.7 to write a function that sums lists of church numerals. (Solution on page 254.)

4.3 Is the Lambda-Calculus a Programming Language?

4.4 Formalities

As we did in Chapter 3, we must now consider the syntax and operational semantics of the lambda-calculus in a little more detail. Most of the structure we need is closely analogous to what we saw there. However, the operation of substituting a term for a variable involves some surprising subtleties.

Syntax

As in Chapter 3, the abstract grammar defining terms should be read as shorthand for the union of an inductively defined family of sets of abstract syntax trees. To define it precisely, we begin with some set \(\mathcal{V} \) of variable names.

4.4.1 Definition [Terms]: The set of terms is the smallest set \(\mathcal{T} \) such that

1. \(x \in \mathcal{T} \) for every \(x \in \mathcal{V}; \)
2. if \(t_1 \in \mathcal{T} \) and \(x \) is a variable name, then \(\lambda x. t_1 \in \mathcal{T}; \)
3. if \(t_1 \in \mathcal{T} \) and \(t_2 \in \mathcal{T}, \) then \((t_1. t_2) \in \mathcal{T}. \)

The size of a term \(t \) can be defined exactly as we did for arithmetic expressions in Definition 3.2.7. More interestingly, we can give a simple inductive definition of the set of variables appearing “free” in a lambda-term.
4.4.2 Definition: The set of free variables of a term \(t \), written \(FV(t) \), is defined as follows:

\[
\begin{align*}
FV(x) & = \{x\} \\
FV(\lambda x \cdot t_1) & = FV(t_1) \setminus \{x\} \\
FV(t_1_t_2) & = FV(t_2) \cup FV(t_2) \quad \square
\end{align*}
\]

Here is an inductive proof of a simple fact relating the definitions of size and free variables, analogous to Lemma 3.2.8 in the previous chapter.

4.4.3 Lemma: The number of distinct free variables in a term \(t \) is always smaller than the size of \(t \) (in symbols: \(|FV(t)| \leq \text{size}(t) \)). \(\square \)

Proof: By induction on the size of \(t \). (That is, assuming the desired property for all terms smaller than \(t \), we must prove it for \(t \) itself; if we can do this, we may conclude that the property holds for all \(t \).) There are three cases to consider:

Case: \(t = x \)
Immediate: \(|FV(t)| = |\{x\}| = 1 = \text{size}(t) \).

Case: \(t = \lambda x \cdot t_1 \)
By the induction hypothesis, \(|FV(t_1)| \leq \text{size}(t_1) \). We now calculate as follows:
\[
|FV(t)| = |FV(t_1) \setminus \{x\}| \leq |FV(t_1)| \leq \text{size}(t_1) < \text{size}(t).
\]

Case: \(t = t_1 \cdot t_2 \)
By the induction hypothesis, \(|FV(t_1)| \leq \text{size}(t_1) \) and \(|FV(t_2)| \leq \text{size}(t_2) \). We now calculate as follows:
\[
|FV(t)| = |FV(t_1) \cup FV(t_2)| \leq |FV(t_1)| + |FV(t_2)| \leq \text{size}(t_1) + \text{size}(t_2) < \text{size}(t) \quad \square
\]

Substitution

Dealing carefully with the operation of substitution requires some work. We’ll take it in two large steps. First (in this section), we’ll discuss the basic issues, identify some traps for the unwary, and come up with a definition of substitution that is precise enough for most purposes. In Section 5.1 we’ll go the rest of the way, defining a more refined “nameless” presentation of terms on which substitution is completely formal (and, in particular, suitable for implementation). The reason for presenting both is that the nameless formulation becomes too fiddly to use all the time. Having worked it out in detail, we will return to the more comfortable, slightly informal presentation developed in this section, regarding it as a convenient shorthand for the other.

It is instructive to arrive at the correct definition of substitution via a couple of wrong attempts. First off, let’s try the most naive possible recursive definition:

\[
\begin{align*}
(x \mapsto s)x & = s \\
(x \mapsto s)y & = y \quad \text{if } x \neq y \\
(x \mapsto s)(\lambda y \cdot t_1) & = \lambda y \cdot (x \mapsto s)t_1 \\
(x \mapsto s)(t_1 \cdot t_2) & = (x \mapsto s)t_1 \cdot (x \mapsto s)t_2
\end{align*}
\]
This definition works fine for most examples. For instance, it gives

\[(\lambda z. \, z \, \omega) (\lambda y. \, x) = (\lambda y. \, \lambda z. \, z \, \omega) \]

which is fine. However, if we are unlucky with our choice of bound variable names, the definition breaks down. For example:

\[(x \mapsto y) (\lambda x. \, x) = \lambda x. \, y \]

This conflicts with the basic intuition about functional abstractions that the alphabetic names of bound variables do not matter—the identity function is exactly the same whether we write it \(\lambda x. \, x \) or \(\lambda y. \, y \) or \(\lambda \text{franz. franz} \). If these do not behave exactly the same under substitution, then they will not behave the same under reduction either, which seems wrong.

Clearly, the first mistake that we’ve made in the naive definition of substitution is that we have not distinguished between free occurrences of a variable \(t \) (which should get replaced during substitution) and bound ones, which should not. When we reach an abstraction binding the name \(x \) inside of \(t \), the substitution operation should stop. This leads to the next attempt at a definition of substitution:

\[
\begin{align*}
(x \mapsto s) | x &= s \\
(x \mapsto s) | y &= y & \text{if } y \neq x \\
(x \mapsto s) | (\lambda y. \, t_1) &= \begin{cases} \\
\lambda y. \, t_1 & \text{if } y = x \\
(\lambda y. \, (x \mapsto s) t_1) & \text{if } y \neq x
\end{cases} \\
(x \mapsto s) | (t_1 \, t_2) &= (x \mapsto s) t_1 \, (x \mapsto s) t_2
\end{align*}
\]

This is better, but it is still not quite right. For example, consider what happens when we substitute the term \(z \) for the variable \(x \) in the term \(\lambda z. \, x \):

\[(x \mapsto z) (\lambda z. \, x) = \lambda z. \, z \]

This time, we have made essentially the opposite mistake as in the previous unfortunate example: we’ve turned the constant function \(\lambda z. \, x \) into the identity function! Again, this occurred only because we happened to choose \(z \) as the name of the bound variable in the constant function, so something is clearly still wrong.

This phenomenon of free variables in a term \(s \) becoming bound when \(s \) is naively substituted into a term \(t \) containing variable binders is called variable capture. To avoid it, we need to make sure that the bound variable names of \(t \) kept distinct from the free variable names of \(s \). A substitution operation that does this correctly is called capture-avoiding substitution. This is almost always what is meant by the unqualified term “substitution.” We can achieve this by adding another side condition to the second clause of the abstraction case:

\[
\begin{align*}
(x \mapsto s) | x &= s \\
(x \mapsto s) | y &= y & \text{if } y \neq x \\
(x \mapsto s) | (\lambda y. \, t_1) &= \begin{cases} \\
\lambda y. \, t_1 & \text{if } y = x \\
(\lambda y. \, (x \mapsto s) t_1) & \text{if } y \neq x \text{ and } y \notin \text{FV}(s)
\end{cases} \\
(x \mapsto s) | (t_1 \, t_2) &= (x \mapsto s) t_1 \, (x \mapsto s) t_2
\end{align*}
\]
We are almost there: this definition of substitution does the right thing when it does anything at all. The problem now is that our last fix has changed substitution into a partial operation. For example, the new definition does not give any result at all for \(\langle x \mapsto y z \rangle (\lambda y. x y) \): the bound variable \(y \) of the term being substituted into is not equal to \(x \), but it does appear free in \((y z) \), so none of the clauses of the definition apply.

One common fix for this last problem in the type systems and lambda-calculus literature is to work with terms "up to renaming of bound variables" (or "up to alpha-conversion"):

4.4.4 Convention: Terms that differ only in the names of bound variables are interchangeable in all contexts.

What this means in practice is that the name of any bound variable can be changed to another name (consistently making the same change in the body), at any point where this is convenient. For example, if we want to calculate \(\langle x \mapsto y z \rangle (\lambda y. x y) \), we first rewrite \((\lambda y. x y) \) as, say, \((\lambda w. x w) \). We then calculate \(\langle x \mapsto y z \rangle (\lambda w. x w) \), giving \((\lambda w. y z w) \). This renders the substitution operation "as good as total," since whenever we find ourselves about to apply it to a collection of arguments for which it is undefined, we can perform one or more steps of renaming as necessary, so that the side conditions are satisfied.

Indeed, having adopted this convention, we can formulate the definition of substitution a little more tersely. The first clause for abstractions can be dropped, since we can always assume (renaming if necessary) that the bound variable \(y \) is different from both \(x \) and the free variables of \(s \). This yields the final form of the definition.

4.4.5 Definition [Substitution]:

\[
\begin{align*}
\langle x \mapsto s \rangle x &= s \\
\langle x \mapsto s \rangle y &= y & \text{if } y \neq x \\
\langle x \mapsto s \rangle (\lambda y. t_1) &= \lambda y. \langle x \mapsto s \rangle t_1 & \text{if } y \neq x \text{ and } y \not\in \text{FV}(s) \\
\langle x \mapsto s \rangle (t_1 \ t_2) &= \langle x \mapsto s \rangle t_1 \ \langle x \mapsto s \rangle t_2 \\
\end{align*}
\]

The convention about implicit renaming of bound variables is is easy to work with, and its slight informality does not usually lead to trouble in practice. We shall adopt it in most of what follows. However, it is also important to know how to formulate basic operations such as substitution with complete rigor, so that we have a solid foundation to fall back on in case there is ever any question. We will see one way to accomplish this in Section 5.1.

4.4.6 Exercise: Without looking forward to Section 5.1, can you think of any other ways in which the incomplete definition of substitution might be repaired to give a complete operation, without resorting to a convention about implicit renaming of bound variables?
Operational Semantics

4.4.7 Definition: The set of values is the subset of terms defined by the following abstract grammar:

\[\begin{align*}
 v & ::= \ldots \quad \text{(values...)} \\
 \lambda x . t & \quad \text{abstraction value}
\end{align*} \]

\[\square \]

4.4.8 Definition: The one-step evaluation relation \(\rightarrow \) is the smallest relation containing all instances of the following rules:

\[\begin{align*}
 (\lambda x . t_1) \ v_2 & \rightarrow (x \mapsto v_2)t_1 \\
 t_1 & \rightarrow t_1' \\
 t_1 \ t_2 & \rightarrow t_1' \ t_2 \\
 t_2 & \rightarrow t_2' \\
 v_1 \ t_2 & \rightarrow v_1 \ t_2'
\end{align*} \]

\(\text{(E-\text{BETA})} \)

\(\text{(E-\text{APP1})} \)

\(\text{(E-\text{APP2})} \)

\[\square \]

Summary

The foregoing definitions may be summarized compactly as follows.

\[\lambda : \text{Untyped lambda-calculus} \rightarrow (\text{untyped}) \]

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Evaluation</th>
</tr>
</thead>
</table>
| \begin{align*}
 t & ::= \ldots \quad \text{(terms...)} \\
 x & \quad \text{variable} \\
 \lambda x . t & \quad \text{abstraction} \\
 t \ t & \quad \text{application} \\
 v & ::= \ldots \quad \text{(values...)} \\
 \lambda x . t & \quad \text{abstraction value}
\end{align*} |
| \((\lambda x . t_1) \ v_2 \rightarrow (x \mapsto v_2)t_1 \) | \(\text{(E-\text{BETA})} \) |
| \(t_1 \rightarrow t_1' \) | \(\text{(E-\text{APP1})} \) |
| \(t_1 \ t_2 \rightarrow t_1' \ t_2 \) | \(\text{(E-\text{APP2})} \) |
4.5 Further Reading

Information on the untyped lambda-calculus can be found in many places. The first and best is Barendregt’s encyclopedic monograph, *The Lambda Calculus* [Bar84]. Hindley and Seldin’s book [HS86] gives a more accessible treatment of some of the basic material. Barendregt’s article in the Handbook of Theoretical Computer Science [Bar90] is a compact survey. Material on lambda-calculus can also be found in many textbooks on functional programming languages (e.g. [AS85, FWH92, PJJ92]) and programming language semantics (e.g. [Sch86, Gun92, Win93, Mit96]).
Chapter 5

Implementing the Lambda-Calculus

Just because you’ve implemented something doesn’t mean you understand it.
— Brian Cantwell Smith

5.1 Nameless Representation of Terms

In the previous chapter, we worked with terms “up to renaming of bound variables.” This is fine for discussing basic concepts and for presenting proofs cleanly, but for building an implementation we need to choose a single concrete representation for each term.

There are various ways to do this:

1. We can represent a variable occurrence as a string. This makes our concrete (“algorithmic”) representation close to the declarative one, but it means that we have to alpha-convert during substitution. This becomes quite tricky and it is easy to introduce subtle bugs.

2. We can replace the names chosen by the programmer with some canonical naming scheme.

3. We can avoid substitution altogether by introducing mechanisms like closures.

We choose the second, using a well-known technique due to Nicolas de Bruijn [dB72]. Making this choice will require some work now, but will save us a lot of troublesome debugging when we come to implementing more complex systems.
Syntax

De Bruijn’s idea was that we can represent terms more straightforwardly—though less readibly—by making variable occurrences point directly to their binders, rather than referring to them by name. This can be accomplished by replacing named variables by natural numbers, where the number k stands for “the variable bound by the k’th enclosing λ” (starting from 0). For example, the ordinary term $\lambda x. x$ corresponds to the nameless term $\lambda. 0$, while $\lambda x. \lambda y. x (y x)$ is represented by the nameless term $\lambda. \lambda. 1 \ (0 \ 1)$. Nameless terms are also sometimes called de Bruijn terms, and the numeric variables in them are called de Bruijn indices. (In passing, a note on pronunciation: the closest English approximation to the second syllable in “de Bruijn” is “brown,” not “broyn.”)

5.1.1 Exercise [Quick check]: For each of the following combinators

$$
c_0 = \lambda z. \lambda s. z;
\text{plus} = \lambda m. \lambda n. \lambda s. m \ (n \ s \ s);
\text{fixpoint} = \lambda f. (\lambda x. f (x x)) \ (\lambda x. f (x x));
\text{foo} = (\lambda x. \ (\lambda x. x)) \ (\lambda x. x);
$$

write down the corresponding nameless term.

Note that each (closed) ordinary term has just one de Bruijn representation, and that two ordinary terms are equivalent modulo renaming of bound variables exactly when they have the same de Bruijn representation.

To deal with terms containing free variables, we need the idea of a naming context. For example, suppose we want to represent $\lambda x. y x$ as a nameless term. We know what to do with x, but we cannot see the binder for y, so it is not clear how far out it might be and so we do not know what number to assign to it. The solution is to choose, once and for all, an assignment (called a naming context) of de Bruijn indices to free variables, and use this assignment consistently when we need to choose numbers for free variables. For example, suppose that we choose to work under the following naming context:

$$
\Gamma = \begin{array}{c}
x \mapsto 4 \\
y \mapsto 3 \\
z \mapsto 2 \\
a \mapsto 1 \\
b \mapsto 0
\end{array}
$$

Then $(x \ (y \ z))$ would be represented as $(4 \ (3 \ 2))$, while $\lambda x. y x$ would be represented as $\lambda. 4 \ 0$ and $\lambda w. \lambda a. x$ would be represented as $\lambda. \lambda. 6$.

Actually, all we need to know about Γ is the order in which the variables appear. Instead of writing it in tabular form, as we did above, we will elide the numbers and write it as a sequence.
5.1.2 Definition: Suppose x_0 through x_n are variable names in \mathcal{V}. The naming context $\Gamma = x_n, x_{n-1}, \ldots x_1, x_0$ assigns to each x_i the de Bruijn index i. Note that the rightmost variable in the sequence is given the index 0. (This matches the way we count λs—from right to left—when converting a named term to nameless form.) We will write $\text{dom}(\Gamma)$ for the set $\{x_0, \ldots, x_n\}$ of variable names mentioned in Γ.

Formally, we define the syntax of nameless terms almost exactly like the syntax of ordinary terms (Definition 4.4.1). The only difference is that we need to keep careful track of how many free variables each term may contain. That is, we distinguish the sets of terms with no free variables (called the 0-terms), terms with at most one free variable (1-terms), and so on.

5.1.3 Definition [Terms]: Let \mathcal{T} be the smallest family of sets $\{\mathcal{T}_0, \mathcal{T}_1, \mathcal{T}_2, \ldots\}$ such that

1. $k \in \mathcal{T}_n$ whenever $0 \leq k < n$;
2. if $t \in \mathcal{T}_n$ and $n > 0$, then $\lambda \cdot t \in \mathcal{T}_{n-1}$;
3. if $t_1 \in \mathcal{T}_n$ and $t_2 \in \mathcal{T}_n$, then $t_1 \ t_2 \in \mathcal{T}_n$.

The elements of each \mathcal{T}_n are called n-terms.

Note that the elements of \mathcal{T}_n are terms with at most free variables numbered between 0 and $n-1$: a given element of \mathcal{T}_n need not have free variables with all these numbers, or indeed any free variables at all. If t is closed, for example, it will be an element of \mathcal{T}_n for every n.

Also, note that, strictly speaking, it does not make sense to speak of “some $t \in \mathcal{T}$”—we always need to specify how many free variables t might have. In practice, though, we will often have some fixed naming context Γ in mind; we will then abuse the notation slightly and write $t \in \mathcal{T}$ to mean $t \in \mathcal{T}_n$, where n is the length of Γ.

5.1.4 Exercise: Give an alternative construction of the sets of n-terms in the style of 3.2.2, and show (as we did in Fact ??) that it is equivalent to the one above. □

5.1.5 Exercise [Recommended]:

1. Define a function removenames that takes a naming context Γ and an ordinary term t (with $\text{FV}(t) \subseteq \text{dom}(\Gamma)$) and yields the corresponding nameless term.

2. Define a function restorenames that takes a nameless term t and a naming context Γ and produces an ordinary term. (To do this, you will need to “make up” names for the variables bound by abstractions in t. You may assume that the set \mathcal{V} of variable names is ordered, so that it makes sense to say “choose the smallest variable name that is not already in $\text{dom}(\Gamma)$.”)
This pair of functions should have the property that \(\text{removenames}_t(\text{restorenames}_t(t)) = t \) for any nameless term \(t \), and similarly \(\text{restorenames}_t(\text{removenames}_t(t)) = t \), up to renaming of bound variables, for any ordinary term \(t \). \(\square \)

5. Shifting and Substitution

Before defining substitution on nameless terms, we need one auxiliary operation on terms, called “shifting,” which renumbers the indices of the free variables in a term. When a substitution goes under a \(\lambda \)-abstraction (as in \(\{x \mapsto s \}(\lambda y . x) \)), the context in which the substitution is taking place becomes one variable longer than the original; we need to increment the indices of the free variables in \(s \) so that they keep referring to the same names in the new context as they did before.

5.1.6 Definition [Shifting]:

The \(\uparrow^d_c \) -place shift of a term \(t \) above cutoff \(c \), written \(\uparrow^d_c (t) \), is defined as follows:

\[
\uparrow^d_c (k) = \begin{cases}
 k & \text{if } k < c \\
 k + d & \text{if } k \geq c
\end{cases}
\]

\[
\uparrow^d_c (\lambda . t_1) = \lambda . \uparrow^d_{c+1} (t_1)
\]

\[
\uparrow^d_c (t_1 \ t_2) = \uparrow^d_c (t_1) \ \uparrow^d_c (t_2)
\]

We will write \(\uparrow^d (t) \) for \(\uparrow^d_0 (t) \). \(\square \)

5.1.7 Exercise [Quick check]:

1. What is \(\uparrow^2 (\lambda . \ 1 \ 0 \ 2) \)?

2. What is \(\uparrow^2 (\lambda . \ 0 \ 1 \ \Lambda . \ 0 \ 1 \ 2) \)? \(\square \)

5.1.8 Exercise:

Show that if \(t \) is an \(n \)-term, then \(\uparrow^d_c (t) \) is an \(|n+d| \)-term. \(\square \)

Now we are ready to define the substitution operator \(\{ j \mapsto s \} t \). At the end, we will be most interested in substituting for the last variable in the context (i.e., \(j = 0 \)), since that is the case we need in order to define the reduction relation. However, to substitute for variable \(0 \) in a \(\lambda \)-abstraction, we need to be able to substitute for variable number \(1 \) in the body. Thus, the definition of substitution must work on an arbitrary variable.

5.1.9 Definition [Substitution]:

The substitution of a term \(s \) for variable number \(j \) in a term \(t \), written \(\{ j \mapsto s \} t \), is defined as follows:

\[
\{ j \mapsto s \} k = \begin{cases}
 s & \text{if } k = j \\
 k & \text{otherwise}
\end{cases}
\]

\[
\{ j \mapsto s \}(\lambda . t_1) = \lambda . \{ j + 1 \mapsto \uparrow^1 (s) \} t_1
\]

\[
\{ j \mapsto s \}(t_1 \ t_2) = \{ j \mapsto s \} t_1 \ \{ j \mapsto s \} t_2
\]
5.1.10 Exercise [Quick check]: Convert the following substitution operations to nameless form (assuming the global context is $\Gamma = a, b$) and calculate their results using the above definition. Do the answers make sense with respect to the original definition of substitution on ordinary terms in Section 4.4?

- $(b \mapsto a) (b \ (\lambda x. \lambda y. b))$
- $(b \mapsto a) (b \ (\lambda x. \lambda y. b))$
- $(b \mapsto (a \ (\lambda z. a))) (b \ (\lambda x. b))$ □

5.1.11 Exercise: Show that if s and t are n-terms and $j \leq n$, then $(j \mapsto s)t$ is an n-term. □

5.1.12 Exercise [Quick check]: Take a sheet of paper and, without looking at the definitions of substitution and shifting above, see if you can regenerate them. □

5.1.13 Exercise [Recommended]: The definition of substitution on nameless terms should agree with our informal definition of substitution on ordinary terms. What theorem would need to be proved to justify this correspondence rigorously? For extra credit, prove it. (Solution on page 255.) □

Evaluation

We can now define the evaluation relation on nameless terms.

The beta-reduction rule is defined in terms of our new nameless substitution operation. The only slightly subtle technical point is that reducing a redex “uses up” the bound variable—when we reduce $(\lambda x. t_1) v_2$ to $(x \mapsto v_2) t_1$, the bound variable x disappears in the process. Thus, we will need to renumber the variables of the result of substitution to take into account the fact that x is no longer part of the context. Similarly, we need to shift the variables in v_2 up by one before substituting into t_1 to take account of the fact that t_1 is defined in a larger context than v_2.

$$(\lambda. t_1) \ v_2 \rightarrow \ ^{-1} \ ([0 \mapsto ^1 (v_2)] t_1) \quad \text{(E-BETA)}$$

The other rules are identical to what we had before.

5.2 A Concrete Realization
Syntax

type term =
 TmVar of info * int * int
| TmAbs of info * string * term
| TmApp of info * term * term

let tmInfo = function
 TmVar(fi,_,_) -> fi
| TmAbs(fi,_,_) -> fi
| TmApp(fi, _, _) -> fi

Shifting and Substitution

let tmmap onvar =
 let rec walk c = function
 TmVar(fi,x,n) -> onvar fi c x n
 | TmAbs(fi,x,t1) -> TmAbs(fi, x, walk (c+1) t1)
 | TmApp(fi,t1,t2) -> TmApp(fi, walk c t1, walk c t2)
 in walk

let tmshifti d c t =
 tmmap
 (fun fi c x n -> if x>=c then TmVar(fi,x+d,n+d) else TmVar(fi,x,n+d))
 c
 t

let tmshift t d = tmshifti d 0 t

let tmsubsti s j t =
 tmmap
 (fun fi j x n -> if x=j then (tmshift s j) else TmVar(fi,x,n))
 j
 t

let tmsubst s t = tmsubsti s 0 t

let tmsubstsnip s t = tmshift (tmsubst (tmshift s 1) t) (-1)
5.3 Ordinary vs. Nameless Representations

Strictly speaking, having gone to the trouble of making all this so precise, we should now continue through the rest of the material in the course using de Bruijn representations consistently throughout. However, we will not do this, as it would make the text essentially unreadable. Instead, we will adopt the following compromise:

- In this chapter and in all the implementation sections to follow, we use de Bruijn representations faithfully.
- In textual (and TeXtual) presentations of calculi, discussions, examples, and proofs, we will stick with the original presentation in terms of named variables. However, we will always regard this as a convenient shorthand for an underlying de Bruijn representation. For example, when we write
 \[(\lambda x. t_{11})\ t_2 \rightarrow [x \mapsto t_2]t_{11}\]
 we will actually mean:
 \[(\Lambda. t_{11})\ t_2 \rightarrow \uparrow^{-1}([0 \mapsto \uparrow^1 (t_2)]t_{11})\]

In particular, this convention has the following consequences:

1. we always work “up to alpha-conversion,” ignoring the particular names chosen for bound variables, and
2. whenever we mention a term, we will always (at least implicitly) have some context in mind that imposes a numerical ordering on its free variable names.

Evaluation

```ocaml
let rec isval ctx = function
  TmAbs(_,_,_) → true
| _ → false

let rec eval ctx t =
  try let t' = eval1 ctx t
  in eval ctx t'
  with No → t
```
Chapter 6

Typed Arithmetic Expressions

This and the following chapter are technically mostly complete but the text needs to be expanded. The idea is that, as we did in the untyped case, we go through all the basic facts about typed calculi in the very simple setting of just numbers and booleans, then redo it all for the lambda-calculus.

6.1 Syntax

6.1.1 Definition: The set of types for arithmetic expressions contains just the symbols Bool and Nat:

\[
T ::= \text{(types...)} \\
\quad \text{Bool} \\
\quad \text{Nat}
\]

The metavariables S, T, U, etc. range over types.

6.2 The Typing Relation

The type system for arithmetic expressions is defined by a set of rules assigning types to terms. We write “\(\vdash t : T \)” to mean “term \(t \) has type \(T \).”

For example, the fact that the term 0 has the type Nat is captured by the following axiom:

\[
0 : \text{Nat} \quad \text{ (T-ZERO)}
\]

Similarly, the term \(\text{succ} \ t_1 \) has type Nat as long as \(t_1 \) has type Nat.

\[
\begin{align*}
\frac{t_1 : \text{Nat}}{\text{succ} \ t_1 : \text{Nat}} & \quad \text{(T-SUCC)}
\end{align*}
\]
Likewise, \(\text{pred} \) yields a \(\text{Nat} \) when its argument has type \(\text{Nat} \):

\[
\frac{t_1 : \text{Nat}}{\text{pred } t_1 : \text{Nat}} \quad (\text{T-PRED})
\]

and \(\text{iszero} \) yields a \(\text{Bool} \) when its argument has type \(\text{Nat} \):

\[
\frac{t_1 : \text{Nat}}{\text{iszero } t_1 : \text{Bool}} \quad (\text{T-IsZERO})
\]

The boolean constants both have type \(\text{Bool} \):

\[
\frac{}{\text{true} : \text{Bool}} \quad (\text{T-TRUE})
\]

\[
\frac{}{\text{false} : \text{Bool}} \quad (\text{T-FALSE})
\]

The only interesting typing rule is the one for if expressions:

\[
\frac{t_1 : \text{Bool} \quad t_2 : T \quad t_3 : T}{\text{if } t_1 \text{ then } t_2 \text{ else } t_3 : T} \quad (\text{T-IF})
\]

The metavariable \(T \) is used to indicate that the result of the if is the type of the then- and else- branches, and that this may be any type (either \(\text{Nat} \) or \(\text{Bool} \) or, when we get to calculi with more interesting sets of types, any other type whatsoever).

6.3 Properties of Typing and Reduction

Typing Derivations

Formally, the typing relation can be thought of as a simple logic for proving typing assertions (sometimes called typing judgements) of the form \(\vdash t : T \), pronounced “the term \(t \) has the type \(T \).” The provable statements of this logic are defined as follows:

6.3.1 Definition: The **typing relation** is the least two-place relation containing all instances of the axioms T-ZERO, T-TRUE, and T-FALSE and closed under all instances of the remaining rules. (In the literature on type systems, the symbol \(\vdash \) is often used instead of \(\vdash \) for the typing relation.)

6.3.2 Definition: A **typing derivation** is a tree of instances of the typing rules. Each statement \(\vdash t : T \) in the typing relation is justified by a typing derivation with conclusion \(\vdash t : T \). We sometimes write \(D : J \) to indicate that \(D \) is a derivation tree with conclusion \(J \). When \(D : J \) for some \(D \), we say that \(J \) is **derivable**.

6.3.3 Theorem [Principle of induction on typing derivations]: Suppose that \(P \) is some predicate on typing statements. If we can show, for each typing derivation \(D : J \), that \(P(J') \) for all \(D' : J' \) with \(\text{size}(D') < \text{size}(D) \) implies \(P(J) \), then we may conclude that \(P(J) \) holds for every derivable typing statement.
Typechecking

6.3.4 Lemma [Inversion of the typing relation]:

1. If \(\vdash 0 : R \), then \(R = \text{Nat} \).
2. If \(\vdash \text{succ} \ t_1 : R \), then \(R = \text{Nat} \) and \(\vdash t_1 : \text{Nat} \).
3. If \(\vdash \text{pred} \ t_1 : R \), then \(R = \text{Nat} \) and \(\vdash t_1 : \text{Nat} \).
4. If \(\vdash \text{iszero} \ t_1 : R \), then \(R = \text{Bool} \) and \(\vdash t_1 : \text{Nat} \).
5. If \(\vdash \text{true} : R \), then \(R = \text{Bool} \).
6. If \(\vdash \text{false} : R \), then \(R = \text{Bool} \).
7. If \(\vdash \text{if} \ t_1 \ \text{then} \ t_2 \ \text{else} \ t_3 : R \), then
 \[\Gamma \vdash t_1 : \text{Bool} \]
 \[\Gamma \vdash t_2 : R \]
 \[\Gamma \vdash t_3 : R. \]

The inversion lemma is sometimes called the \textit{generation lemma} for the typing relation, since, given a valid typing statement, it shows how proofs of this statement might have been generated.

\(\square \)

Proof: Immediate from the definition of the typing relation.

6.3.5 Theorem [Uniqueness of Types]: Each term \(t \) has at most one type. That is, if \(t \) is typeable, then its type is unique. Moreover, there is just one derivation of this typing built from the inference rules of Definition 6.3.1.

\(\square \)

Proof: Exercise.

Safety = Preservation + Progress

The most important property of this type system (or any other) is \textit{soundness}: well-typed programs do not “go wrong.” A simple way of formalizing this fact is the observation that well-typed programs can only reduce to well-typed programs—that is, a well-typed program can never reach an ill-typed state at run-time.

6.3.6 Theorem [Preservation of types during evaluation]: If \(\vdash t : T \) and \(t \rightarrow^* t' \), then \(\vdash t' : T. \)

\(\square \)

Proof: Exercise.
The preservation theorem is often called “subject reduction” (or “subject evaluation”) in the literature—the intuition being that a typing statement \(\vdash t : T \) can be thought of as a sentence: “\(t \) has type \(T \).” The term \(t \) is the subject of this sentence, and the subject reduction property then says that the truth of the sentence is stable under reduction of the subject.

Recall (from Definition 3.2.16) that a “stuck” term is one that is in normal form but not a value.

6.3.7 Theorem [Progress]: If \(\vdash t : T \), then either \(t \) is a value or there is some \(t' \) such that \(t \to t' \).

Proof: Exercise.

The combination of the latter property with the preservation theorem guarantees that “well-typed terms never get stuck.” This combination of properties captures what is usually thought of as “type safety” or “type soundness.”

6.3.8 Exercise [Recommended]: Having seen the “subject reduction” property, we may wonder whether the opposite (“subject expansion”) property also holds. Is it always the case that, if \(t \to t' \) and \(\vdash t' : T \), then \(\vdash t : T \)? If so, prove it. If not, give a counterexample. (Solution on page 255.)

6.4 Implementation

```plaintext
type ty =
  TyBool
| TyNat

let rec tyeqv tyS tyT =
  match (tyS, tyT) with
  (TyBool, TyBool) -> true
| (TyNat, TyNat) -> true
| _ -> false

val error : info -> string -> 'a

let rec typeof t =
  match t with
  TyTrue(fi) ->
    TyBool
| TyFalse(fi) ->
    TyBool
| TyIf(fi, s1, s2, s3) ->
    if tyeqv (typeof s1) TyBool then
      let tyS = typeof s2 in
```

6.5 Summary

Typing rules for booleans

<table>
<thead>
<tr>
<th>New syntactic forms</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T := \ldots)</td>
</tr>
<tr>
<td>(\text{Bool})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New typing rules ((t : T))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{true : Bool}) (T-TRUE)</td>
</tr>
<tr>
<td>(\text{false : Bool}) (T-FALSE)</td>
</tr>
<tr>
<td>(t_1 : \text{Bool} \quad t_2 : T \quad t_3 : T)</td>
</tr>
<tr>
<td>(\text{if } t_1 \text{ then } t_2 \text{ else } t_3 : T) (T-IF)</td>
</tr>
</tbody>
</table>

Typing rules for numbers

<table>
<thead>
<tr>
<th>New syntactic forms</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T := \ldots)</td>
</tr>
<tr>
<td>(\text{Nat})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New typing rules ((t : T))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0 : \text{Nat}) (T-ZERO)</td>
</tr>
</tbody>
</table>
\[
\begin{array}{l}
\text{\texttt{t}_1 : \texttt{Nat}} \\
\text{\texttt{succ \ t}_1 : \texttt{Nat}} \\
\text{\texttt{t}_1 : \texttt{Nat}} \\
\text{\texttt{pred \ t}_1 : \texttt{Nat}} \\
\text{\texttt{t}_1 : \texttt{Nat}} \\
\text{\texttt{iszero \ t}_1 : \texttt{Bool}}
\end{array}
\]

(T-Succ)

(T-Pred)

(T-IsZero)
This chapter introduces the most elementary member of the family of typed languages that we shall be studying for the rest of the course: the simply typed lambda-calculus of Church [Chu40] and Curry [CF58].

7.1 Syntax

7.1.1 Definition: The set of simple types over the atomic type Bool (for brevity, we omit natural numbers) is generated by the following grammar:

\[
T ::= \quad \text{types...}
\]
\[
T \to T \\
\text{type of functions}
\]
\[
\text{type of booleans}
\]

The type constructor \(\to\) is right-associative: \(S \to T \to U\) stands for \(S \to (T \to U)\). □

7.1.2 Definition: The abstract syntax of simply typed lambda-terms (with booleans and conditional) is defined by the following grammar:

\[
t ::= \quad \text{terms...}
\]
\[
x \quad \text{variable}
\]
\[
\lambda x : T . t \quad \text{abstraction}
\]
\[
t \quad \text{application}
\]
\[
\text{constant true}
\]
\[
\text{constant false}
\]
\[
\text{conditional}
\]

□
In the literature on type systems, two different presentation styles are commonly used:

- **In implicitly typed** (or, for historical reasons, **Curry-style**) systems, the pure (untyped) lambda-calculus is used as the term language. The typing rules define a relation between untyped terms and the types that classify them.

- **In explicitly typed** (or **Church-style**) systems, the term language itself is refined so that terms carry some type information within them; for example, the bound variables in function abstractions are always annotated with the type of the expected parameter. The type system relates typed terms and their types.

To a large degree, the choice is a matter of taste, though explicitly typed systems generally pose fewer algorithmic problems for typecheckers. We will adopt an explicitly typed presentation throughout.

7.2 The Typing Relation

In order to assign a type to an abstraction like $\lambda x : T_2 . t_1$, we need to know what will happen later when it is applied to some argument t_2. The annotation on the bound variable tells us that we may assume that the argument will be of type T_2. In other words, the type of the result will be just the type of t_1, where occurrences of x in t_1 are assumed to denote terms of type T_2. This intuition is captured by the following rule:

$$
\frac{x : T_1 \vdash t_2 : T_2}{\vdash \lambda x : T_1 . t : T_1 \rightarrow T_2} \quad (T\text{-ABS})
$$

Since, in general, function abstractions can be nested, typing assertions actually have the form $\Gamma \vdash t : T$, pronounced “term t has type T under the assumptions Γ about the types of its free variables.” Formally, the **typing context** Γ is just a list of variables and their types, and the “comma” operator extends Γ by concatenating a new binding on the right. To avoid confusion between the new binding and any bindings that may already appear in Γ, we require that the name x be chosen so that it does not already appear in $\text{dom}(\Gamma)$. (As usual, this condition can always be satisfied by renaming the bound variable if necessary.) Γ can thus be thought of as a finite function from variables to their types. Following this intuition, we will write $\text{dom}(\Gamma)$ for the set of variables bound by Γ and $\Gamma(x)$ for the type T associated with x in Γ.

So the rule for typing abstractions actually has the general form

$$
\frac{\Gamma, x : T_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda x : T_1 . t_2 : T_1 \rightarrow T_2} \quad (T\text{-ABS})
$$

where the premise adds one more assumption to those in the conclusion.
The typing rule for variables follows immediately from this discussion. A variable has whatever type we are currently assuming it to have:

$$\frac{x : T \in \Gamma}{\Gamma \vdash x : T} \quad \text{(T-VAR)}$$

Next, we need a rule for application:

$$\frac{\Gamma \vdash t_1 : T_{11} \rightarrow T_{12} \quad \Gamma \vdash t_2 : T_{11}}{\Gamma \vdash t_1 \ t_2 : T_{12}} \quad \text{(T-APP)}$$

In English: If t_1 evaluates to a function mapping arguments in T_2 to results in T_1 (under the assumption that the terms represented by its free variables yield results of the types associated to them by Γ), and if t_2 evaluates to a result in T_1, then the result of applying t_1 to t_2 will be a value of type T_1.

We have now given typing rules for each of the individual constructs in our simple language. To assign types to whole programs, we combine these rules into derivation trees. For example, here is a derivation tree showing that the term $\lambda x : \text{Bool}. x$ has type Bool in the empty context:

$$\frac{\text{T-VAR}}{\Gamma \vdash x : \text{Bool}} \quad \frac{\text{T-ABS}}{\Gamma \vdash \lambda x : \text{Bool}. x : \text{ Bool} \rightarrow \text{ Bool}} \quad \frac{\text{T-TRUE}}{\Gamma \vdash \text{true} : \text{ Bool}} \quad \frac{\text{T-APP}}{\Gamma \vdash (\lambda x : \text{Bool}. x) \text{true} : \text{ Bool}}$$

7.2.1 Exercise [Quick check]: Show (by exhibiting derivation trees) that the following terms have the indicated types in the given contexts:

1. $f : \text{ Bool} \rightarrow \text{ Bool} \vdash f$ (if false then true else false) : Bool
2. $f : \text{ Bool} \rightarrow \text{ Bool} \vdash \lambda x : \text{ Bool}. f$ (if x then false else x) : $\text{ Bool} \rightarrow \text{ Bool}$

7.2.2 Exercise [Quick check]: Find a context Γ under which the term $f \ x \ y$ has type Bool. Can you give a simple description of the set of all such contexts?

It is interesting to note that, in the above discussion, the "\rightarrow" type constructor comes with typing rules of two kinds:

1. an introduction rule describing how elements of the type can be created, and
2. an elimination rule describing how elements of the type can be used.

This terminology, which arises from connections between type theory and logic, is frequently useful in discussing type systems. When we come to consider more complex systems later in the course, we’ll see a similar pattern of linked introduction and elimination rules being repeated for each type constructor we consider.

7.2.3 Exercise [Quick check]: Which of the rules for the type Bool are introduction rules and which are elimination rules? (Solution on page 255.)
7.3 Summary

We have been discussing the simply typed lambda-calculus with booleans and conditionals, $\lambda \rightarrow \mathbb{B}$. In later chapters, we are going to want to extend the simply typed lambda-calculus with many other base types, in addition to or instead of booleans. We therefore split the formal summary of the system into two pieces: the pure simply typed lambda calculus $\lambda \rightarrow$, with no base types at all, and a separate extension with booleans.

$$\lambda \rightarrow : \text{Simply typed lambda-calculus} \rightarrow \text{(typed)}$$

Syntax

\[
\begin{align*}
t & ::= & x & \quad \text{(terms...)} \\
& & \lambda x : T . t & \quad \text{variable} \\
& & t \ t & \quad \text{abstraction} \\
& & \text{application} \\

v & ::= & \lambda x : T . t & \quad \text{(values...)} \\
T & ::= & T \rightarrow T & \quad \text{type of functions} \\
\Gamma & ::= & \emptyset & \quad \text{(contexts...)} \\
& & \Gamma , x : T & \text{empty context} \\
& & \text{term variable binding} \\
\end{align*}
\]

Evaluation \((t \rightarrow t')\)

\[
\begin{align*}
(\lambda x : T . t_1 . t_2) \ v_2 & \rightarrow \ (x \mapsto v_2) t_1 t_2 & \text{(E-BETA)} \\
\frac{t_1 \rightarrow t'_1}{t_1 \ t_2 \rightarrow t'_1 \ t_2} & \text{(E-APP1)} \\
\frac{t_2 \rightarrow t'_2}{v_1 \ t_2 \rightarrow v_1 \ t'_2} & \text{(E-APP2)}
\end{align*}
\]

Typing \((\Gamma \vdash t : T)\)

\[
\begin{align*}
x : T \in \Gamma & \quad \text{(T-VAR)} \\
\Gamma \vdash x : T & \quad \text{(T-ABS)} \\
\end{align*}
\]

\[
\begin{align*}
\frac{\Gamma , x : T_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda x : T_1 . t_2 : T_1 \rightarrow T_2} & \quad \text{(E-APP2)}
\end{align*}
\]
The highlighted areas here are used to mark material that is new with respect to the untyped lambda-calculus—whole new rules as well as new bits that need to be added to rules that we have already seen.

7.3.1 Exercise [Quick check]: The system \(\lambda \rightarrow \) by itself is actually trivial, in the sense that it has no well-typed programs at all. Why? (Solution on page 255.) □

7.4 Properties of Typing and Reduction

Typechecking

As in Chapter 6, we need to develop a few basic lemmas before we can prove type soundness. Most of these are similar to what we saw before (just adding contexts to the typing relation and adding appropriate clauses for \(\lambda \)-terms. The only significant new requirement is a substitution principle for the typing relation (Lemma 7.4.9).

7.4.1 Lemma [Inversion of the typing relation]:

1. If \(\Gamma \vdash x : R \), then \(x : R \in \Gamma \).

2. If \(\Gamma \vdash \lambda x : T_2. \ t_1 : R_2 \rightarrow R_1 \), then \(R_1 = T_2 \) and \(\Gamma, x : T_2 \vdash t_1 : R_1 \).

3. If \(\Gamma \vdash t_1 : R \), then there is some type \(T_2 \) such that \(\Gamma \vdash t_1 : T_2 \rightarrow R \) and \(\Gamma \vdash t_2 : T_2 \).

4. If \(\Gamma \vdash \text{true} : R \), then \(R = \text{Bool} \).

5. If \(\Gamma \vdash \text{false} : R \), then \(R = \text{Bool} \).

6. If \(\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : R \), then

 \[
 \begin{align*}
 &\Gamma \vdash t_1 : \text{Bool} \\
 &\Gamma \vdash t_2 : R \\
 &\Gamma \vdash t_3 : R.
 \end{align*}
 \]

 □

Proof: Immediate from the definition of the typing relation. □

7.4.2 Exercise [Easy]: Write out a typechecking algorithm for \(\lambda \rightarrow \) in pseudo-code or a programming language of your choice. Compare your answer with the ML implementation in Section 7.5. □
In Section 7.1, we chose to use an explicitly typed presentation of the calculus, partly in order to simplify the algorithmic issues involved in typechecking. This involved adding type annotations to bound variables in function abstractions, but nowhere else. In what sense is this “enough”?

One answer is provided by the “uniqueness of types” theorem, the substance of which is that well-typed terms are in one-to-one correspondence with the typing derivations that justify their well-typedness (in a given environment). The typing derivation can be recovered immediately from the term, and vice versa. In fact, the correspondence is so straightforward that, in a sense, there is little difference between the term and the derivation. (For many of the type systems that we will see, this simple correspondence will not hold: there will be significant work involved in showing that typing derivations can be recovered effectively from typed terms.)

7.4.3 Theorem [Uniqueness of Types]: In a given typing context \(\Gamma \), a term \(t \) (with free variables all in the domain of \(\Gamma \)) has at most one type. That is, if a term is typeable, then its type is unique. Moreover, there is just one derivation of this typing built from the inference rules that generate the typing relation.

The proof of the uniqueness theorem is so direct that there is almost nothing to say. We present a few cases carefully just to illustrate the structure of proofs by induction on typing derivations.

Proof: Suppose that \(\Gamma \vdash t : S \) and \(\Gamma \vdash t : T \). We show, by induction on a derivation of \(\Gamma \vdash t : T \), that \(S = T \).

Case T-VAR: \(t = x \) with \(x : T \in \Gamma \).

By case (1) of the inversion lemma (7.4.1), the final rule in any derivation of \(\Gamma \vdash t : S \) must also be T-VAR, and \(S = T \).

Case T-ABS: \(t = \lambda y : T_2 , t_1 \)

\(T = T_2 \rightarrow T_1 \)

\(\Gamma , y : T_2 \vdash t_1 : T_1 \)

By case (2) of the inversion lemma, the final rule in any derivation of \(\Gamma \vdash t : S \) must also be T-ABS, and this derivation must have a subderivation with conclusion \(\Gamma , y : T_2 \vdash t_1 : S_1 \), with \(S = T_2 \rightarrow S_1 \). By the induction hypothesis (on the subderivation with conclusion \(\Gamma , y : T_2 \vdash t_1 : T_1 \)), we obtain \(S_1 = T_1 \), from which \(S = T \) is immediate.

Case T-APP, T-TRUE, T-FALSE, T-IF:

Similar.

7.4.4 Exercise [Quick check]: Write out the case for T-APP.

7.4.5 Exercise [Recommended]: Is there any context \(\Gamma \) and type \(T \) such that \(\Gamma \vdash x \ x : T \)? If so, give \(\Gamma \) and \(T \) and show a typing derivation for \(\Gamma \vdash x \ x : T \); if not, prove it.
We shall sometimes need to talk about the types of subterms of well-typed terms. The following notation is useful for this purpose.

7.4.6 Definition: Suppose the term s is well typed with respect to the typing context Γ, and that r is some subterm of s. We write $\text{typeOf}_\Gamma(r)$ for the type R such that $\Gamma' \vdash r : R$, where Γ' is calculated by extending Γ with bindings corresponding to all of the function abstractions inside s under which r occurs. For example, if $s = \lambda x : A. \lambda y : B. \text{if}\ g\ \text{then}\ f\ \text{else}\ y\ \text{end}$, then $\text{typeOf}_\Gamma(r) = B$. When (as in this chapter) Γ is fixed for the whole discussion, we usually elide it, writing just $\text{typeOf}(r)$.

Note that R is unique, by Theorem 7.4.3.

We close this section with a couple of “structural lemmas” for the typing relation. These are not particularly interesting in themselves, but will permit us to perform some useful manipulations of typing derivations in later proofs.

7.4.7 Lemma [Permutation]: If $\Gamma \vdash t : T$ and Δ is a permutation of Γ, then $\Delta \vdash t : T$. Moreover, the latter derivation has the same depth as the former.

Proof: Straightforward induction on typing derivations.

7.4.8 Lemma [Weakening]: If $\Gamma \vdash t : T$ and $x \notin \text{dom}(\Gamma)$, then $\Gamma, x:S \vdash t : T$. Moreover, the latter derivation has the same depth as the former.

Proof: Straightforward induction on typing derivations.

Typing and Substitution

7.4.9 Lemma [Substitution]: If $\Gamma, x:S \vdash t : T$ and $\Gamma \vdash s : S$, then $\Gamma \vdash (x \mapsto s)t : T$.

7.4.10 Exercise [Recommended]: Prove the substitution lemma, using an induction on the depth of typing derivations and Lemma 7.4.1. The full proof appears in the solutions; try to write it out yourself before having a look at the answer. (Solution on page 255.)

Type Soundness

7.4.11 Theorem [Preservation of types during evaluation]: If $\Gamma \vdash t : T$ and $t \rightarrow^* t'$, then $\vdash t' : T$.

Proof:

7.4.12 Theorem [Progress]: Suppose t is closed and stuck. If $\vdash t : T$, then t is a value.

Proof: Outline: first show that every closed value of type Bool is either true or false and every closed value of type $S \rightarrow T$ is a λ abstraction.
7.5 Implementation

```haskell
type ty =
  TyArr of ty * ty
| TyBool

type term =
  TmVar of info * int * int
| TmAbs of info * string * ty * term
| TmApp of info * term * term
| TmTrue of info
| TmFalse of info
| TmIf of info * term * term * term

let rec tyeqv tyS tyT =
  match (tyS,tyT) with
  (TyArr(tyS1,tyS2),TyArr(tyT1,tyT2)) →
    (tyeqv tyS1 tyT1) && (tyeqv tyS2 tyT2)
  | (TyBool,TyBool) → true
  | _ → false

let rec typeof ctx t =
  match t with
    TmVar(fi,i,_) →
      gettype fi ctx i
    | TmAbs(fi,x,tyS,t1) →
      let ctvx' = addbinding ctx x (Varbind(tyS)) in
      let tyT = typeof ctx' t1 in
      TyArr(tyS, tyshift tyT (-1))
    | TmApp(fi,t1,t2) →
      let tyT1 = typeof ctx t1 in
      let tyT2 = typeof ctx t2 in
      (match tyT1 with
        TyArr(tyT11,tyT12) →
          if tyeqv tyT2 tyT11 then tyT12
          else error fi "parameter type mismatch"
        | _ → error fi "arrow type expected"
      )
    | TmTrue(fi) →
      TyBool
    | TmFalse(fi) →
      TyBool
    | TmIf(fi,s1,s2,s3) →
      if tyeqv (typeof ctx s1) TyBool then
        let tyS = typeof ctx s2 in
        if tyeqv tyS (typeof ctx s3) then tyS
        else error fi "arms of conditional have different types"
        else error fi "guard of conditional not a boolean"
```

7.6 Further Reading

The untyped lambda-calculus was developed by Church and his co-workers in the 1930s [Chu41]. The standard text for all aspects of the untyped lambda-calculus is Barendregt [Bar84]. Hindley and Seldin [HS86] is less comprehensive, but somewhat more accessible. Barendregt’s article in the Handbook of Theoretical Computer Science [Bar90] is a compact survey.

The simply typed lambda-calculus is studied in Hindley and Seldin [HS86] and in even greater detail in Hindley’s more recent book [Hin97]. Material on both typed and untyped lambda-calculus can also be found in many textbooks on functional programming languages (e.g. [PJL92]) and programming language semantics (e.g. [Sch86, Gun92, Win93, Mit96]).
Chapter 8

Extensions

This chapter is just a sketch (but all the underlying implementations are finished, so it won’t be too hard to fill in). It presents a bunch of familiar typing features and programming language constructs and shows how they fit into the framework we’ve built. There should be lots of exercises.

8.1 Base Types

Base types

\[
\begin{align*}
\text{Base types} & \rightarrow B \\
\text{New syntactic forms} & \\
T ::= \ldots & \text{(types...)} \\
& \quad B & \text{base type}
\end{align*}
\]

8.2 Unit type

Unit type

\[
\begin{align*}
\text{Unit type} & \rightarrow \text{Unit} \\
\text{New syntactic forms} & \\
t ::= \ldots & \text{(terms...)} \\
& \quad \text{unit} & \text{constant unit} \\
T ::= \ldots & \text{(types...)}
\end{align*}
\]
8.3 Let bindings

Let binding

\[
\text{let } x = t \text{ in } t
\]

New syntactic forms

\[
t ::= \ldots \quad \text{(terms...)}
\]

Let binding

New evaluation rules

\[
\begin{align*}
\text{let } x = v_1 \text{ in } t_2 & \quad \rightarrow \quad \{ x \mapsto v_1 \} t_2 \\
let x = t_1 \text{ in } t_2 & \quad \rightarrow \quad \text{let } x = t'_1 \text{ in } t_2
\end{align*}
\]

(E-LetBeta)

(E-Let)

New typing rules

\[
\begin{align*}
\Gamma \vdash t_1 : T_1 \quad \Gamma, x : T_1 \vdash t_2 : T_2 \\
\Gamma \vdash \text{let } x = t_1 \text{ in } t_2 : T_2
\end{align*}
\]

(T-Let)

8.3.1 Exercise [Recommended]: Add let bindings to the “simple” typechecker implementation. (Solution on page ??.)

8.4 Records and Tuples
Records and tuples

New syntactic forms

\[
\begin{align*}
 t & ::= \ldots \{l_i = t_i \in T_i\} t.1 \\
 v & ::= \ldots \{l_i = v_i \in T_i\} \\
 T & ::= \ldots \{l_i : T_i \in T_i\}
\end{align*}
\]

New evaluation rules \((t \rightarrow t')\)

\[
\begin{align*}
 \{l_i = v_i \in T_i\}, l_i \rightarrow v_i & \quad (E-RCDBeta) \\
 t_1 \rightarrow t_1' & \\
 t_1.1 \rightarrow t_1'.1 & \quad (E-PROJ) \\
 t_j \rightarrow t_j' & \\
 \{l_i = v_i \in T_i\} \rightarrow \{l_i = v_i \in T_i; l_j = t_j', l_k = t_k \in T_i\} & \quad (E-RECORD)
\end{align*}
\]

New typing rules \((\Gamma \vdash t : T)\)

\[
\begin{align*}
 \Gamma \vdash \{l_i = t_i \in T_i\} & : \{l_i = T_i \in T_i\} & \quad (T-RCD) \\
 \Gamma \vdash t : \{l_i : T_i \in T_i\} & \quad (T-PROJ)
\end{align*}
\]

New abbreviations

\[
\begin{align*}
 \{\ldots t_i \ldots\} & \overset{\text{def}}{=} \{\ldots i = t_i \ldots\} \\
 \{\ldots T_i \ldots\} & \overset{\text{def}}{=} \{\ldots i : T_i \ldots\}
\end{align*}
\]

8.4.1 Exercise: In this presentation of records, the projection operation is used to extract the fields of a record one by one. Many high-level programming languages provide an alternative pattern matching syntax that extracts all the fields at the same time, allowing many programs to be expressed more concisely. Patterns can typically be nested, allowing parts to be extracted easily from complex nested data structures.

For example, we can add a simple form of pattern matching to the untyped lambda calculus with records by adding a new syntactic category of patterns, plus
one new case (for the pattern matching construct itself) to the syntax of terms. To define the computation rule for pattern matching, we need an auxiliary “matching” function. Given a pattern and a term, the pattern matching function either fails (if the term does not match the pattern) or else yields a substitution that replaces variables appearing in the pattern with the corresponding subterms of the given term. Here is the formal definition of the calculus, highlighting differences from the pure untyped lambda-calculus with records and ordinary let-binding:
Record patterns \[\rightarrow \{ \} \text{let } \text{pat} \text{ (untyped)} \]

New syntactic forms

\[
\begin{align*}
p & ::= \ldots \quad \text{variable pattern} \\
x & \{l_i=p_i \in \mathbb{L}_{\mathbb{N}}\} \\
t & ::= \ldots \quad \text{record pattern} \\
& \quad \text{(terms...)} \\
\text{let } p=t \text{ in } t \quad \text{pattern binding}
\end{align*}
\]

Matching rules:

\[
\begin{align*}
\text{match}[x, t] &= \{x \mapsto t\} & \text{(M-VAR)} \\
\text{match}[\{l_i=p_i \in \mathbb{L}_{\mathbb{N}}\}, \{l_i=t_i \in \mathbb{L}_{\mathbb{N}}\}] &= \sigma_1 \circ \cdots \circ \sigma_n & \text{(M-RCD)}
\end{align*}
\]

New evaluation rules

\[
\begin{align*}
\text{let } p=v_1 \text{ in } t_2 & \longrightarrow \text{match}[p, v_1]t_2 & \text{(E-LetBeta)} \\
t_1 & \longrightarrow t_1' & \text{(E-Let)} \\
\text{let } p=t_1 \text{ in } t_2 & \longrightarrow \text{let } p=t_1' \text{ in } t_2 & \text{(E-Let)}
\end{align*}
\]

New abbreviations

\[
\{ \ldots p_i \ldots \} \defeq \{ \ldots i=p_i \ldots \}
\]

Your job is to add types to this calculus, in the style of the simply typed lambda-calculus:

1. Give typing rules for the new constructs (making any changes to the syntax you feel are necessary in the process).

2. Sketch a proof of type preservation and progress for the whole calculus by stating the sequence of major lemmas needed to carry out the proof. (You do not need to show proofs, just statements of the required lemmas in the correct order.)

(Solution on page 256.)
8.5 Variants

New syntactic forms

\[t ::= ... \]
\[<l=t> \text{ as } T \]
\[\text{case } t \text{ of } ... \mid l_i=x \Rightarrow t_i \mid ... \]
\[T ::= ... \]
\[<l_i:T_i \in E^l;n> \]

New evaluation rules \((t \to t')\)

\[\text{case } <l_i=v_i> \text{ as } T \text{ of } ... \mid l_i=x \Rightarrow t_i \mid ... \to \{x \mapsto v_i\}t_i \quad \text{(E-CASEBETA)} \]
\[s_1 \to s_1' \]
\[\text{case } s_1 \text{ of } ... \mid l_i=x \Rightarrow t_i \mid ... \to \text{case } s_1' \text{ of } ... \mid l_i=x \Rightarrow t_i \mid ... \]
\[t_i \to t_i' \]
\[\text{for each } i \quad \Gamma \vdash t_i : T_i \quad \text{(T-VARIANT)} \]
\[\frac{\Gamma \vdash <l_i:t_i > \in E^l;n \quad \text{for each } i \quad \Gamma, x_i:T_i \vdash t_i : T}{\Gamma \vdash \text{case } t_0 \text{ of } ... \mid l_i=x_i \Rightarrow t_i \mid ... : T} \quad \text{(T-CASE)} \]

New typing rules \((\Gamma \vdash t : T)\)

Note that we syntactically allow the type label to be a non-variant type, but the typing rule then excludes this case. This is just for brevity (and implementation flexibility, e.g. when we get to definitions).

8.6 General recursion
8. Extensions

General recursion

\[\rightarrow \text{fix} \]

New syntactic forms

\[t ::= \ldots \]

\[\text{fix } t \]

\[(\text{terms...}) \]

\[\text{fixed point of } t \]

New typing rules

\[(\Gamma \vdash t : T) \]

\[\Gamma \vdash t_1 : T_1 \rightarrow T_1 \]

\[\Gamma \vdash \text{fix } t_1 : T_1 \]

\[(T\text{-Fix}) \]

New abbreviations

\[\text{letrec } x = t_1 \text{ in } t_2 \overset{\text{def}}{=} \text{let } x = \text{fix } (\lambda x. t_1) \text{ in } t_2 \]

A corollary of the definability of fixed-point combinators at every type is that every type in this system is inhabited. For example, for each type \(T\), the application (\(\text{diverge}_T \text{ unit}\)) has type \(T\), where \(\text{diverge}_T\) is defined like this:

\[\text{diverge}_T = \lambda : \text{Unit. fix } (\lambda x : T. \ x); \]

\[\Gamma == \text{Nat: } \ast \]

\[\text{diverge}_T : \text{Unit } \rightarrow T \]

8.7 Lists

Lists

\[\rightarrow \text{List} \]

New syntactic forms

\[t ::= \ldots \]

\[\text{nil } [T] \]

\[\text{cons } [T] t \ t \]

\[\text{null } [T] \ t \]

\[\text{head } [T] \ t \]

\[\text{tail } [T] \ t \]

\[(\text{terms...}) \]

\[\text{empty list} \]

\[\text{list constructor} \]

\[\text{test for empty list} \]

\[\text{head of a list} \]

\[\text{tail of a list} \]

\[v ::= \ldots \]

\[\text{nil } [T] \]

\[\text{cons } [T] v \ v \]

\[(\text{values...}) \]

\[\text{empty list} \]

\[\text{list constructor} \]

\[T ::= \ldots \]

\[\text{List } T \]

\[(\text{types...}) \]

\[\text{type of lists} \]

New evaluation rules

\[(t \rightarrow t') \]
\[
\begin{align*}
& t_1 \rightarrow t'_1 \\
& \frac{\text{cons}[T]~ t_1 ~ t_2 \rightarrow \text{cons}[T]~ t'_1 ~ t_2}{(E-\text{CONS1})} \\
& t_2 \rightarrow t'_2 \\
& \frac{\text{cons}[T]~ v_1 ~ t_2 \rightarrow \text{cons}[T]~ v'_1 ~ t_2}{(E-\text{CONS2})} \\
& \text{null}[S] \ (\text{null}[T]) \rightarrow \text{true} \\
& \quad (E-\text{NULLBETA}) \\
& \text{null}[S] \ (\text{cons}[T]~ v_1 ~ v_2) \rightarrow \text{false} \\
& \quad (E-\text{NULLBETA}) \\
& t_1 \rightarrow t'_1 \\
& \quad \frac{\text{null}[T]~ t_1 \rightarrow \text{null}[T]~ t'_1}{(E-\text{NULL})} \\
& \text{head}[S] \ (\text{cons}[T]~ v_1 ~ v_2) \rightarrow v_1 \\
& \quad (E-\text{HEADBETA}) \\
& t_1 \rightarrow t'_1 \\
& \quad \frac{\text{head}[T]~ t_1 \rightarrow \text{head}[T]~ t'_1}{(E-\text{HEAD})} \\
& \text{tail}[S] \ (\text{cons}[T]~ v_1 ~ v_2) \rightarrow v_1 \\
& \quad (E-\text{TAILBETA}) \\
& t_1 \rightarrow t'_1 \\
& \quad \frac{\text{tail}[T]~ t_1 \rightarrow \text{tail}[T]~ t'_1}{(E-\text{TAIL})} \\
\end{align*}
\]

\textbf{New typing rules} \quad (\Gamma \vdash t : T)

\[
\begin{align*}
& \Gamma \vdash \text{nil}[T] : \text{List}[T] \\
& \quad (T-\text{NIL}) \\
& \Gamma \vdash t_1 : T_1, \Gamma \vdash t_2 : \text{List}[T_1] \\
& \quad \frac{\Gamma \vdash \text{cons}[T_1]~ t_1 ~ t_2 \rightarrow \text{List}[T_1]}{(T-\text{CON})} \\
& \quad \frac{\Gamma \vdash t_1 : \text{List}[T_1]}{(T-\text{NULL})} \\
& \quad \frac{\Gamma \vdash \text{null}[T_1] \rightarrow \text{bool}}{(T-\text{HEAD})} \\
& \quad \frac{\Gamma \vdash t_1 : \text{List}[T_1]}{(T-\text{TAIL})} \\
\end{align*}
\]
8.8 Lazy records and let-bindings

Lazy let bindings

New syntactic forms

\[t ::= \ldots \]

\[\text{lasy let } x = t \text{ in } t \]

(lazy let binding)

New evaluation rules \((t \rightarrow t')\)

\[\text{lasy let } x = t_1 \text{ in } t_2 \rightarrow (x \mapsto t_1) t_2 \]

(E-LLetBeta)

New typing rules \((\Gamma \vdash t : T)\)

\[\Gamma \vdash t_1 : T_1 \quad \Gamma, x : T_1 \vdash t_2 : T_2 \]

\[\Gamma \vdash \text{lasy let } x = t_1 \text{ in } t_2 : T_2 \]

(T-LLet)

Lazy records

New syntactic forms

\[t ::= \ldots \]

\[\text{lasy } \{ l_i = t_i \in L \} \]

(lazy record)

\[v ::= \ldots \]

\[\text{lasy } \{ l_i = t_i \in L \} \]

(lazy record value)

New evaluation rules \((t \rightarrow t')\)

\[\{ \text{lasy } \{ l_i = t_i \in L \} \}, l_i \rightarrow t_i \]

(E-LRcdBeta)

New typing rules \((\Gamma \vdash t : T)\)

\[\Gamma \vdash \{ l_i = t_i \in L \}, t_i : T_i \]

\[\Gamma \vdash \text{lasy } \{ l_i = t_i \in L \} : \{ l_i : T_i \in L \} \]

(T-LRcd)

Exercise: write down rules for lazy functions
(These are used only in the advanced parts of the object examples.)
Chapter 9

References

This chapter is still very rough. The basic approach seems fine, but there's a good deal of work to do on details.

References

Syntax

\[
\begin{align*}
\text{t} & ::= \\
& \quad x \\
& \quad \lambda x : T . t \\
& \quad t \ t \\
& \quad \text{unit} \\
& \quad l \\
& \quad \text{ref} \ t \\
& \quad ! t \\
& \quad t :: t \\
\end{align*}
\]

\[
\begin{align*}
\text{v} & ::= \\
& \quad \lambda x : T . t \\
& \quad l \\
\end{align*}
\]

\[
\begin{align*}
\text{T} & ::= \\
& \quad T \rightarrow T \\
& \quad \text{Unit} \\
& \quad \text{Ref} \ T_1 \\
\end{align*}
\]

\[
\begin{align*}
\Gamma & ::= \\
& \quad \emptyset \\
& \quad \Gamma , x : T \\
\end{align*}
\]
\[
\begin{align*}
\mu & := 0 \\
& \quad \mu, l = t \\
\Sigma & := 0 \\
& \quad \Sigma, l : T
\end{align*}
\]

empty store location binding

empty store typing location typing

Evaluation

\[
(t \mid \mu \rightarrow t' \mid \mu')
\]

\[
(\lambda x : T_{11} \cdot t_{12}) \quad v_2 \mid \mu \rightarrow (x \mapsto v_2)t_{12} \mid \mu
\]

(E-BETA)

\[
\frac{t_1 \mid \mu \rightarrow t_1' \mid \mu'}{t_1 \cdot t_2 \mid \mu \rightarrow t_1' \cdot t_2 \mid \mu'}
\]

(E-APP1)

\[
\frac{t_2 \mid \mu \rightarrow t_2' \mid \mu'}{v_1 \cdot t_2 \mid \mu \rightarrow v_1 \cdot t_2' \mid \mu'}
\]

(E-APP2)

\[
\frac{l \notin \text{dom}(\mu)}{\text{ref } v_1 \mid \mu \rightarrow l \mid (\mu, l = v_1)}
\]

(E-REF)

\[
\frac{t_1 \mid \mu \rightarrow t_1' \mid \mu'}{\text{ref } t_1 \mid \mu \rightarrow \text{ref } t_1' \mid \mu'}
\]

(E-REF1)

\[
\frac{\mu(l) = v}{!l \mid \mu \rightarrow v \mid \mu}
\]

(E-DEREF)

\[
\frac{t_1 \mid \mu \rightarrow t_1' \mid \mu'}{!t_1 \mid \mu \rightarrow !t_1' \mid \mu'}
\]

(E-DEREF1)

\[
\frac{l := v_2 \mid \mu \rightarrow \text{unit } \mid (l \mapsto v_2)\mu}{l := v_2 \mid \mu \rightarrow \text{unit } \mid (l \mapsto v_2)\mu}
\]

(E-Assign)

\[
\frac{t_1 \mid \mu \rightarrow t_1' \mid \mu'}{t_1 := t_2 \mid \mu \rightarrow t_1' := t_2 \mid \mu'}
\]

(E-Assign1)

\[
\frac{t_2 \mid \mu \rightarrow t_2' \mid \mu'}{v_1 := t_2 \mid \mu \rightarrow v_1 := t_2' \mid \mu'}
\]

(E-Assign2)

Typing

\[
(\Gamma \mid \Sigma \vdash t : T)
\]

\[
\frac{x : T \in \Gamma}{\Gamma \mid \Sigma \vdash x : T}
\]

(T-VAR)

\[
\frac{\Gamma, x : T_1 \mid \Sigma \vdash t_2 : T_2}{\Gamma \mid \Sigma \vdash \lambda x : T_1 . t_2 : T_1 \rightarrow T_2}
\]

(T-ABS)
9.1 Definition: We say that a store \(\mu \) is well-typed with respect to a typing context \(\Gamma \) and a store typing \(\Sigma \), written \(\Gamma \vdash \Sigma \vdash \mu \), if \(\text{dom}(\mu) = \text{dom}(\Sigma) \) and \(\Gamma \vdash \Sigma \vdash \mu(l) : \Sigma(l) \) for every \(l \in \text{dom}(\mu) \).

9.2 Lemma [Substitution]: If \(\Gamma, x : S, \Sigma \vdash t : T \) and \(\Gamma \vdash \Sigma \vdash S : S \), then \(\Gamma \vdash \Sigma \vdash \{x \mapsto s\}t : T \).

Proof: Just like the proof of Lemma 7.4.9.

9.3 Lemma: If \(\Gamma \vdash \Sigma \vdash t : T \) and \(\Sigma' \supseteq \Sigma \), then \(\Gamma, \Sigma' \vdash t : T \).

Proof: Easy.

9.4 Theorem [Preservation]: If
\[
\begin{align*}
\Gamma & \vdash \Sigma \vdash t : T \\
\Gamma & \vdash \Sigma \vdash \mu \\
\mu & \vdash t' : T' \\
\mu & \vdash t' : T'
\end{align*}
\]
then, for some \(\Sigma' \supseteq \Sigma \),
\[
\begin{align*}
\Gamma & \vdash \Sigma' \vdash t' : T \\
\Gamma & \vdash \Sigma' \vdash t' : T'
\end{align*}
\]

Proof: Clearly, the preservation property for multi-step evaluation will follow (by a straightforward induction) from preservation for single-step evaluation. This, in turn, is established by an induction on a derivation of \(t \vdash \mu \rightarrow^* t' \vdash \mu' \). All the cases of this induction are straightforward, using the lemmas above and the evident inversion property of the typing rules.

9.5 Exercise: Is the evaluation relation defined in this chapter strongly normalizing on well-typed terms? (Solution on page 260.)
9.1 Further Reading

The presentation of references in this chapter is adapted from Harper’s treatment [?]. An earlier account in a similar style is given by Wright and Felleisen [?].

The combination of references (or other computational effects) with ML-style polymorphic type inference (cf. Section ??) raises some subtle problems and has received a good deal of attention in the research literature. See [Tof90, HMV93, JG91, TJ92, TJ92, LW91, Wri92] and the references cited there.
Chapter 10

Exceptions

I’m not sure whether the amount of material here warrants a separate chapter, or just a section in Chapter 8.

10.1 Errors

10.2 Exceptions
Chapter 11

Type Equivalence

To be written.

The point of introducing equivalence as a separate notion is that it gives a uniform framework for all kinds of definitional equivalences on types. It introduces a bit of overhead too, but I think it’s worth it in this case.

This chapter has just been added, and some of the later chapters have not been brought up to date (the equivalence rules used to be folded into the subtyping relation).

Records with permutation of fields

\[\rightarrow \{ \} \equiv \]

Type equivalence \((S \equiv T) \)

\[
\begin{align*}
T & \equiv T \quad & \text{(Q-REFL)} \\
S & \equiv T \quad & \text{(Q-SYMM)} \\
S & \equiv U \quad U \equiv T \quad & \text{(Q-TRANS)} \\
S_1 \equiv T_1, S_2 \equiv T_2, S_1 \rightarrow S_2 & \equiv T_1 \rightarrow T_2 \quad & \text{(Q-ARROW)} \\
\pi \text{ is a permutation of } \{1..n\} & \quad \{1_1 : T_1, \ldots, 1_n : T_n\} \equiv \{1_{\pi(1)} : T_{\pi(1)}, \ldots, 1_{\pi(n)} : T_{\pi(n)}\} \quad & \text{(Q-RC-D-Perm)}
\end{align*}
\]

New typing rules \((\Gamma \vdash t : T) \)

\[
\begin{align*}
\Gamma & \vdash t : S \\
S & \equiv T \quad & \text{(T-EQ)} \\
\Gamma & \vdash t : T
\end{align*}
\]

81
Algorithmic rules for simply typed lambda-calculus

Algorithmic typing \((\Gamma \vdash t : T)\)

\[
\begin{align*}
\frac{x : T \in \Gamma}{\Gamma \vdash x : T} & \quad \text{(TA-VAR)} \\
\frac{\Gamma, x : T_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda x : T_1. t_2 : T_1 \rightarrow T_2} & \quad \text{(TA-ABS)} \\
\frac{\Gamma \vdash t_1 : T_1 \quad \Gamma \vdash t_2 : T_2 \quad T_1 = T_{11} \rightarrow T_{12} \quad T_2 = T_{11}}{\Gamma \vdash t_1 \cdot t_2 : T_{12}} & \quad \text{(TA-APP)}
\end{align*}
\]

Algorithmic rules for records with permutation

Algorithmic type equivalence \((\vdash S \equiv T)\)

\[
\begin{align*}
\frac{\vdash S_1 \equiv T_1 \quad \vdash S_2 \equiv T_2}{\vdash S_1 \rightarrow S_2 \equiv T_1 \rightarrow T_2} & \quad \text{(QA-ARR)} \\
\forall \pi \text{ a permutation of } \{1..n\} \forall i \vdash t_i \equiv T_{\pi i} & \quad \text{(QA-RCD)} \\
\frac{\vdash \{t_1 : T_{\pi 1}, \ldots, t_n : T_{\pi n}\} \equiv \{l_1 : T_{l 1}, \ldots, l_n : T_{l n}\}}{} \\
\end{align*}
\]

Algorithmic typing \((\Gamma \vdash t : T)\)

\[
\begin{align*}
\frac{x : T \in \Gamma}{\Gamma \vdash x : T} & \quad \text{(TA-VAR)} \\
\frac{\Gamma, x : T_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda x : T_1. t_2 : T_1 \rightarrow T_2} & \quad \text{(TA-ABS)} \\
\frac{\Gamma \vdash t_1 : T_1 \quad \Gamma \vdash t_2 : T_2 \quad T_1 = T_{11} \rightarrow T_{12} \quad T_2 \equiv T_{11}}{\Gamma \vdash t_1 \cdot t_2 : T_{12}} & \quad \text{(TA-APP)} \\
\frac{\forall i \vdash t_i : T_i}{\vdash \{l_1 : T_{l 1}, \ldots, l_n : T_{l n}\} \equiv \{t_i : T_{l i}, \ldots, t_n : T_{l n}\}} & \quad \text{(TA-RCD)} \\
\frac{\vdash t : \{l_1 : T_{l 1}, \ldots, l_n : T_{l n}\}}{\vdash t. l_i : T_i} & \quad \text{(TA-PROJ)}
\end{align*}
\]
Chapter 12
Definitions

12.1 Type Definitions

(needed for equirec implementation stuff)
introduce type variables (this section is optional, so we need to re-introduce
them when we get to polymorphism)
extend type equivalence relation
talk about exposing types before matching against them
Exercise: inner defns (not trivial: must eliminate remaining occurrences when
leaving the scope of the definition)

Type definitions

New syntactic forms

\[T ::= \ldots \]
\[\Gamma ::= \ldots \]

\[\Gamma, X \mapsto T \]

(type variables)

(type definition binding)

New type equivalence rules

\[(\Gamma \vdash S \equiv T) \]

\[\Gamma \vdash T \equiv T \]

(Q-REFL)

\[\Gamma \vdash ? \equiv S \]

(Q-SYMM)

\[\Gamma \vdash S \equiv T \]

\[\Gamma \vdash S \equiv U \quad \Gamma \vdash U \equiv T \]

(Q-TRANS)

\[\Gamma \vdash S \equiv T \]
\[
\begin{align*}
\Gamma \vdash S_1 \equiv T_1 & \quad \Gamma \vdash S_2 \equiv T_2 \\
\hline
\Gamma \vdash S_1 \rightarrow S_2 \equiv T_1 \rightarrow T_2
\end{align*}
\] (Q-Arrow)

\[
\begin{align*}
\chi \rightarrow T \in \Gamma \\
\hline
\Gamma \vdash \chi \equiv T
\end{align*}
\] (Q-Def)

New typing rules \((\Gamma \vdash t : T)\)

\[
\begin{align*}
\Gamma \vdash t : S & \quad \Gamma \vdash S \equiv T \\
\hline
\Gamma \vdash t : T
\end{align*}
\] (T-Eq)

Algorithmic rules for type definitions

\[
\rightarrow \text{ B } \leftrightarrow
\]

Algorithmic reduction \((\Gamma \vdash T \rightarrow T')\)

\[
\begin{align*}
\chi \rightarrow T \in \Gamma \\
\hline
\Gamma \vdash \chi \rightarrow T
\end{align*}
\] (RA-Def)

Algorithmic type equivalence \((\Gamma \vdash S \equiv T)\)

\[
\begin{align*}
\Gamma \vdash B \equiv B
\end{align*}
\] (QA-Base)

\[
\begin{align*}
\Gamma \vdash S \rightarrow S' & \quad \Gamma \vdash S' \equiv T \\
\hline
\Gamma \vdash S \equiv T
\end{align*}
\] (QA-ReduceL)

\[
\begin{align*}
\Gamma \vdash T \rightarrow T' & \quad \Gamma \vdash S \equiv T' \\
\hline
\Gamma \vdash S \equiv T
\end{align*}
\] (QA-ReduceR)

\[
\begin{align*}
\Gamma \vdash S_1 \equiv T_1 & \quad \Gamma \vdash S_2 \equiv T_2 \\
\hline
\Gamma \vdash S_1 \rightarrow S_2 \equiv T_1 \rightarrow T_2
\end{align*}
\] (QA-Arrow)

Exposure \((\Gamma \vdash T \uparrow T')\)

\[
\begin{align*}
\text{otherwise} \\
\hline
\Gamma \vdash T \uparrow T
\end{align*}
\] (XA-Other)

\[
\begin{align*}
\Gamma \vdash T \rightarrow T' & \quad \Gamma \vdash T' \uparrow T'' \\
\hline
\Gamma \vdash T \uparrow T''
\end{align*}
\] (XA-Reduce)

Algorithmic typing \((\Gamma \vdash t : T)\)

\[
\begin{align*}
x : T \in \Gamma \\
\hline
\Gamma \vdash x : T
\end{align*}
\] (TA-Var)

\[
\begin{align*}
\Gamma, x : T_1 \vdash t_2 : T_2 \\
\hline
\Gamma \vdash \lambda x : T_1. t_2 : T_1 \rightarrow T_2
\end{align*}
\] (TA-Abs)
12.2 Term Definitions

(This should be very optional, but it’s nice to be honest about what the checkers are doing.)
Chapter 13

Subtyping

This material is not too far from finished, but the proofs and presentation need to be reworked a little in light of the addition of Chapter 11.

In programming in the simply typed lambda-calculus, we may sometimes find ourselves irritated by the type system’s insistence that types match exactly, for example in the rule $T\text{-App}$ for typing applications:

$$
\begin{array}{c}
\Gamma \vdash t_1 : T_{11} \rightarrow T_{12} \\
\Gamma \vdash t_2 : T_{11}
\end{array}
\quad
\Rightarrow
\quad
\Gamma \vdash t_1 \ t_2 : T_{12}
$$

(T-App)

According to this rule, the term

$$(\lambda x : \{\text{x: Nat}\}. \ x. \ x) \ \{x=0, \ y=1\}$$

is not typeable, even though it will obviously evaluate without producing any run-time errors, since the function only requires that its argument has a field x; it doesn’t care what other fields the argument may or may not have. Moreover, this fact is evident from the type of the function—we don’t need to look at its body to see that it doesn’t use any fields besides x.

One way to formalize this observation is to extend the typing rules so that the term $\{x=0, \ y=0\}$ is given a set of types including both $\{\text{x: Nat}, \ y: \text{Nat}\}$ and $\{\text{x: Nat}\}$. Then the application above is well typed because one of the possible types of the argument matches the left-hand side of the type of the function.

To accomplish this in a general way, we introduce a principle of safe substitution: We say that “S is a subtype of T,” written $S \ll T$, to mean that any term of type S can safely be used in a context where a term of type T is required. If this is the case, then a term t of type S is also given the type T, using the so-called rule of subsumption:

$$
\begin{array}{c}
\Gamma \vdash t : S \\
\Gamma \vdash S \ll T
\end{array}
\quad
\Rightarrow
\quad
\Gamma \vdash t : T
$$

(T-Sub)
No other changes are needed to the typing relation (though, as we shall see in Section 13.2, some changes are required to the algorithmic implementation of the typing relation). It remains only to formalize the subtype relation.

In this chapter, we’ll mainly work with a calculus with just records and functions (written \(\lambda<:() \)), for short, which is rich enough to bring out most of the interesting issues. Examples and exercises will touch on the combination of subtyping with most of the other features we have seen.

13.1 The Subtype Relation

Clearly, it is not safe to substitute functions for records, records for functions, etc. The subtyping relation will only be defined for types with similar structure.

First, just to make sure that our subtyping relation is sensible, we make two general stipulations: first, that it should be reflexive,

\[\Gamma \vdash S <: U \quad \Gamma \vdash U <: T \]

\[\Gamma \vdash S <: T \] \hfill (S-TRANS)

These rules follow directly from the intuition of safe substitutivity. The remainder of the rules defining the subtype relation concern the behavior of specific type constructors.

For record types, we have already seen that we want to consider the type \(S = \{k_1:S_1\ldots k_m:S_m\} \) to be a subtype of \(T = \{l_1:T_1\ldots l_n:T_n\} \) if \(T \) is obtained by dropping fields from \(S \).

\[\Gamma \vdash \{l_1:T_1\ldots l_{n-k}\} <: \{l_i:T_i\}_{i=1}^n \] \hfill (S-RCD-WIDTH)

In fact, we can be a little more general than this and also allow the types of the common fields to differ, so long as their types in \(S \) are subtypes of their types in \(T \).

\[\text{for each } i \quad \Gamma \vdash S_i <: T_i \]

\[\Gamma \vdash \{l_i:S_i\}_{i=1}^n <: \{l_i:T_i\}_{i=1}^n \] \hfill (S-RCD-DEPTH)

Also, it makes sense to ignore the order of fields in a record, since the only thing that we can do with records—namely, field projection—is insensitive to the order of fields.

For functions, the rule is a little trickier:

\[\Gamma \vdash T_1 <: S_1 \quad \Gamma \vdash S_2 <: T_2 \]

\[\Gamma \vdash S_1 \rightarrow S_2 <: T_1 \rightarrow T_2 \] \hfill (S-ARROW)

That is, we allow a function of one type to be used where another is expected as long as none of the arguments that may be passed to the function by the context will surprise it (\(T_1 <: S_1 \)) and none of the results that it returns will surprise the context (\(S_2 <: T_2 \)). Notice that the sense of the subtype relation is reversed on the left of the arrow; this rule is sometimes referred to as the “contravariant arrow rule” for this reason.
13.1.1 Exercise [Quick check]: Demonstrate that the premises of S-ARROW are both necessary by giving ill-behaved programs that would be well typed if either premise were dropped.

Finally, for various reasons, it will be convenient to have a type that is a supertype of every type. We introduce a new type constant Top for this purpose, plus a rule that makes Top maximal in the subtype relation.

\[\Gamma \vdash S <: \text{Top} \quad (\text{S-TOP}) \]

Formally, the subtype relation is the least relation closed under the rules we have given.

13.1.2 Exercise [Quick check]: In a system with reference cells, would it be a good idea to add a rule

\[
\frac{S <: T}{\text{Ref } S <: \text{Ref } T}
\]

for subtyping between reference cell types?

Variance

We pause for a moment to introduce some useful terminology for discussing types and subtyping.

Suppose \(T[_] \) is a type term containing some number of holes, written “\(_ \)” someplace inside it; we write \(T(S) \) for the term that results from filling the holes in \(T \) with \(S \). For example, if \(T[_] = \{x: \text{Top}, y: [_]\} \rightarrow \text{Top} \rightarrow [_] \rightarrow \text{Nat} \), then \(T(\text{Nat}) = \{x: \text{Top}, y: \text{Nat}\} \rightarrow \text{Top} \rightarrow \text{Nat} \rightarrow \text{Nat} \).

We say that \(T[_] \) is covariant in the position(s) marked by the holes if, whenever \(S_1 <: S_2 \), we have \(T(S_1) <: T(S_2) \). We say that \(T[_] \) is contravariant if, whenever \(S_1 <: S_2 \), we have \(T(S_2) <: T(S_1) \). If \(T[_] \) is neither covariant nor contravariant, it is said to be invariant. For example, we say that the arrow type constructor is contravariant in its first argument and covariant in its second, since \([_] \rightarrow S \) is contravariant while \(S \rightarrow [_] \) is covariant.

13.1.3 Exercise: Which of the following types are covariant in the position marked by the hole(s)? Which are contravariant? Which are invariant?

1. \(T[_] = [_] \rightarrow \text{Top} \)
2. \(T[_] = \text{Top} \rightarrow [_] \)
3. \(T[_] = \{x: \text{Top}, y: [_]\} \rightarrow \text{Nat} \rightarrow \text{Nat} \)
4. \(T[_] = [_] \rightarrow \text{Top} \rightarrow \text{Top} \)
5. \(T[_] = ([_] \rightarrow \text{Top}) \rightarrow \text{Top} \)
Summary

As usual, we present the subtyping extension of the pure simply typed lambda calculus first, then the additional rules for records.

\[\lambda_c : \text{Simply typed lambda-calculus with subtyping} \quad \to \leq \]

Syntax

\[
\begin{align*}
t & ::= x \quad & \text{(variable)} \\
& \ | \lambda x : T . t \quad & \text{(abstraction)} \\
& \ | \ t \ t \quad & \text{(application)} \\

v & ::= \lambda x : T . t \quad & \text{(abstraction value)}
\end{align*}
\]

\[
\begin{align*}
T & ::= T \to T \\
& \ | \ \text{Top} \\

\Gamma & ::= \emptyset \\
& \ | \ \Gamma , x : T \\
\end{align*}
\]

Evaluation (\(t \to t' \))

\[
\begin{align*}
(\lambda x : T_{11} . t_{12}) \; v_2 \to \{ x \mapsto v_2 \} t_{12} & \\
\hline
\begin{array}{c}
t_1 \to t_1' \\
t_1 \; t_2 \to t_1' \; t_2 \\
\multicolumn{2}{c}{t_2 \to t_2'} \\
v_1 \; t_2 \to v_1 \; t_2' \\
\end{array}
\end{align*}
\]

(E-BETA)

(E-APP1)

(E-APP2)

Subtyping (\(S \leq T \))

\[
\begin{align*}
S \leq S & \quad (S-REFL) \\
S \leq U \quad U \leq T & \quad (S-TRANS)
\end{align*}
\]

\[
\begin{align*}
S \leq T & \quad \text{Global subtyping}
\end{align*}
\]
Subtyping rules for records

New type equivalence rules \((S \equiv T)\)

\[
\begin{align*}
T & \equiv T \\
T & \equiv S \\
S & \equiv T \\
S & \equiv U & U & \equiv T \\
S & \equiv T
\end{align*}
\]

\(\pi\) is a permutation of \(\{1..n\}\)

\[
\{1_i : T_i \; i \in \mathbb{1}_{1..n} \} \equiv \{1_{\pi_i} : T_{\pi_i} \; i \in \mathbb{1}_{1..n} \}
\]

New subtyping rules \((S \ll T)\)

\[
\begin{align*}
S & \ll T \\
S & \ll T \\
\{1_i : T_i \; i \in \mathbb{1}_{1..n} \} & \ll \{1_i : T_i \; i \in \mathbb{1}_{1..n} \}
\end{align*}
\]

for each \(i\)

\[
\{1_i : S_i \; i \in \mathbb{1}_{1..n} \} \ll \{1_i : T_i \; i \in \mathbb{1}_{1..n} \}
\]
13.1.4 Exercise: What should the subtyping rules for variants be? □

13.1.5 Exercise: In what ways are the Top type and the empty record type {} similar? In what ways are they different? □

13.2 Metatheory of Subtyping

First, show that type equivalence can be deleted by merging with the record rule as below. Then proceed as before.

In this section we consider some of the properties of the system \(\lambda \rightarrow \langle _ \rangle \kappa\), the simply typed lambda-calculus with records and subtyping.

Algorithmic Subtyping

The three rules for record subtyping are often combined into one more compact but less readable rule:

\[
\begin{align*}
\{l_i : \epsilon \text{L.m}\} \subseteq \{k_j : \epsilon \text{L.m}\} & \quad \text{k.j = l.i implies } S_j \leq T_i \\
\{k_j : S_j : \epsilon \text{L.m}\} \leq \{l_i : T_i : \epsilon \text{L.m}\}
\end{align*}
\]

(S-RCD)

13.2.1 Lemma: This rule can be derived from S-RCD-DEPTH, S-RECORD-WIDTH, and S-RECORD-PERM (using reflexivity and transitivity) and vice versa. □

Proof: Exercise. □

We now observe that the rules of reflexivity and transitivity are inessential, in the following sense:

13.2.2 Lemma:

1. \(S \leq S\) can be derived for every type \(S\) without using S-REFL.
2. If \(S \leq T\) can be derived at all, then it can be derived without using S-TRANS. □

Proof: Exercise. □

13.2.3 Exercise [Quick check]: If we add Nat to the type system, how do these properties change? □

13.2.4 Definition: The algorithmic subtyping relation is the least relation closed under the following rules:

...
Algorithmic subtyping

\[\text{Algorithmic subtyping} \quad (\triangleright S <: T) \]

\[\begin{aligned}
&\triangleright S <: \text{Top} \\
&\triangleright S_1 <: S_2 <: T_2 \\
&\triangleright S_1 \rightarrow S_2 <: T_1 \rightarrow T_2
\end{aligned} \]

(SA-TOP)

(SA-ARROW)

\[\begin{aligned}
\{k_i \mid i \in \mathbb{N}\} &\subseteq \{k_j \mid i \in \mathbb{N}\} &\text{if } k_1 = 1_i, \text{then } \triangleright S_1 <: T_i \\
\triangleright \{k_j : S_j \mid i \in \mathbb{N}\} &<: \{1_i : T_i \mid i \in \mathbb{N}\}
\end{aligned} \]

(SA-RCD)

13.2.5 Proposition [Soundness and completeness of algorithmic subtyping]:

\[S <: T \iff S <:_a T. \]

Proof: Using the two previous lemmas.

Minimal Typing

By introducing the rule of subsumption into the typing relation, we have lost the useful syntax-directedness property, which in the simply typed lambda-calculus allows a typechecker to be implemented simply by “reading the rules from bottom to top.” Without this property, how can we now check whether \(\Gamma \vdash t : T \) is a derivable statement?

We do it in two steps:

1. Find another set of syntax rules that are syntax directed, defining a relation \(\Gamma \triangleright t : T \). This is called the algorithmic typing relation.
2. Show that, although they are defined differently, the ordinary typing relation \(\Gamma \vdash t : T \) and the algorithmic typing relation \(\Gamma \triangleright t : T \) give rise to the same set of typable terms. Interestingly, though, they will not assign exactly the same types to those terms.

In order to find an algorithmic presentation of the typing relation, we need to think carefully about the structure of typing derivations to see where the rule of subsumption is really needed, and where we could just as well do without it.

For example, consider the following derivation:

\[
\begin{array}{c}
\vdots \\
\vdots \\
\frac{\Gamma, x : S \vdash t : T}{\Gamma, x : S \vdash t : T'} & T < T' \quad \text{(T-SUB)} \\
\frac{\vdots}{\Gamma \vdash \lambda x : S. t : S \rightarrow T'} \quad \text{(T-ABS)}
\end{array}
\]

Any such derivation can be rearranged like this:

\[
\begin{array}{c}
\vdots \\
\vdots \\
\frac{\vdots}{\Gamma \vdash \lambda x : S. t : S \rightarrow T'} \quad \text{(S-REFL)} \\
\frac{\vdots}{\vdots} \\
\frac{S < S}{T < T'} \quad \text{(S-ABS)} \\
\frac{\vdots}{\Gamma \vdash \lambda x : S. t : S \rightarrow T'} \quad \text{(T-SUB)}
\end{array}
\]

So we can get away with not allowing instances of T-SUB as the final rule in the right-hand premise of an instance of T-ABS.

Similarly, any derivation of the form

\[
\begin{array}{c}
\vdots \\
\vdots \\
\frac{\vdots}{\Gamma \vdash t_1 : S_1 \rightarrow S_2} \\
\frac{\vdots}{S_1 \rightarrow S_2 < T_1 \rightarrow T_2} \\
\frac{\vdots}{\Gamma \vdash t_1 : T_1 \rightarrow T_2} \quad \text{(T-SUB)} \\
\frac{\vdots}{\Gamma \vdash t_2 : T_2} \quad \text{(T-SUB)} \\
\end{array}
\]

can be replaced by one of the form:

\[
\begin{array}{c}
\vdots \\
\vdots \\
\frac{\vdots}{\Gamma \vdash t_2 : T_1} \\
\frac{\vdots}{T_1 < S_1} \quad \text{(T-SUB)} \\
\frac{\vdots}{\Gamma \vdash t_2 : S_1} \quad \text{(T-APP)} \\
\frac{\vdots}{\Gamma \vdash t_1 : S_1 \rightarrow S_2} \\
\frac{\vdots}{\Gamma \vdash t_2 : S_2} \quad \text{(T-SUB)} \quad \text{(T-SUB)} \\
\frac{\vdots}{\Gamma \vdash t_1 \ t_2 : T_2} \\
\frac{\vdots}{S_2 < T_2} \quad \text{(T-SUB)}
\end{array}
\]
That is, we can take any derivation where subsumption is used as the final rule in the left-hand premise of an instance of T-APP and replace it by a derivation with one instance of subsumption appearing at the end of the right-hand premise and another instance of subsumption appearing at the end of the whole derivation.

Finally, adjacent uses of subsumption can be coalesced, in the sense that any derivation of the form

\[
\frac{\vdots}{\vdots} \quad \frac{\Gamma \vdash t : S}{\Gamma \vdash t : U} \quad \frac{S \ll U}{U \ll T} \quad \frac{(T\text{-SUB})}{(T\text{-SUB})} \quad \vdots
\]

\[\Gamma \vdash t : T\]

can be rewritten:

\[
\frac{\vdots}{\vdots} \quad \frac{\vdots}{\vdots} \quad \frac{S \ll U}{U \ll T} \quad \frac{(S\text{-TRANS})}{(T\text{-SUB})} \quad \vdots
\]

\[\Gamma \vdash t : T\]

13.2.6 Exercise [Recommended]: Show that a similar rearrangement can be performed on derivations in which T-SUB is used immediately before T-PROJ.

A motivating intuition behind all of these transformations is that nothing is harmed by moving most uses of subsumption as late as possible in a typing derivation, so that each subterm is given the smallest possible (or minimal) type at the outset and this small type is maintained until a point is reached (in the application rule) where a larger type is needed. This motivates the following definition:

13.2.7 Definition: The algorithmic typing relation is the least relation closed under the following rules:

Algorithmic typing

\[
(\Gamma \vdash t : T) \quad \rightarrow \quad \epsilon
\]

\[\frac{x : T \in \Gamma}{\Gamma \vdash x : T} \quad (TA-VAR)\]

\[\frac{\Gamma, x : T_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda x : T_1 . t_2 : T_1 \rightarrow T_2} \quad (TA-ABS)\]

\[\frac{\Gamma \vdash t_1 : T_1 \quad T_1 = T_{11} \rightarrow T_{12} \quad \Gamma \vdash t_2 : T_2 \quad \Gamma \vdash T_2 \ll T_{11}}{\Gamma \vdash t_1 t_2 : T_{12}} \quad (TA-APP)\]
13.2.8 Exercise [Recommended]: Show, by example, that minimal types of terms in this calculus can decrease during evaluation. Give a term \(t \) such that \(t \rightarrow^* \tau \) and \(R \lessdot T \) but \(T \lessdot R \), where \(R \) is the minimal type of \(\tau \) and \(T \) is the minimal type of \(t \).

We now want to see formally that the algorithmic typing rules define the same relation as the ordinary rules. We do this in two steps:

Soundness: Every typing statement that can be proved by an algorithmic derivation can also be proved by an ordinary derivation.

Completeness: Every typing statement that can be proved by an ordinary derivation can almost be proved by an algorithmic derivation.
(In fact, the algorithmic derivation may yield a better type.)

13.2.9 Theorem [Soundness of the algorithmic typing relation]: If \(\Gamma \Vdash t : \tau \), then \(\Gamma \vdash t : T \).

Proof: By straightforward induction on algorithmic typing derivations. The details are left as an exercise.

The ordinary typing relation can be used to assign many types to a term, while the algorithmic typing relation assigns at most one (this is easy to check). So a straightforward converse of Theorem 13.2.9 is clearly not going to hold. Instead, we can show that if a term \(t \) has a type \(\tau \) under the ordinary typing rules, then it has a better type \(S \) under the algorithmic rules, in the sense that \(S \lessdot \tau \). In other words, the algorithmic rules assign each typeable term its smallest possible (“minimal”) type.

13.2.10 Theorem [Minimal Typing]: If \(\Gamma \vdash t : \tau \), then \(\Gamma \Vdash t : S \) for some \(S \lessdot \tau \).

Proof: Exercise (recommended).

13.2.11 Exercise: If we dropped the function subtyping rule \(S \rightarrow \tau \) but kept the rest of the subtyping and typing rules the same, would we lose the minimal typing property? If not, prove it. If so, give an example of a term that would have two incomparable types.
13.2.12 Exercise [Recommended]: Add numbers and iteration to the algorithmic typing relation. Prove that your algorithmic rules are sound and complete for the declarative system.

The proof itself will be presented, of course — probably in the solutions chapter.

13.2.13 Exercise [Recommended]: Show how to extend the proof of preservation for the simply typed lambda-calculus (7.4.11) to the system with subtyping.

13.3 Implementation

```plaintext
let rec subtype tyS tyT =
  tyeqv tyS tyT ||
  match (tyS,tyT) with
  (TyArr(tyS1,tyS2),TyArr(tyT1,tyT2)) \rightarrow
  (subtype tyT1 tyS1) && (subtype tyS2 tyT2)
| (_,TyTop) \rightarrow
  true
| (TyRecord(fs), TyRecord(fT)) \rightarrow
  List.for_all
    (fun (li,tyTi) \rightarrow
     try let tySi = List.assoc li fS in
        subtype tySi tyTi
     with Not_found \rightarrow false)
  fT
| _ \rightarrow
  false

let rec typeof ctx t =
  match t with
  TmVar(fi,i,_) \rightarrow
    gettype fi ctx i
| TmAbs(fi,x,tyS,t1) \rightarrow
    let ctx' = addbinding ctx x (VarBind(tyS)) in
    let tyT = typeof ctx' t1 in
    TyArr(tyS, tyshift tyT (-1))
| TmApp(fi,t1,t2) \rightarrow
    let tyT1 = typeof ctx t1 in
    let tyT2 = typeof ctx t2 in
    (match tyT1 with
      TyArr(tyT11,tyT12) \rightarrow
        if subtype tyT2 tyT11 then tyT12
        else error fi "parameter type mismatch"
      _ \rightarrow error fi "arrow type expected")
```

13.4 Meets and Joins

A type J is called a join of a pair of types S and T if

$$
\vdash S \leq J \\
\vdash T \leq J
$$

for all types U, if $\vdash S \leq U$ and $\vdash T \leq U$ then $\vdash J \leq U$.

A given typed lambda-calculus is said to have joins if, for every S and T, there is some J that is a join of S and T under Γ.

Similarly, a type M is called a meet of S and T if

$$
\vdash M \leq S \\
\vdash M \leq T
$$

for all types L, if $\vdash L \leq S$ and $\vdash L \leq T$ then $\vdash L \leq M$.

A pair of types S and T is said to be bounded below if there is some type L such that $\vdash L \leq S$ and $\vdash L \leq T$. A typed lambda-calculus is said to have bounded meets if, for every S and T such that S and T are bounded below, there is some M that is a meet of S and T.

let rec join tyS tyT =
if subtype tyS tyT then tyT
else if subtype tyT tyS then tyS
else match (tyS,tyT) with
 (TyRecord(f1), TyRecord(f2)) ->
 let rec loop = function
 (_,[]) -> []
 | (a,[]) -> []
 | ([(l1,t1)::rest1,(l2,t2)::rest2]) ->
 if l1 = l2 then
 (l1,(join t1 t2))::(loop (rest1,rest2))
 else []
 in let f = loop (f1,f2)
in (match f with
 (* when the first field names did not agree *)
 [] → TyTop
 | _ → TyRecord(f))
| (TyArr(tyS1,tyS2),TyArr(tyT1,tyT2)) →
 (try TyArr(meet tyS1 tyT1, join tyS2 tyT2)
 with Not_found → TyTop)
| _ → TyTop

and meet tyS tyT =
 if subtype tyS tyT then tyS
 else if subtype tyT tyS then tyT
 else
 match (tyS,tyT) with
 (TyRecord(f1), TyRecord(f2)) →
 let rec loop = function
 (restf1,[]) → restf1
 | ([],restf2) → restf2
 | ((l1,t1)::rest1,(l2,t2)::rest2) →
 if l1 = l2 then
 (l1,(meet t1 t2))::(loop (rest1,rest2))
 else raise Not_found
 in let f = loop (f1,f2)
 in TyRecord(f)
| (TyArr(tyS1,tyS2),TyArr(tyT1,tyT2)) →
 TyArr(join tyS1 tyT1, meet tyS2 tyT2)
| _ → raise Not_found

let rec typeof' ctx t =
 match t with
 ...
 | True(fi) →
 TyBool
 | False(fi) →
 TyBool
 | IfS(f,s1,s2,s3) →
 if subtype (typeof ctx s1) TyBool then
 join (typeof ctx s2) (typeof ctx s3)
 else error fi "guard of conditional not a boolean"

and typeof ctx t =
 if !debugtypeof then
 Support.Debug.wrap "typeof"
 (fun _ → typeof' ctx t)
 (fun () → prtm ctx t)
 (fun tyT → prty tyT)
 else
Exercise [Recommended]: Add booleans and conditionals to both the declarative typing relation and the algorithmic typing relation. Prove that your algorithmic rules are sound and complete for the declarative system.

Exercise [Recommended]: The directory `simpleplus` in the course web site contains an ML checker for the simply typed lambda-calculus with records, numbers, and booleans. Add subtyping (and a `Top` type) to this checker using the algorithms described in this chapter.

13.5 Primitive Subtyping

13.6 The Bottom Type

13.7 Other stuff
Chapter 14

Imperative Objects

This chapter needs a little more writing, but my main annoyance with it is that the final section (on “self”) requires lazy evaluation at the moment. There are some fairly deep issues here (Didier and I have been discussing for years whether it is actually possible to build a completely satisfactory object model by translation to lambda-calculus, and this is one of the biggest reasons). I think the material is still valuable even so, but I’d love to find a better way around this point.

Some of the examples in this chapter would look nicer if we added operations for record extension and overriding (not polymorphic: just on ordinary records). The overriding operation should, if possible, be consistent with the polymorphic record update operation.

In this chapter we come to our first substantial programming examples. We’ll use the features we have defined – functions, records, effects, fixed points, reference cells, and subtyping – to give a straightforward model of objects and classes, as they are found in object-oriented languages such as Smalltalk and Java. We begin with very simple “stand-alone” objects and then proceed to define increasingly powerful kinds of classes.

14.1 Objects

An object is a data structure encapsulating some internal state and offering access to this state to clients via a collection of methods. The internal state is typically broken up into a number of mutable instance variables (or fields) that are shared among the definitions of the methods (and typically inaccessible to the rest of the program). An object’s methods are invoked by the operation of message-sending.

Our running example for the chapter will be simple “storage cell” objects. Each cell object will hold a single number and respond to three messages: get, which causes it to return the number it currently has; set, which sets its internal state
to some number given by the sender of the message; and inc, which causes it to
increment the number it is holding. (Except for the inc message, our cells are just
an object-oriented variation of the refs that we saw in Chapter 9.)

A very simple way of obtaining this behavior using the features we have stud-
ied so far is to use a reference cell for the object’s internal state and a record of
functions for the methods.

c =
 let r = ref 0 in
 {get = _:Unit. !r,
 set = \i:Nat. r:=i,
 inc = _:Unit. r:=succ(!r));
 ▶ c : {get:Unit→Nat, set:Nat→Unit, inc:Unit→Nat}

The fact that the state is shared by the methods and inaccessible to the rest of the
program arises directly from the lexical scope of the variable r. “Sending a mes-
sage” to the object c means just extracting some field of the record and applying it
to an appropriate argument. For example:

c.set 2;
 c.inc unit;
 c.get unit;
 (c.set 2; c.inc unit; c.get unit);

▶ unit : Unit
 unit : Unit
 3 : Nat
 3 : Nat

Note the use of the syntactic sugar for sequencing (cf. Section ??) in the last line.
We could equivalently (but less readably) have written

 let x = c.set 2 in let y = c.inc unit in c.get unit;

or even (using the _ convention for “don’t care” variable names):

 let _ = c.set 2 in let _ = c.inc unit in c.get unit;

We may want to create and manipulate a lot of counters, so it will be convenient
to use an abbreviation for their rather long record type:

 Counter = {get:Unit→Nat, set:Nat→Unit, inc:Unit→Unit};

To force the typechecker to print the type of a new counter using the short form
Counter, we add an explicit coercion (recall from Section ?? that t as T means the
same as (λx:T.x)t):
(This need to explicitly annotate terms to control the way their types are printed is a little annoying. It is the price we pay for “unbundling” all the features of our programming language into the simplest and most orthogonal possible units, so that we can study them in isolation. A practical high-level programming language design would probably combine many of these primitive features into more convenient macro-constructs.)

A typical piece of “client code” that manipulates counter objects might look something like this:

\[\text{inc3} = \lambda c::\text{Counter}. (c.\text{inc} \ \text{unit}; c.\text{inc} \ \text{unit}; c.\text{inc} \ \text{unit}); \]

\[\text{inc3} : \text{Counter} \rightarrow \text{Unit} \]

The function inc3 takes a counter object and increments it three times by sending it three inc messages in succession.

\[(c.\text{set} 5; \text{inc3} \ c; c.\text{get} \ \text{unit}); \]

\[8 : \text{Nat} \]

14.2 Object Generators

In the development that follows, it will be useful to be able to manipulate all the instance variables of an object as a single unit. To support this, let us change the internal representation of our counters to be a **record** of reference cells and use the name of this record to refer to instance variables from the method body.

\[c = \]

\[
\text{let } r = \text{ref } 0 \text{ in} \\
\{ \text{get } = \lambda : \text{Unit. } !r, \\
\text{set } = \lambda : \text{Nat. } r := i, \\
\text{inc } = \lambda : \text{Unit. } r := \text{succ}(!r) \} \\
\text{as } \text{Counter;}
\]

\[\text{\triangleright } c : \text{Counter} \]

This representation makes it is easy, for example, to write a **counter generator** that creates a new counter every time it is called.
newCounter =
 _:Unit.
 (let r = {x=ref 0} in
 {get = _:Unit. !(r.x),
 set = \i:Nat. r.x:=i,
 inc = _:Unit. r.x:=succ(!(r.x))
 as Counter};
 ▶ newCounter : Unit \to Counter

14.3 Subtyping

One of the reasons for the popularity of object-oriented programming styles is that they permit objects of many shapes to be manipulated by the same client code.

For example, suppose that, in addition to the Counter objects defined above, we also create some cell objects with one more method that allows them to be reset to their initial state (say, 0) at any time.

ResetCounter = {get:Unit\to Nat,
 set:Nat\to Unit,
 inc:Unit\to Unit,
 reset:Unit\to Unit};

newResetCounter =
 _:Unit.
 let r = {x=ref 0} in
 {get = _:Unit. !(r.x),
 set = \i:Nat. r.x:=i,
 inc = _:Unit. r.x:=succ(!(r.x)),
 reset = _:Unit. r.x:=0}
 as ResetCounter;
 ▶ newResetCounter : Unit \to ResetCounter

Note that our old inc3 function on counters can safely use our refined counters too:

rc = newResetCounter unit;
(inc3 rc; rc.reset unit; inc3 rc; rc.get unit);
▶ rc : ResetCounter
3 : Nat
14.4 Basic classes

The definitions of `newCounter` and `newResetCounter` are identical except for the body of the `reset` method. Of course, for such short definitions this makes little difference, but if the method bodies were much longer we might quickly find ourselves wanting to write the common ones in just one place. The mechanism by which this is achieved in most object-oriented languages is called the class.

Here is one very simple way to define `newResetCounter` in terms of `newCounter`:

```haskell
newResetCounter =
  \_:Unit.
  (let c = newCounter unit in
    {get = c.get,
     set = c.set,
     inc = c.inc,
     reset = \_:Unit. c.set 0}
    as ResetCounter);
```

But this trick is not very robust. For example, if the type `Counter` had just `get` and `inc` methods (no `set`), then we couldn’t write `newResetCounter` in this way.

A more general approach is to abstract the methods of a prototype counter object over the instance variables. This is a simple example of a class.

```haskell
  CounterRep = {x: Ref Nat};
  counterClass =
    \x:CounterRep.
    (get = \_:Unit. !(x.x),
     set = \i:Nat. x.x:=i,
     inc = \_:Unit. x.x:=succ(!(x.x))
     as Counter);
  counterClass : CounterRep ⇒ Counter
```

Now we can build a class for `ResetCounter` by re-using the fields of `counterClass`:

```haskell
  resetCounterClass =
    \x:CounterRep.
    let super = counterClass r in
    (get = super.get,
     set = super.set,
     inc = super.inc,
     reset = \_:Unit. x.x:=0}
    as ResetCounter);
  resetCounterClass : CounterRep ⇒ ResetCounter
```

The definitions of `newCounter` and `newResetCounter` become trivial: we simply allocate the instance variables and supply them to `counterClass` or `resetCounterClass`, where the real work happens:
14.5 Extending the Internal State

Suppose we want to define a class of BackupCounters whose reset method resets their state to its value at the last call to a new method backup...

```
BackupCounter = {get:Unit→Nat,
    set: Nat→Unit,
    inc: Unit→Unit,
    reset: Unit→Unit,
    backup: Unit→Unit};
BackupCounterRep = {x: Ref Nat, b: Ref Nat};
```

Here is the class:

```
backupCounterClass =
    \( \lambda r : \text{BackupCounterRep}. \)\(\{\text{get} = \lambda _: \text{Unit}. \text{!}(r.\text{x}), \)
    \text{set} = \lambda i: \text{Nat}. r.\text{x}: =! i, 
    \text{inc} = \lambda _: \text{Unit}. r.\text{x}: =\text{succ}(!r.\text{x}), 
    \text{reset} = \lambda _: \text{Unit}. r.\text{x}: =! (r.\text{b}), 
    \text{backup} = \lambda _: \text{Unit}. r.\text{b}: =! (r.\text{x})\) 
    as \text{BackupCounter};
```

The interesting point is that we can actually define `backupCounterClass` in terms of `resetCounterClass`. Note how subtyping is used in checking the definition of `super`. Also, note that we need to override the definition of the `reset` method as well as adding `backup`.

```
backupCounterClass =
    \lambda r : \text{BackupCounterRep}. 
    \text{let} super = \text{resetCounterClass} r \text{ in} 
    \{\text{get} = \text{super.} \text{get}, 
```
set = super.set,
inc = super.inc,
reset = λ_:Unit. r.x:=!(r.b),
backup = λ_:Unit. r.b:=!(r.x)
as BackupCounter);

↑ backupCounterClass : BackupCounterRep → BackupCounter

The variable super was used above to “copy functionality” from the superclass into the new subclass.

The super variable can also be used inside method definitions to extend the superclass’s behavior with something new. Suppose, for instance, that we want a variant of our backupCounter class in which the inc method increments not only the cell’s value but also the backed-up value in the instance variable b. (Goodness knows why this behavior would be useful—it’s just an example!)

funnyBackupCounterClass =
 λr:BackupCounterRep.
 let super = resetCounterClass r in
 ((get = super.get,
 set = super.set,
 inc = λ_:Unit.
 (super.inc unit;
 r.b := succ(!!(r.b))),
 reset = λ_:Unit. r.x:=!(r.b),
 backup = λ_:Unit. r.b:=!(r.x))
as BackupCounter);

↑ funnyBackupCounterClass : BackupCounterRep → BackupCounter

Note how use of super.inc in the definition of inc avoids repeating the superclass’s inc code here.

14.6 Classes with “Self”

Our final extension is allowing the methods of classes to refer to each other “recursively.” For example, suppose that we want to implement the inc method of simple counters in terms of the get and set methods. (Of course, all three methods are so small in this example that all this code reuse is hardly worth the trouble! For larger examples, though, it can make a substantial difference in code size and maintainability.)

counterClass =
 λr:CounterRep.
 fix
 (λself: Counter.
 ↓get = λ_:Unit. !(r.x),
 set = λi:Nat. r.x:=i,
 inc = λ_:Unit. self.set (succ(self.get unit))));
Classes in mainstream object-oriented languages such as Smalltalk, C++, and Java actually support a more general form of recursive call between methods, sometimes known as open recursion. Instead of taking the fixed point within the class, we wait until we use the class to actually create an object.

What’s interesting about leaving the recursion open is that, when we build a new class by subclassing, we can override the methods of in such a way that recursive calls to these methods from within will actually invoke the new method bodies that we provide. For example, here’s a subclass that keeps track of how many times the method has been called.

```plaintext
counterClass = 
  λr:CounterRep.
  λself: Counter.
  {get = λ_.Unit. !(r.x),
   set = λi:Nat. r.x:=i,
   inc = λ_.Unit. self.set (succ(self.get))};
```

```plaintext
newCounter = 
  λ_:Unit.
  let r = {x=ref 0} in
  fix (counterClass r);
```

What’s interesting about leaving the recursion open is that, when we build a new class by subclassing counterClass, we can override the methods of in such a way that recursive calls to these methods from within will actually invoke the new method bodies that we provide. For example, here’s a subclass that keeps track of how many times the get method has been called.

```plaintext
 InstrumentedCounter = {get:Unit→Nat,
                      set:Nat→Unit,
                      inc:Unit→Unit,
                      accesses:Unit→Nat};
 InstrumentedCounterRep = {x: Ref Nat, a: Ref Nat};
 instrumentedCounterClass = 
  λr:InstrumentedCounterRep.
  λself: InstrumentedCounter.
  lazy let super = counterClass r self in
  lazy
  {get = λ_.Unit.
   let result = super.get unit in
   (r.a:=succ(!r.a)); result),
   set = super.set,
   inc = super.inc,
   accesses = λ_.Unit. !(r.a)}
  as InstrumentedCounter;
```

```plaintext
instrumentedCounterClass : InstrumentedCounterRep →
  InstrumentedCounter → InstrumentedCounter
```
Notice that, because of the open recursion through `self`, the call to get from within `inc` results in the `a` field being incremented, even though the incrementing behavior of get is defined in the subclass and the call to get appears in the superclass.

14.6.1 Exercise: The two lazy annotations in `newInstrumentedCounter` are both essential. Check what happens when either of them is omitted. □

We create an instrumented counter in the same way as before—by taking a fixed point of the class and providing it with some newly allocated instance variables.

```ocaml
newInstrumentedCounter =
  λ_:Unit.
  let r = {x = ref 0, a = ref 0} in
  fix (instrumentedCounterClass r);
  newInstrumentedCounter : Unit → InstrumentedCounter
```

Note how the `accesses` method counts calls to both `get` and `inc`:

```ocaml
ic = newInstrumentedCounter unit;
ic.get unit;
  0 : Nat
ic.accesses unit;
  1 : Nat
ic.inc unit;
  unit : Unit
ic.get unit;
  1 : Nat
ic.accesses unit;
  3 : Nat
```

14.6.2 Exercise [Recommended]: Use the `fullsubeff` checker from the course directory to implement the following extensions to the classes above:

1. Change the definition of `instrumentedCounterClass` so that it also counts calls to `set`.

2. Extend your modified `instrumentedCounterClass` with a subclass that adds a `reset` method (as in Section 14.3).

3. Extend this subclass with yet another subclass that supports backups as well (as in Section 14.5). □
Chapter 15

Recursive Types

the type IntList is an infinite tree
so let’s just allow types to be infinite; use the μ notation as a shorthand for infinite trees
(Of course, the typechecker can’t actually manipulate infinite trees; later in the chapter we will see two different ways of dealing with μ types more realistically)

15.1 Examples

Lists

Hungry Functions

As another simple illustration of the use of recursive types, here is a type of functions that can accept any number of numeric arguments:

\[
\text{Hungry} = \mu A. \text{Nat} \to A;
\]

An element of this type can be defined using the least fixed point operator on values:

\[
f = \text{fix} \\
(\forall F : \text{Nat} \to \text{Hungry}. \ \\
\forall n : \text{Nat}. \ \\
f)\;.
\]

\[f : \text{Nat} \to \text{Nat} \to \text{Hungry}\]

\[f \ 0 \ 1 \ 2 \ 3 \ 4 \ 5;\]

\[\forall (\forall n : \text{Nat}. \text{fix} \lambda f' : \text{Nat} \to \text{Hungry}. \lambda n' : \text{Nat}. f') : \mu A. \text{Nat} \to A\]
Recursive Values from Recursive Types

A more challenging example—and one that reveals some of the power of the extension we are making—uses recursive types to write down a well-typed version of the least-fixed-point combinator:

```plaintext
fixpoint_r; =
\lambda f : T \to T.
(\lambda x : (\mu A. A \to T). f (x x))
(\lambda x : (\mu A. A \to T). f (x x));

fixpoint_r : (T \to T) \to T
```

Untyped Lambda-Calculus, Redux

Perhaps the best illustration of the power of recursive types is the observation that it is possible to embed the whole untyped lambda-calculus (in a well-typed way!) into a statically typed calculus with recursive types. Let D be the following universal type:

$$D = \mu X. X \to X;$$

(Note that the form of D‘s definition is reminiscent of the defining properties of “universal domains” in denotational semantics.) Now define an “injection function” lam mapping functions from D to D into elements of D as follows:

$$\text{lam} = \lambda f : D \to D. f;$$

$$\text{lam} : (D \to D) \to D \to D$$

$$\text{ap} = \lambda f : D. \lambda a : D. f a;$$

$$\text{ap} : D \to D \to (\mu X. X \to X)$$

Now, suppose M is a closed pure lambda-term involving just variables, abstractions, and applications. Then we can construct an element of D representing M, written M^*, in a uniform way as follows:

$$x^* = x$$

$$\lambda x. M^* = \text{lam} (\lambda x : D. M^*)$$

$$M \ N^* = \text{ap} M^* N^*$$

For example, here is how the untyped fixed point combinator is expressed as an element of D:

$$\text{fixD} = \text{lam} (\lambda f : D.
\text{ap} (\text{lam} (\lambda x : D. \text{ap} f (\text{ap} x x)))
(\lambda x : D. \text{ap} f (\text{ap} x x)));$$

$$\text{fixD} : D \to D$$
15.1.1 Exercise: Note that the term defining \texttt{fixpoint} contains many redices. Use the reduction rules (C-UNFOLDFOLD plus the usual β-reduction rule) to find its normal form. What is the type-erasure of this normal form? □

We can go even further, if we work in a language with variants as in Section 8.5. Then we can extend the datatype of pure lambda-terms to include numbers like this:

\[
D = \mu X. \langle \text{nat: Nat}, \text{fn: X} \to X \rangle;
\]

That is, an element of \(D\) is either a number or a function from \(D\) to \(D\), tagged \texttt{nat} or \texttt{fn}, respectively. It will also be convenient to have an abbreviation for the “once-unrolled” body of \(D\):

\[
\text{DBody} = \langle \text{nat: Nat}, \text{fn: D} \to D \rangle;
\]

The implementation of the \texttt{lam} constructor is essentially the same as before:

\[
\text{lam} = \lambda f:D \to D.
\langle \text{fn=f} \rangle \text{ as DBody};
\]

\[
\triangleright \text{lam : (D \to D) } \to \text{ DBody}
\]

The implementation of \texttt{ap}, though, is different in an interesting way:

\[
\text{ap} =
\lambda f:D. \lambda a:D.
\text{case } f \text{ of}
\begin{align*}
\text{nat=n} & \Rightarrow \text{divege}_D \text{ unit} \\
\text{fn=f} & \Rightarrow f \ a;
\end{align*}
\]

\[
\triangleright \text{ap : D } \to \text{ D } \to \text{ D}
\]

Notice how closely the tag-checking going on here resembles the run-time tag checking inside an implementation of a strongly-but-latently typed language such as Scheme [?]. In this sense, typed computation may be said to “include” untyped or dynamically typed computation. Similar tag checking is needed in order to define the successor function on elements of \(D\):

\[
\text{suc} =
\lambda f:D.
\text{case } f \text{ of}
\begin{align*}
\text{nat=n} & \Rightarrow (\text{<nat=succ n> as DBody}) \\
\text{fn=f} & \Rightarrow \text{divege}_D \text{ unit};
\end{align*}
\]

The injection of 0 into \(D\) is trivial:

\[
\text{zro} = \langle \text{nat=0} \rangle \text{ as DBody};
\]

\[
\triangleright \text{suc : D } \to \text{ DBody}
\]

\[
\text{zro : DBody}
\]
15.1.2 Exercise: Use the untyped fixed point combinator that we saw above to define an untyped factorial function on D.

15.1.3 Exercise [Recommended]: Using the fullrec checker from the course web directory, extend the datatype D to include untyped records

\[D = \mu X. \langle \text{nat: Nat}, \text{fn: X} \rightarrow \text{X}, \text{rcd: Nat} \rightarrow \text{X} \rangle; \]

and implement record construction and field projection. For simplicity, use natural numbers as field labels—i.e., records are represented as functions from natural numbers to elements of D. (N.b.: this exercise has nothing to do with hungry functions!)

Recursive Objects

\[\text{Counter} = \mu P. \langle \text{get: Nat}, \text{inc: Unit} \rightarrow P \rangle; \]

\[
\begin{align*}
p = \\
\text{let create =} \\
\quad \text{fix} \\
\quad (\lambda \text{cr: \{x: Nat\} -> Counter}. \\
\quad \lambda \text{s: \{x: Nat\}}. \\
\quad \quad \{\text{get} = \text{s.x}, \\
\quad \quad \text{inc} = \lambda _\text{.Unit}. \text{cr} \{x=\text{succ}(\text{s.x})}\}) \\
\quad \text{in} \\
\quad \text{create} \{x=0\};
\end{align*}
\]

\[p : \langle \text{get: Nat}, \text{inc: Unit} \rightarrow \text{Counter} \rangle \]

\[p_1 = p. \text{inc unit}; \]

\[p_1. \text{get}; \]

\[p_1 : \text{Counter} \]

1 : \text{Nat}

15.2 Equi-recursive Types

note that we cannot obtain all infinite trees by writing finite expressions using μ, just the regular ones.

Prove this by writing a function that expands a μ type into its regular tree form, and showing that this function is not surjective (maybe the latter is an exercise). Introduce the idea of contractive types

* use the equivalence relation (should introduce it previously) to capture the intuition that a recursive type is “the same as” its unfolding
but this doesn’t give us enough equivalences. For example \(\mu \times. T \rightarrow T \rightarrow \times \) and
\(T \rightarrow (\mu \times. T \rightarrow T \rightarrow \times) \) are equal as trees but inequivalent.

So we switch to a coinductive view of equivalence.

now equivalence coincides with equality of infinite tree expansions (prove it!)

Now we need to decide this coinductive equivalence

– show simulation algorithm (and its ML realization)

– prove that it is sound, complete, and terminating

notice that we need to deal with more than just type equivalence: we also need
to provide an expose function that unrolls recursive types as needed during typing. What needs to be proved about this?

Algorithmic rules for equi-recursive types

\[\rightarrow \quad B \quad \mu \]

Algorithmic type equivalence

\[(\Gamma \vdash S \equiv T) \]

\[(S \equiv T) \in \mathcal{P} \]

\[\mathcal{P} \vdash S \equiv T \]

(QA-LOOP)

\[\mathcal{P}, \mu \times. S_1 \equiv T \vdash (\times \mapsto \mu \times. S_1)S_1 \equiv T \]

\[\mathcal{P} \vdash \mu \times. S_1 \equiv T \]

(QA-Recl)

\[\mathcal{P}, S \equiv \mu \times. T_1 \vdash S \equiv (\times \mapsto \mu \times. T_1)T_1 \]

\[\mathcal{P} \vdash S \equiv \mu \times. T_1 \]

(QA-RecR)

\[\mathcal{P} \vdash B \equiv B \]

(QA-BASE)

\[\mathcal{P} \vdash S_1 \equiv T_1 \quad \mathcal{P} \vdash S_2 \equiv T_2 \]

\[\mathcal{P} \vdash S_1 \rightarrow S_2 \equiv T_1 \rightarrow T_2 \]

(QA-Arrow)

Exposure

\[(\Gamma \vdash T \uparrow T') \]

\[\vdash (\times \mapsto \mu \times. T_1)T_1 \uparrow T' \]

\[\vdash \mu \times. T_1 \uparrow T' \]

(XA-Rec)

\[T \text{ is not a recursive type} \]

\[\vdash T \uparrow T \]

(XA-Other)

Algorithmic typing

\[(\Gamma \vdash t : T) \]

\[x : T \in \Gamma \]

\[\Gamma \vdash x : T \]

(TA-Var)
ML Implementation

Datatypes

```ml
type ty =
  TyArr of ty * ty
| TyId of string
| TyVar of int * int
| TyRec of string * ty

type term =
  TmVar of info * int * int
| TmAbs of info * string * ty * term
| TmApp of info * term * term
```

Type substitution

Type equivalence

```ml
let rec tyeqv pairs ctx tyS tyT =
  List.mem (tyS,tyT) pairs
  || match (tyS,tyT) with
    (TyArr(tyS1,tyS2),TyArr(tyT1,tyT2)) ->
      (tyeqv pairs ctx tyS1 tyT1) && (tyeqv pairs ctx tyS2 tyT2)
    | (TyId(b1),TyId(b2)) -> b1=b2
    | (TyVar(i,..),TyVar(j,..)) -> i=j
    | (TyRec(x,tyS1),..) ->
      tyeqv ((tyS,tyT)::pairs) ctx (tysubstsnip tyS tyS1) tyT
    | (_,TyRec(x,tyT1)) ->
      tyeqv ((tyS,tyT)::pairs) ctx tyS (tysubstsnip tyT tyT1)
    | _ -> false

let tyeqv ctx tyS tyT =
tyeqv [] ctx tyS tyT
```
Typing

```ocaml
let rec typeof ctx t =  
  match t with  
  | TmVar(fi, i, _) ->  
    gettype fi ctx i  
  | TmAbs(fi, x, tyS, t1) ->  
    let ctx' = addbinding ctx x (VarBind(tyS)) in  
    let tyT = typeof ctx' t1 in  
    TyArr(tyS, tyshift tyT (-1))  
  | TmApp(fi, t1, t2) ->  
    let tyT1 = typeof ctx t1 in  
    let tyT2 = typeof ctx t2 in  
    (match tyT1 with  
     TyArr(tyT11, tyT12) ->  
      if tyeqv ctx tyT2 tyT11 then tyT12  
      else error fi "parameter type mismatch"  
    | _ -> error fi "arrow type expected")
```

15.3 Iso-recursive Types

A different, and even simpler, way of dealing with recursive types is to “make the isomorphism explicit”...

\[\lambda \mu : \text{Iso-recursive types} \rightarrow B \mu \]

New syntactic forms

- `t ::= ...
 fold [T] t
 unfold [T] t
 (terms...)
 folding
 unfolding`

- `v ::= ...
 fold [T] v
 (values...)
 folding`

- `T ::= ...
 X
 \(\mu X. T\)
 (types...)
 type variable
 recursive type`

- `\Gamma ::= ...
 \Gamma, X
 (contexts...)
 type variable binding`

New evaluation rules (t \(\rightarrow t'\))
New typing rules

\[
\begin{align*}
\text{unfold } [S] (\text{fold } [T] \ v_1) & \rightarrow v_1 \quad \text{(E-FoldBeta)} \\
\text{fold } [T] \ t_1 & \rightarrow \text{fold } [T] \ t'_1 \quad \text{(E-Fold)} \\
\text{unfold } [T] \ t_1 & \rightarrow \text{unfold } [T] \ t'_1 \quad \text{(E-Unfold)}
\end{align*}
\]

15.3.1 Exercise: Re-do the examples in Section 15.1 using the Using the fullisorec checker from the course web directory. (Solution on page 260.)

Prove: preservation and progress

Nice exercise: observe that we can just erase folds and unfolds from a well-typed program to obtain a well-typed program in the equi-recursive system. This tells us that any well-typed iso-recursive program is “meaningful.” Does this constitute “soundness”? (Answer: no, it doesn’t tell us that the fold and unfold typing rules were done properly.)

15.4 Subtyping and Recursive Types
Chapter 16

Case Study: Featherweight Java

This chapter will draw some connections between the material that’s been presented so far and the mainstream world of object-oriented type systems, focusing on Java. The pedagogical vehicle will be the Featherweight Java language studied by Atsushi Igarashi, Phil Wadler, and myself [IPW99]. It is a very simple core calculus, not much larger than the lambda-calculus, omitting nearly all of the features of the full Java language (including assignment!), while retaining its basic flavor: classes, objects, methods, fields, (explicitly declared) subtyping, casts, etc. The presentation here will be based closely on (the full version of) the OOPSLA paper on FJ.

The main technical work to be done lies in tying FJ as explicitly as possible with the concepts we have already seen. This is not all that simple, since we’ve been working in an entirely “structural” setting, where the only salient thing about a type expression is its structure (i.e., there are no “type names” except as simple abbreviations for structures), while Java uses names throughout its type system. A section re-formulating the simply typed lambda-calculus with subtyping in “by-name form” should provide a helpful bridge.

Sections:

- By-name vs. structural presentations of type systems (note a big advantage of structural presentations: portability! If you’re going to transmit code across the network, then what do the names mean??)

- A by-name presentation of the simply typed lambda-calculus with subtyping
 (Comments about Pascal vs. M3 treatments of “branding”.)

- Summary of Featherweight Java
Chapter 17

Type Reconstruction

For technical reasons, this chapter uses a slightly different definition of substitution from what we had before. This should be changed to correspond exactly to the earlier notion. Aside from that, it’s essentially finished.

The present chapter does not mention let-polymorphism. I think that’s a shame and I’ve tried to figure out how to put in something about it, but it’s apparently quite hard to do it in a rigorous way without going on for page after page of technicalities.

Given an explicitly typed term in the simply typed lambda-calculus, we have seen an algorithm for determining its type, if it has one. In this chapter, we develop a more powerful type reconstruction algorithm, capable of calculating a principal type for a term in which some of the explicit type annotations are replaced by variables. Similar algorithms lie at the heart of languages like ML and Haskell.

The term “type inference” is often used instead of “type reconstruction.”

17.1 Substitution

We will work in this chapter with the system $\lambda\rightarrow\mathbb{N}\mathbb{X}$, the simply typed lambda calculus with numbers and an infinite collection of atomic types. When we saw them in Section 8.1, these atomic types were completely uninterpreted. Now we are going to think of them as type variables—i.e., placeholders standing for other types. In order to make this idea precise, we need to define what it means to substitute arbitrary types for type variables.

17.1.1 Definition: A type substitution (or, for purposes of this chapter, just substitution) is a finite function from type variables to types. For example, we write $\{X \mapsto T, Y \mapsto U\}$ for the substitution that maps X to T and Y to U and is undefined on other arguments.
We can regard a substitution \(\sigma \) as a function from types to types in an obvious way:

\[
\begin{align*}
\sigma X &= \begin{cases}
T & \text{if } \sigma \text{ maps } X \text{ to } T \\
X & \text{if } X \text{ is not in the domain of } \sigma
\end{cases} \\
\sigma (\text{Nat}) &= \text{Nat} \\
\sigma (T_1 \rightarrow T_2) &= \sigma T_1 \rightarrow \sigma T_2
\end{align*}
\]

Note that we do not need to make any special provisions to avoid variable capture during type substitution, because there are no binders for type variables. (This will change when we discuss System F in Chapter 18; we will then have to treat type substitutions more carefully.)

Substitution is extended to contexts by defining \(\sigma \Gamma \) to be \(\sigma (\Gamma [x]) \). Similarly, a type substitution is applied to a term \(t \) by applying it to all types appearing in \(t \).

If \(\sigma \) and \(\gamma \) are type substitutions, we write \(\sigma \circ \gamma \) for the type substitution formed by composing \(\sigma \) and \(\gamma \) as follows:

\[
(\sigma \circ \gamma)(X) = \begin{cases}
\sigma(\gamma(X)) & \text{if } X \in \text{dom}(\gamma) \\
\sigma(X) & \text{if } X \notin \text{dom}(\gamma) \text{ and } X \in \text{dom}(\sigma) \\
\text{undefined} & \text{if } X \notin \text{dom}(\gamma) \cup \text{dom}(\sigma)
\end{cases}
\]

Note that \((\sigma \circ \gamma)T = \sigma(\gamma T) \).

A crucial property of type substitutions is that they preserve the validity of typing statements: if a term involving variables is well typed, then so are all of its substitution instances.

17.1.2 Theorem [Preservation of typing under substitution]: If \(\Gamma \vdash t : T \) and \(\sigma \) is any type substitution, then \(\sigma \Gamma \vdash \sigma t : \sigma T \).

Proof: Straightforward induction on typing derivations.

17.2 Universal vs. Existential Type Variables

Suppose that \(t \) is a term containing type variables and \(\Gamma \) is an associated environment (possibly also containing type variables). There are two quite different questions that we can ask about \(t \):

1. “Are all substitution instances of \(t \) well typed?” That is, is it the case that, for every \(\sigma \), we have \(\sigma \Gamma \vdash \sigma t : T \) for some \(T \)?

2. “Is some substitution instance of \(t \) well typed?” That is, can we find a \(\sigma \) such that \(\sigma \Gamma \vdash \sigma t : T \) for some \(T \)?

According to the first view, type variables should be held abstract during typechecking, thus ensuring that a well-typed term will behave properly no matter what concrete types are later substituted for its type variables. For example, the term
17. Type Reconstruction

\[\lambda f :: X \rightarrow X. \ \lambda x :: X. \ f \ (f \ a) \; ; \]

has type \((X \rightarrow X) \rightarrow X \rightarrow X\), and, whenever we replace \(X\) by \(T\), the instance

\[\lambda f :: T \rightarrow T. \ \lambda a :: T. \ f \ (f \ a) \; ; \]

is well typed. Holding type variables abstract in this way leads to the idea of **parametric polymorphism**, in which type variables are used to encode the fact that a term can be used in many concrete contexts with different concrete types. We shall return to parametric polymorphism in more depth in Chapter 18.

In the second view, the original term \(t\) may not even be well typed; what we want to know is whether it can be **instantiated** to a well typed term by choosing appropriate values for some of its type variables. For example, the term

\[\lambda f :: Y. \ \lambda a :: X. \ f \ (f \ a) \; ; \]

is not typeable as it stands, but if we replace \(Y\) by \(\text{Nat} \rightarrow \text{Nat}\) and \(X\) by \(\text{Nat}\), we obtain

\[\lambda f :: \text{Nat} \rightarrow \text{Nat}. \ \lambda a :: \text{Nat}. \ f \ (f \ a) \; ; \]

of type \((\text{Nat} \rightarrow \text{Nat}) \rightarrow \text{Nat} \rightarrow \text{Nat}\). Or, if we simply replace \(Y\) by \(X \rightarrow X\), we obtain the term

\[\lambda f :: X \rightarrow X. \ \lambda a :: X. \ f \ (f \ a) \; ; \]

which is well typed even though it contains variables. Indeed, this term is a **most general** instance of \(\lambda f :: Y \cdot \lambda a :: X. \ f \ (f \ a)\), in the sense that it makes the least commitment about the values of type variables that is required to obtain a well-typed term.

We may even, in the limit, allow type annotations to be omitted completely, filling in a fresh type variable during parsing whenever an annotation is discovered to be missing. This allows the term above to be written

\[\lambda f. \ \lambda a. \ f \ (f \ a) \; ; \]

as in languages like ML.

Looking for valid instantiations of type variables leads to the idea of **type reconstruction**, in which the compiler is asked to help fill in type information that has been underspecified by the programmer. We develop this point of view in the rest of the chapter.

17.2.1 Definition: Let \(\Gamma\) be a context and \(t\) a term. A **typing** for \((\Gamma, t)\) is a pair \((\sigma, T)\) such that \(\sigma \vdash \sigma t : T\).

17.2.2 Example: Let \(\Gamma = f :: X, a :: Y\) and \(t = f \ a\). Then

\[
\begin{align*}
[(X \mapsto Y \rightarrow \text{Nat}), \text{Nat}] \\
[(X \mapsto Y \rightarrow Z, Z \mapsto \text{Nat}), \text{Z}] \\
[(X \mapsto Y \rightarrow \text{Nat} \rightarrow \text{Nat}), \text{Nat} \rightarrow \text{Nat}] \\
[(X \mapsto Y \rightarrow Z), \text{Z}] \\
\end{align*}
\]

are all typings for \((\Gamma, t)\).
17.2.3 Exercise [Quick check]: Find three different typings for
\[
\lambda x : X. \lambda y : Y. \lambda z : Z. (x \; z) \; (y \; z).
\]
with respect to the empty context.

\[\square\]

17.3 Constraint-Based Typing

We now give a different presentation of the typing relation in which, for example, instead of checking directly whether types of arguments match domains of functions, we generate a set of constraints \(C\) recording the fact that this check should be performed later.

17.3.1 Definition: A constraint set \(C\) is a set of equations \(\{S_i = T_i \mid i \in \mathbb{N}\}\). A substitution \(\sigma\) is said to satisfy the constraint set \(C\) if, for each \(i\), the substitution instances \(\sigma S_i\) and \(\sigma T_i\) are equal.

17.3.2 Definition: The constraint typing relation \(\Gamma \vdash t : T \mid \chi \; C\) is defined by the rules below. Informally, \(\Gamma \vdash t : T \mid \chi \; C\) can be read as “Term \(t\) has type \(T\) under assumptions \(\Gamma\) whenever constraints \(C\) are satisfied.” The subscript \(\chi\), which tracks the type variables introduced in the process, is used for internal bookkeeping—to make sure that the fresh type variables used in different subderivations are actually distinct.

\[
\begin{align*}
\Gamma &\vdash x : T \in \Gamma \\
\Gamma, x : S \vdash t_1 : T \mid \chi \; C &\quad x \not\in \text{dom}(\Gamma) \\
\Gamma &\vdash \lambda x : S. t_1 : S \rightarrow T \mid \chi \; C \\
\Gamma &\vdash t_1 \cdot t_2 : X \mid \chi_1 \cup X_2 \cup \chi \; C_2 \cup C_2 \cup \{T_1 = T_2 \rightarrow X\} \\
\Gamma &\vdash 0 : \text{Nat} \mid \emptyset \\
\Gamma &\vdash \text{suc} \; t_1 : \text{Nat} \mid \chi \; C \cup \{T = \text{Nat}\} \\
\Gamma &\vdash \text{iter} \; T \; t_1 \cdot t_2 \cdot t_3 : T \mid \chi_1 \cup X_2 \cup X_3 \; C' \quad \chi_1, \chi_2, \chi_3 \text{ nonoverlapping}
\end{align*}
\]

As usual, these rules (when read from bottom to top) determine a straightforward procedure that, given \(\Gamma\) and \(t\), calculates \(T\) and \(C\) (and \(\chi\)) such that \(\Gamma \vdash t : T \mid \chi \; C\).
However, unlike the original typing algorithm, this one never fails, in the sense that for every \(\Gamma \) and \(t \) there are always some \(T \) and \(C \) such that \(\Gamma \vdash t : T \mid C \), and moreover that \(T \) and \(C \) are uniquely determined by \(\Gamma \) and \(t \), up to the choice of names of fresh type variables in \(\lambda x \). (The nondeterminism arising from the freedom to choose different fresh type variable names will be addressed in Exercise 17.3.9.)

To lighten the notation in the following discussion, we usually elide the \(\lambda x \) and write just \(\lambda y : Y. \lambda z : Z. (x \ z) (y \ z) : S \mid C \)

for some \(S \) and \(C \).

17.3.3 Exercise [Quick check]: Construct a constraint typing derivation whose conclusion is

\[
\vdash \lambda x : X. \lambda y : Y. \lambda z : Z. (x \ z) (y \ z) : S \mid C
\]

for some \(S \) and \(C \).

17.3.4 Definition: Suppose that \(\Gamma \vdash t : S \mid C \). A **typing** for \((\Gamma, t, S, C) \) is a pair \((\sigma, T) \) such that \(\sigma \) satisfies \(C \) and \(\sigma S = T \).

Given a context \(\Gamma \) and a term \(t \), we now have two different ways of calculating sets of typings for \(\Gamma \) and \(t \):

1. directly, via Definition 17.2.1; or
2. via the constraint typing relation, by finding \(S \) and \(C \) such that \(\Gamma \vdash t : S \mid C \) and then using Definition 17.3.4 to identify the set of typings for \((\Gamma, t, S, C) \).

Our next job is to show that these two methods yield essentially the same sets of typings. We do this in two steps. First we show that every \((\Gamma, t, S, C) \)-typing is a \((\Gamma, t) \)-typing [soundness]. Then we show that every \((\Gamma, t) \)-typing can be extended to a \((\Gamma, t, S, C) \)-typing [completeness].

17.3.5 Theorem [Soundness of constraint typing]: Suppose that \(\Gamma \vdash t : S \mid C \). If \((\sigma, T) \) is a typing for \((\Gamma, t, S, C) \), then it is also a typing for \((\Gamma, t) \).

Proof: By induction on the given constraint typing derivation for \(\Gamma \vdash t : S \mid C \), reasoning by cases on the last rule used.

Case CT-VAR:
\(t = x \)
\[x : S \in \Gamma \]
\[C = \{\} \]

The result is immediate, since by T-VAR \(\sigma \vdash x : (\sigma T)(x) \) for any \(\sigma \).

Case CT-Abs:
\(t = \lambda x : T_1. t_1 \)
\[S = T_1 \rightarrow S_2 \]
\[\Gamma, x : T_1 \vdash t_1 : S_2 \mid C \]

By the induction hypothesis, \((\sigma, \sigma S_2) \) is a typing for \((\Gamma, x : T_1), t_1 \), i.e.,

\[\sigma \vdash x : \sigma T_1 \mid \sigma t_1 : \sigma S_2. \]

By T-Abs, \(\sigma \vdash \lambda x : \sigma T_1. \sigma t_1 : \sigma T_1 \rightarrow \sigma S_2 = \sigma (T_1 \rightarrow S_2) = T \), as required.
By the definition of satisfaction, \(\sigma \) satisfies both \(C_1 \) and \(C_2 \) and \(\sigma S_1 = \sigma(S_2 \rightarrow X) \).

By Definition 17.3.4, we see that \(\Gamma \vdash t_1 : S_1 \mid C_1 \) and \(\Gamma \vdash t_2 : S_2 \mid C_2 \), from which the induction hypothesis gives us \(\sigma \Gamma \vdash \sigma t_1 : \sigma S_1 \) and \(\sigma \Gamma \vdash \sigma t_2 : \sigma S_2 \). But since \(\sigma S_1 = \sigma S_2 \rightarrow \sigma X \), we then have \(\sigma \Gamma \vdash \sigma t_1 : \sigma S_2 \rightarrow \sigma X \), and, by T-APP, \(\sigma \Gamma \vdash \sigma(t_1 \ t_2) : \sigma X = T \), as required.

Other cases:

Left as an exercise.

17.3.6 Definition: Write \(\sigma \setminus \lambda \) for the substitution that is undefined for all the variables in \(\lambda \) and otherwise behaves like \(\sigma \).

17.3.7 Theorem (Completeness of constraint typing): Suppose \(\Gamma \vdash t : S \mid \lambda \ C \). If \((\sigma, T) \) is a typing for \((\Gamma, t) \) and \(dom(\sigma) \cap \lambda = \emptyset \), then there is some typing \((\sigma', T) \) for \((\Gamma, t, S, C) \) such that \(\sigma \setminus \lambda = \sigma \).

Proof: By induction on the given constraint typing derivation.

Case CT-VAR:

\[t = x \]
\[x : S \in \Gamma \]

From the assumption that \((\sigma, T) \) is a typing for \((\Gamma, t) \), the inversion lemma for the typing relation (7.4.1) tells us that \(T \) is \((\sigma \Gamma)(x) \). But then \((\sigma, T) \) is also a \((\Gamma, x, S, \{\}) \)-typing.

Case CT-ABS:

\[t = \lambda x : T_1 \ t_1 \]
\[\Gamma, x : T_1 \vdash t_1 : S_2 \mid C \]
\[S = T_1 \rightarrow S_2 \]

From the assumption that \((\sigma, T) \) is a typing for \((\Gamma, \lambda x : T_1 . t_1) \), the inversion lemma for the typing relation yields \(\sigma, x : \sigma T_1 \vdash t_2 \) and \(T = \sigma T_1 \rightarrow T_2 \).

By the induction hypothesis, there is a typing \((\sigma', T_2) \) for \((\Gamma, x : T_1 , t_1 , S_2, C) \) such that \(\sigma' \setminus \lambda \) agrees with \(\sigma \). But then \(\sigma' (S) = \sigma' (T_1 \rightarrow S_2) = \sigma T_1 \rightarrow \sigma S_2 = \sigma T_1 \rightarrow T_2 = T \), so \((\sigma', T) \) is a typing for \((\Gamma , \lambda x : T_1 \ t_1, T_1 \rightarrow S_2, C) \).

Case CT-APP:

\[t = t_1 \ t_2 \]
\[\Gamma \vdash t_1 : S_1 \mid \lambda_1 \ C_1 \]
\[\Gamma \vdash t_2 : S_2 \mid \lambda_2 \ C_2 \]
\[\lambda_1 \cap \lambda_2 = \emptyset \text{ and } X \text{ not mentioned in } \lambda_1 , \lambda_2 , S_1 , S_2 , C_1 , C_2 \]
\[S = X \]
\[X = \lambda_1 \cup \lambda_2 \cup \{X\} \]
\[C = C_1 \cup C_2 \cup \{S_1 = S_2 \rightarrow X\} \]
From the assumption that \((\sigma, T) \) is a typing for \((\Gamma, t_1 \ t_2) \), the inversion lemma for the typing relation yields
\[
\sigma^T, \sigma t_1 : T_1 \rightarrow T \text{ and } \sigma^T, \sigma t_2 : T_1.
\]
By the induction hypothesis, there are typings \((\sigma_1, T_1 \rightarrow T) \) for \((\Gamma, t_1, S_1, C_1) \) and
\((\sigma_2, T_1) \) for \((\Gamma, t_2, S_2, C_2) \), and \(\sigma_1 \setminus \lambda' \) and \(\sigma_2 \setminus \lambda' \) agree with \(\sigma \). We must exhibit a substitution \(\sigma' \) such that:
\[
(1) \sigma' \setminus \lambda \text{ agrees with } \sigma, \quad (2) \sigma' \chi = T, \quad \text{and } (3) \sigma' \text{ satisfies } \{S_1 = S_2 \rightarrow \chi\}, \text{i.e., } \sigma' S_1 = \sigma' S_2 \rightarrow \sigma' \chi.
\]
Define \(\sigma' \) as follows:
\[
\sigma' Y = \sigma Y \quad \text{if } Y \notin \lambda
\]
\[
\sigma' Y = \sigma_1 Y \quad \text{if } Y \in \lambda_1
\]
\[
\sigma' Y = \sigma_2 Y \quad \text{if } Y \in \lambda_2
\]
\[
\sigma' Y = T \quad \text{if } Y = \chi.
\]
Conditions (1) and (2) are obviously satisfied. To check (3), calculate as follows:
\[
\sigma' S_1 = \sigma_1 S_1 = T_1 \rightarrow T = \sigma_2 S_2 \rightarrow T = \sigma' S_2 \rightarrow \sigma' \chi = \sigma' (S_2 \rightarrow \chi).
\]

Other cases:
Left as an exercise.

17.3.8 Corollary: Suppose \(\Gamma \vdash t : S \rightarrow C \). There is some typing for \((\Gamma, t) \) iff there is some typing for \((\Gamma, t, S, C) \).

Proof: By Theorems 17.3.5 and 17.3.7.

17.3.9 Exercise [Recommended]: Because we have not described how the choice of fresh variable names actually occurs (beyond stipulating that they must be “fresh enough”), the constraint generation algorithm that we have been working with is actually nondeterministic. Fortunately, this nondeterminism is inessential and easily eliminated.

In a production compiler, the nondeterministic choice of a fresh type variable name in the rule CT-Ap might be replaced by a call to a function that generates a new type variable—different from all others that it ever generates, and from all type variables mentioned explicitly in the context or term being checked—each time it is called. Because this global “gensym” operation works by side effects on a hidden global variable, it is difficult to reason about it formally. However, we can easily simulate it by “threading” a sequence of unused variable names through the constraint generation rules.

Let \(F \) denote a sequence of fresh type variable names (with each element of the sequence different from every other). Then, instead of writing
\[
\Gamma \vdash t : T \mid x \ C
\]
for the constraint generation judgement, we write
\[
\Gamma \vdash t : T \mid x' \ C,
\]
where \(\Gamma, F, \) and \(t \) are inputs to the algorithm and \(T, F', \) and \(C \) are outputs. Whenever it needs a fresh type variable, the algorithm takes off the front element of \(F \) and returns the rest of \(F \) as \(F' \).
Write out the rules for this algorithm in detail. Prove that they are equivalent, in an appropriate sense, to the original constraint generation rules. (Solution on page 256.)

17.3.10 Exercise [Recommended]: Implement the algorithm discussed in Exercise 17.3.9 in ML. Use the datatype
def type ty =
 TyArr of ty * ty
 | TyId of string
 | TyBool
 | TyNat

for types, and
def type constr = (ty * ty) list

for constraint sets. You will also need a representation for infinite sequences of fresh variable names. There are lots of ways of doing this; here is a fairly direct one using a recursive datatype:

def type nextuvar = NExtUVar of string * uvargenerator
and uvargenerator = unit -> nextuvar

let uvargen =
def let rec f n () = NExtUVar(“?X_” ^ string_of_int n, f (n+1))
in f 0

That is, uvargen is a function that, when called with argument (), returns a value of the form NExtUVar(x,f), where x is a fresh type variable name and f is another function of the same form. (Solution on page 257.)

17.4 Unification

We have given two different characterizations of the set of typings for a given term in a given context. But we have not addressed the algorithmic problem of deciding whether or not this set is empty—i.e., of deciding whether it is possible to replace type variables by types so as to make the term typeable in the ordinary sense. The key insight that we need, due to Hindley [?] and Milner [?], is that, if the set of typings of a term is nonempty, it always contains a “best” element, in the sense that the rest of the typings can be generated straightforwardly from this one.

To show that such principal typings exist (and, in fact, to give an algorithm for generating them), we rely on the familiar operation of unification [?] on constraint sets.
17.4.1 Definition: A substitution σ is said to **unify** two types S and T if $\sigma S = \sigma T$. So saying that “σ satisfies the constraint set C” is the same as saying “σ unifies S_i and T_i for every equation $S_i = T_i$ in C.” We sometimes speak of σ as a **unifier** for C. \qed

17.4.2 Definition: We say that a substitution σ is more general than a substitution σ', written $\sigma \sqsubseteq \sigma'$, if $\sigma' = \gamma \circ \sigma$ for some substitution γ. \qed

17.4.3 Definition: A **principal unifier** for a constraint set C is a substitution σ that satisfies C and such that $\sigma \sqsubseteq \sigma'$ for every substitution σ' that also satisfies C. \qed

17.4.4 Exercise [Quick check]: Write down principal unifiers (when they exist) for the following sets of constraints:

\[
\begin{align*}
\{X = \text{Nat}, \ Y = X \to X\} \\
\{\text{Nat} \to \text{Nat} = X \to Y\} \\
\{X \to Y = Y \to Z, \ Z = U \to W\} \\
\{\text{Nat} = \text{Nat} \to Y\} \\
\{Y = \text{Nat} \to Y\} \\
\{\}
\end{align*}
\]

(the empty set of constraints)

(Solution on page 258.) \qed

17.4.5 Definition: The **unification algorithm** is defined as follows:

\[
\text{unify}(C) = \begin{cases}
\{\} & \text{if } C = \emptyset, \text{ then } \\
\text{let } \{S = T\} \cup C' = C \text{ in } \\
\text{if } S = T \\
\text{then } \text{unify}(C') \\
\text{else if } S = X \text{ and } X \not\in FV(T) \\
\text{then } \text{unify}((X \mapsto T)\circ (X \mapsto T)) \\
\text{else if } T = X \text{ and } X \not\in FV(S) \\
\text{then } \text{unify}((X \mapsto S)\circ (X \mapsto S)) \\
\text{else if } S = S_1 \to S_2 \text{ and } T = T_1 \to T_2 \\
\text{then } \text{unify}(C' \cup \{S_1 = T_1, S_2 = T_2\}) \\
\text{else } \text{fail}
\end{cases}
\]

where σC is the constraint set formed by applying σ to both sides of all the constraints in C. \qed

17.4.6 Theorem: The algorithm **unify** always terminates, fails only when given a non-unifiable constraint set as input, and otherwise returns a principal unifier. More formally:

1. $\text{unify}(C)$ halts, either by failing or by returning a substitution, for all C;
2. if $\text{unify}(C) = \sigma$, then σ is a unifier for C;
3. if δ is a unifier for C, then $\text{unify}(C) = \sigma$ with $\sigma \subseteq \delta$. □

Proof: For part (1), define the degree of a constraint set C to be the pair (m, n), where m is the number of distinct type variables in C and n is the total size of the types in C. It is easy to check that each clause of the unify algorithm either terminates immediately (with success in the first case or failure in the last) or else makes a recursive call to unify with a constraint set of smaller degree.

Part (2) is a straightforward induction on the number of recursive calls in the computation of $\text{unify}(C)$. All the cases are trivial except for the two involving variables, which depend on the observation that, if σ unifies $(X \mapsto T)C'$, then $\sigma \circ (X \mapsto T)$ unifies $(X = T) \cup C'$.

Part (3) again proceeds by induction on the number of recursive calls in the computation of $\text{unify}(C)$. If C is empty, then $\text{unify}(C)$ immediately returns \emptyset; since $\delta = \delta \circ \emptyset$, we have $\emptyset \subseteq \delta$ as required. If C is non-empty, then $\text{unify}(C)$ chooses some pair (S, T) from C and continues by cases on the shapes of S and T.

Case: $S = T$

Since δ is a unifier for C, it also unifies C'. By the induction hypothesis, $\text{unify}(C) = \sigma$ with $\sigma \subseteq \delta$, as required.

Case: $S = X$ and $X \notin T$

Since δ unifies S and T, we have $\delta(X) = \delta(T)$. So, for any type U, we have $\delta(U) = \delta((X \mapsto T)U)$; in particular, since δ satisfies C' it must also satisfy $(X \mapsto T)C'$. The induction hypothesis then tells us that $\text{unify}((X \mapsto T)C') = \sigma'$, with $\delta = \gamma \circ \sigma'$ for some γ. Since $\text{unify}(C) = \sigma' \circ (X \mapsto T)$, showing that $\delta = \gamma \circ (\sigma' \circ (X \mapsto T))$ will complete the argument. Choose any type variable Y. If $Y \neq X$, then clearly $(\gamma \circ (\sigma' \circ (X \mapsto T)))Y = (\gamma \circ \sigma')Y = \delta Y$. On the other hand, $(\gamma \circ (\sigma' \circ (X \mapsto T)))X = (\gamma \circ \sigma')T = \delta X$, as we saw above. Combining these observations, we see that $\delta Y = (\gamma \circ (\sigma' \circ (X \mapsto T)))Y$ for all variables Y, i.e. $\delta = (\gamma \circ (\sigma' \circ (X \mapsto T)))$.

Case: $T = X$ and $X \notin S$

Similar.

Case: $S = S_1 \rightarrow S_2$ and $T = T_1 \rightarrow T_2$

Straightforward. Just note that δ is a unifier of $(S_1 \rightarrow S_2 = T_1 \rightarrow T_2) \cup C'$ iff it is a unifier of $(S_1 = T_1, S_2 = T_2) \cup C'$.

If none of the above cases apply to S and T, then $\text{unify}(C)$ fails. But this can only happen in two ways: either S is flat and T is an arrow type (or vice versa), or else $S = X$ and $X \notin T$ (or vice versa). The first case obviously contradicts the assumption that C is unifiable. To see that the second does too, recall that, by assumption, $\delta S = \delta T$; if X occurred in T, then δT would always be strictly larger than δS. Thus, $\text{unify}(C)$ never fails when C is satisfiable.

17.4.7 Exercise [Recommended]: Implement the unification algorithm in ML.
The main data structure needed for this exercise is a representation of substitutions. There are many alternatives; one simple one is to reuse the constr datatype from Exercise 17.3.10: a substitution is just a constraint set, all of whose left-hand sides are unification variables. If substinty is a function that performs substitution of a type for a single type variable

```haskell
let substinty tyX tyT tyS = 
    let rec o = function
        TyArr(tyT1,tyT2) → TyArr(o tyT1, o tyT2)
        | TyNat → TyNat
        | TyBool → TyBool
        | TyId(s) → if s=tyX then tyT else TyId(s)
    in o tyS
```

then application of a whole substitution to a type can be defined as follows:

```haskell
let applysubst constr tyT = 
    List.fold_left
        (fun tyS (TyId(tyX),tyC2) → substinty tyX tyC2 tyS)
    tyT constr
```

(Solution on page 258.)

17.5 Principal Typings

17.5.1 Definition: A principal typing for \(\Gamma, t, S, \tau, C\) is a typing \(\sigma, T\) such that, whenever \(\sigma', T'\) is also a typing for \(\Gamma, t, S, \tau, C\), we have \(\sigma \subseteq \sigma'\).

17.5.2 Exercise [Quick check]: Find a principal typing for

\[\lambda x : X. \lambda y : Y. \lambda z : Z. \ (x \ y \ z)\].

17.5.3 Theorem [Principal typing]: If \(\Gamma, t, S, \tau, C\) has any typing, then it has a principal one. Moreover, the unification algorithm can be used to determine whether \(\Gamma, t, S, \tau, C\) has a typing and, if so, to return a principal one.

Proof: Immediate from the definition of typing and the properties of unification.

17.5.4 Corollary: It is decidable whether \(\Gamma, t\) has a typing.

Proof: By Corollary 17.3.8 and Theorem 17.5.3.

17.5.5 Exercise [Recommended]: Use the implementations of constraint generation (Exercise 17.3.10) and unification (Exercise 17.4.7) to construct a running type-checker that calculates principal typings, using the simple checker provided in the course directory as a starting point.
17.5.6 Exercise: What difficulties arise in extending the basic definitions (17.3.2, etc.) to deal with records? How might they be addressed? (Solution on page 259.)

Principal typings can be used to build a type reconstruction algorithm that works more incrementally than the one we have developed here. Instead of generating all the constraints first and then trying to solve them, we can interleave generation and solving, so that the type reconstruction algorithm actually returns a principal typing at each step. The fact that the typings are always principal is what ensures that the algorithm never needs to go back and re-analyze a subterm that it has already processed, since it makes only the minimum commitments needed to achieve typeability at each step. One major advantage of such an algorithm is that it can pinpoint errors in the user's program much more precisely.

17.5.7 Exercise: Modify your solution to Exercise 17.5.5 to perform unification incrementally during typechecking and return principal typings.

17.6 Further Reading
Chapter 18

Universal Types

Type structure is a syntactic discipline for enforcing levels of abstraction.
— John Reynolds [Rey83]

Some writing needed.

18.1 Motivation

As we observed at the beginning of Chapter 13, the pure simply typed lambda-calculus is a rather restrictive system in some respects, if we consider it as the basis for a programming language. Although we can enrich it with numerous additional type constructors (references, lists, etc.), primitive types (Nat, Bool, Unit, etc.), and convenient control constructs (let, fix, etc.), the rigidity of the “core” typing rules can make it difficult to exploit these features to full advantage. In Chapter 13, we explored one way of refining the typing relation to make it much more flexible: adding a subtyping relation and allowing types of terms to be “promoted” when matching the types of functions and their arguments.

In this chapter, we introduce another, rather different, way of adding flexibility to the core type system. To motivate this extension, note that in λ− there are an infinite number of “doubling” functions

\[
\text{doubleNat} = \lambda f : \text{Nat} \to \text{Nat}. \lambda x : \text{Nat}. f (f x);
\]

\[
\text{doubleRcd} = \lambda f : \{1 : \text{Nat}\} \to \{1 : \text{Nat}\}. \lambda x : \{1 : \text{Nat}\}. f (f x);
\]

\[
\text{doubleRcd} = \lambda f : (\text{Nat} \to \text{Nat}) \to (\text{Nat} \to \text{Nat}). \lambda x : \text{Nat} \to \text{Nat}. f (f x);
\]

(etc.)

\[
\text{\text{doubleNat}} : (\text{Nat} \to \text{Nat}) \to \text{Nat} \to \text{Nat}
\]

\[
\text{\text{doubleRcd}} : (\{1 : \text{Nat}\} \to \{1 : \text{Nat}\}) \to \{1 : \text{Nat}\} \to \{1 : \text{Nat}\}
\]

\[
\text{\text{doubleRcd}} : ((\text{Nat} \to \text{Nat}) \to (\text{Nat} \to \text{Nat})) \to (\text{Nat} \to \text{Nat}) \to \text{Nat} \to \text{Nat}
\]
Each applicable to a different type of argument, but all sharing precisely the same behavior (even the same program text, modulo typing annotations). This kind of “cut and paste” programming violates a basic principle of software engineering:

Write each piece of functionality in one place. If something has to be used many times in slightly different ways, abstract out the varying parts.

Here, the varying parts are the types! What we want, it seems, are facilities for “abstracting out” a type from a term and later instantiating this abstract (or “polymorphic”) term by applying it to a concrete type.

The system we’ll be studying in this chapter was developed (one is tempted to say “discovered”) independently, in the early 1970s by a computer scientist, John Reynolds, who called it the polymorphic lambda-calculus \([\text{Rey74}]\), and by a logician, Jean-Yves Girard, who called it System F \([\text{Gir72}]\). It has been used extensively as a research vehicle for foundational work on polymorphism and as the basis for numerous programming language designs. For reasons that we shall see later (in Chapter 25), it is sometimes called the second-order lambda-calculus.

18.2 Varieties of Polymorphism

Type systems that allow a single piece of code to be used with multiple types are collectively known as polymorphic systems. Several types of polymorphism have been proposed (this way of classifying them is due to Strachey \([\text{?}]\)):

Parametric polymorphism, the subject of this chapter, allows a piece of code to be typechecked “generically,” using type variables in place of actual types, and then instantiated with particular types as needed. We have seen this phenomenon already in Chapter \([\text{??}]\), and it will be the main focus of the present chapter.

Ad-hoc polymorphism allows different behaviors at run-time when a single piece of code is used with multiple types. The most powerful form of ad-hoc polymorphism is a general \texttt{case} construct that allows arbitrary computation based on type information, but this is seldom seen in real languages. More common are constructs such as Java’s \texttt{switch} which allow simple branching on run-time type tags.

Overloading is a very simple form of ad-hoc polymorphism where only a limited collection of (usually built-in) operations are given multiple types. For example, many languages overload arithmetic operators like \texttt{+} with multiple types such as \texttt{Int→Int→Int} and \texttt{Real→Real→Real}.

The **subtype polymorphism** that we saw in Chapter 13 gives a single term many types using the rule of subsumption, allowing us to selectively “forget” information about the term’s behavior.
These categories are not exclusive: different forms of polymorphism can be mixed in the same language. For example, Standard ML offers a restricted form of parametric polymorphism and simple arithmetic overloading, but not subtyping, while Java includes subtyping, overloading, and simple ad-hoc polymorphism, but not parametric polymorphism. (There are numerous proposals for adding parametric polymorphism to Java. At the time of this writing, the front-runner is probably GJ [BOSW98].)

The bare term “polymorphism” is the source of a certain amount of confusion in the programming languages literature. In the functional programming community (i.e., those who use or design languages like ML, Haskell, etc.), it always refers to parametric polymorphism. In the object-oriented programming community, it almost always refers to subtype polymorphism.

18.3 Definitions

The definition of the polymorphic lambda-calculus (System F for short) is actually a very straightforward extension of the simply typed lambda-calculus. In λ^-, lambda-abstraction is used to abstract terms out of terms, and application is used to supply values for the abstracted parts. Similarly, we want a mechanism for abstracting types out of terms and filling them in later—we might as well use lambda-abstraction and application as a model. To this end, we introduce a new form of lambda-abstraction

$$\lambda x. \; t$$

whose parameter is a type—a kind of function that takes a type x as argument. Similarly, we introduce a new form of application

$$t \; [T]$$

in which the argument is a type expression. We call our new functions with type parameters **polymorphic functions** or **type abstractions**; the new application construct is called **type application**.

When, during evaluation, a type abstraction meets a type application, the pair forms a redex, just as in λ^-. We add a reduction rule analogous to the ordinary reduction rule for abstractions and applications. For example, when the **polymorphic identity function**

$$id = \lambda x. \lambda x: \mathbb{N}. \; x;$$

is applied to the argument \mathbb{N}, the result is $[x \mapsto \mathbb{N}] (\lambda x: \mathbb{N}. \; x)$, i.e., $\lambda x: \mathbb{N}. \; x$, which is the identity function on natural numbers.

Finally, we need to define the **type** of a polymorphic function. Just as we had types like $\mathbb{N} \rightarrow \mathbb{N}$ for classifying ordinary functions like $\lambda x: \mathbb{N}. \; x$, we now need
a different form of “arrow type” whose domain is a type, for classifying polymorphic functions like \(\text{id} \). Notice that, for each argument \(T \) to which it is applied, \(\text{id} \) yields a function of type \(T \rightarrow T \); that is, the type of the result of \(\text{id} \) depends on the actual type that we pass it as argument. To capture this dependency, we write the type of \(\text{id} \) like this:

\[
\text{id} : \forall X. X \rightarrow X
\]

The typing rules for polymorphic abstraction and application are analogous to the corresponding rules for ordinary abstraction and application.

\[
\frac{}{\Gamma \vdash \lambda X. t_2 : \forall X. T_2} \quad \text{(T-TABS)}
\]

\[
\frac{\Gamma, X \vdash t_2 : T_2}{\Gamma \vdash \lambda X. t_2 : \forall X. T_2} \quad \text{(T-TAPP)}
\]

Note that we include the “binding” \(X \) in the typing context used in the subderivation for \(t \). For the moment, this binding plays no role except to keep track of the scopes of type variables and make sure that the same type variable is not added twice to the context. In later chapters, we will annotate type variable bindings in the context with information of various kinds.

In summary, here is the complete polymorphic lambda-calculus, with differences from \(\lambda \rightarrow \) highlighted.

System F: Polymorphic lambda-calculus

\[
\text{System F} : \text{Polymorphic lambda-calculus} \rightarrow \forall
\]

Syntax

<table>
<thead>
<tr>
<th>terms</th>
<th>values</th>
<th>types</th>
<th>contexts</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t \ ::=)</td>
<td>(v ::=)</td>
<td>(T ::=)</td>
<td>(\Gamma ::=)</td>
</tr>
<tr>
<td>(x)</td>
<td>(\lambda X : T. t)</td>
<td>(\lambda X : T. t)</td>
<td>()</td>
</tr>
<tr>
<td>(\lambda X : T. t)</td>
<td>()</td>
<td>(T \rightarrow T)</td>
<td>()</td>
</tr>
<tr>
<td>(t)</td>
<td>()</td>
<td>(\forall X : T)</td>
<td>()</td>
</tr>
<tr>
<td>(T ::=)</td>
<td>(v ::=)</td>
<td>(T ::=)</td>
<td>(\Gamma ::=)</td>
</tr>
<tr>
<td>(x)</td>
<td>(\lambda X : T. t)</td>
<td>(\lambda X : T. t)</td>
<td>()</td>
</tr>
<tr>
<td>()</td>
<td>()</td>
<td>(T \rightarrow T)</td>
<td>()</td>
</tr>
<tr>
<td>()</td>
<td>()</td>
<td>(\forall X : T)</td>
<td>()</td>
</tr>
<tr>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
</tbody>
</table>
As usual, this summary defines just the “pure” polymorphic lambda-calculus, omitting other type constructors such as records, base types such as \(\texttt{Nat} \) and \(\texttt{Bool} \), and term-language extensions such as \(\texttt{let} \) and \(\texttt{fix} \). These extra constructs can be added straightforwardly to the pure system, and we will use them freely in the examples that follow.

18.3.1 Exercise [Quick check]: In Exercise 7.3.1, we saw that the pure simply typed lambda calculus (with no base types or type variables) is actually a trivial system containing no typeable terms. What about pure System F? \(\square \)
18.4 Examples

We now turn to developing some more interesting examples of “programming with polymorphism,” of several different sorts:

- To warm up, we’ll start with a few small but increasingly tricky examples, showing some of the expressive power of System F.

- We’ll then review the basic ideas of “ordinary” polymorphic programming with lists, trees, etc. This is the kind of programming that usually comes to mind when polymorphism is mentioned.

- The final subsection will introduce typed versions of the Church Encodings of simple algebraic datatypes like booleans, numbers, and lists that we saw in Chapter 4 for the untyped lambda-calculus. Although these encodings are of little practical importance, they make excellent exercises for understanding the intricacies of System F.

Warm-ups

We have seen already how type abstraction and application can be used to define a single polymorphic identity function

$$\text{id} = \lambda X. \lambda x : X. x;$$

and instantiate it to yield any particular concrete identity function that may be required:

$$\text{id} \ [\text{Nat}];$$

$$\triangleright \text{id} : \forall X. X \rightarrow X$$

$$\langle \lambda x : \text{Nat}.\ x \rangle : \text{Nat} \rightarrow \text{Nat}$$

$$\text{id} \ [\text{Nat}] \ 0;$$

$$\triangleright 0 : \text{Nat}$$

A more useful example is the polymorphic “double” function, which takes a function $$f$$ and an argument $$a$$ and applies $$f$$ twice in succession to $$a$$:

$$\text{double} = \lambda X. \lambda f : X \rightarrow X. \lambda a : X.\ f\ (f\ a);$$

$$\triangleright \text{double} : \forall X. (X \rightarrow X) \rightarrow X \rightarrow X$$

The abstraction on the type $$X$$ allows us to obtain doubling functions for specific types by instantiating $$\text{double}$$ with different type arguments:

$$\text{doubleNat} = \text{double} \ [\text{Nat}];$$

$$\text{doubleNatArrowNat} = \text{double} \ [\text{Nat} \rightarrow \text{Nat}];$$
Once instantiated with a type argument, \(\text{double} \) can be further applied to an actual function and an argument of appropriate types:

\[
\text{double \ [Nat]} \ (\lambda x:\text{Nat}. \ \text{succ} (\text{succ} (x))) \ 3;
\]

\(\triangleright \ 7 : \text{Nat} \)

Here is a slightly trickier example: polymorphic self-application. Recall that, in the simply typed lambda-calculus, there is no way to give a typing to an untyped term of the form \(x \ x \) (cf. Exercise 7.4.5). In System F, on the other hand, this term becomes typeable if we make \(x \) a polymorphic function and add a type application:

\[
\text{selfApp} = \lambda x: \forall X. X \to X. \ x \ (\forall X. X \to X) \ x;
\]

\(\triangleright \ \text{selfApp} : (\forall X. X \to X) \to (\forall X. X \to X) \)

Here is a more useful example of self application. We can apply the polymorphic \(\text{double} \) function to itself, yielding a polymorphic quadrupling function:

\[
\text{quadruple} = \lambda X. \ \text{double \ [X\to X]} \ (\text{double \ [X]});
\]

\(\triangleright \ \text{quadruple} : \forall X. (X \to X) \to X \to X \)

18.4.1 Exercise [Quick check]: Using the typing rules above, convince yourself that these terms have the types given.

Polymorphic Lists

Impredicative Encodings

Here are the “Church booleans“:

\[
\text{CBool} = \forall X. X \to X \to X;
\]

\[
\text{tt} = \lambda X. \ \lambda t: X. \ \lambda f: X. \ t;
\]

\[
\text{ff} = \lambda X. \ \lambda t: X. \ \lambda f: X. \ f;
\]

\[
\text{cif} = \lambda b:\text{CBool}. \ \lambda X. \ \lambda th: X. \ \lambda el: X. \ b \ [X] \ th \ el;
\]

\(\triangleright \ \text{tt} : \forall X. \ X \to X \to X \)

\(\text{ff} : \forall X. \ X \to X \to X \)

\(\text{cif} : \text{CBool} \to (\forall X. \ X \to X \to X) \)

In fact, \(\text{cif} \) is the identity function! In other words, an element of type \(\text{CBool} \) is itself a “conditional,” in the sense that it takes two alternatives and chooses either the first or the second depending on whether it represents \text{true} or \text{false}.

We can write common boolean operations like \text{not} either in terms of \(\text{cif} \)
or, more interestingly, by directly constructing a new boolean from the given one:

\[
\text{not } = \lambda b:\text{Bool}. \quad \begin{cases} f & \text{if } b = \text{true} \\ t & \text{if } b = \text{false} \end{cases}
\]
\[
\text{not } : \text{Bool} \rightarrow \text{Bool}
\]

18.4.2 Exercise [Recommended]: Write a term

\[
\text{and } : \text{Bool} \rightarrow \text{Bool} \rightarrow \text{Bool}
\]

without using \(\text{cif}\).

We can play a similar game with numbers. The elements of the type

\[
\text{CNat} = \forall X. (X \rightarrow X) \rightarrow X \rightarrow X;
\]

of “Church numerals” can be used to represent natural numbers as follows:

\[
\begin{align*}
czero &= \lambda X. \lambda s:X \rightarrow X. \lambda z:X. \; z; \\
cone &= \lambda X. \lambda s:X \rightarrow X. \lambda z:X. \; s \; z; \\
ctwo &= \lambda X. \lambda s:X \rightarrow X. \lambda z:X. \; s \; (s \; z); \\
cthree &= \lambda X. \lambda s:X \rightarrow X. \lambda z:X. \; s \; (s \; (s \; z));
\end{align*}
\]

\[
\begin{align*}
czero &: \forall X. (X \rightarrow X) \rightarrow X \rightarrow X \\
cone &: \forall X. (X \rightarrow X) \rightarrow X \rightarrow X \\
ctwo &: \forall X. (X \rightarrow X) \rightarrow X \rightarrow X \\
cthree &: \forall X. (X \rightarrow X) \rightarrow X \rightarrow X
\end{align*}
\]

and so on. That is, a church numeral \(n\) is a function that, given arguments \(s\) and \(z\), applies \(s\) to \(z\), \(n\) times.

The successor function can be defined as follows:

\[
\begin{align*}
c\text{succ} &= \lambda m:\text{CNat}. \\
&\quad \lambda X. \lambda s:X \rightarrow X. \lambda z:X. \\
&\quad \quad s \; (n \; [X] \; s \; z);
\end{align*}
\]

\[
\begin{align*}
c\text{succ} &: \text{CNat} \rightarrow (\forall X. (X \rightarrow X) \rightarrow X \rightarrow X)
\end{align*}
\]

That is, \(c\text{succ} \; n\) returns an element of \(\text{CNat}\) that, given \(s\) and \(z\), applies \(s\) to \(z\), \(n\) times (by applying \(n\)), and then once more.

Other arithmetic operations can be defined similarly:

\[
\begin{align*}
c\text{plus} &= \lambda m:\text{CNat}. \lambda n:\text{CNat}. \\
&\quad m \; [\text{CNat}] \; c\text{succ} \; n;
\end{align*}
\]

\[
\begin{align*}
c\text{plus} &: \text{CNat} \rightarrow \text{CNat} \rightarrow \text{CNat}
\end{align*}
\]
Or, more directly:

\[
\text{cplus} = \lambda m: \text{CNat}. \lambda n: \text{CNat}.
\lambda X. \lambda s:X\rightarrow X. \lambda z:X.
\ m \ [X] \ s \ (n \ [X] \ s \ z);
\]

\[\text{cplus} : \text{CNat} \rightarrow \text{CNat} \rightarrow (\forall X. (X\rightarrow X) \rightarrow X \rightarrow X)\]

We can convert from church numerals to ordinary numbers like this:

\[
\text{cnat2nat} = \lambda m: \text{CNat}. \ m \ [\text{Nat}] \ (\lambda x: \text{Nat}. \ \text{succ}(x)) \ 0;
\]

\[\text{cnat2nat} : \text{CNat} \rightarrow \text{Nat}\]

This allows us to verify that the terms we have defined actually compute the desired arithmetic functions:

\[
\text{cnat2nat} \ (\text{cplus} \ (\text{csucc} \ \text{czero}) \ (\text{csucc} \ (\text{csucc} \ \text{czero}))) ;
\]

\[3 : \text{Nat}\]

18.4.3 Exercise [Recommended]: Write a function \text{iszero} that returns true when applied to the church numeral \text{czero} and false otherwise.

18.4.4 Exercise: Show that the terms

\[
\text{ctimes} = \lambda m: \text{CNat}. \lambda n: \text{CNat}.
\lambda X. \lambda s:X\rightarrow X.
\ n \ [X] \ (m \ [X] \ s);
\]

\[\text{cexp} = \lambda m: \text{CNat}. \lambda n: \text{CNat}.
\lambda X.
\ n \ [X\rightarrow X] \ (m \ [X]);
\]

\[\text{ctimes} : \text{CNat} \rightarrow \text{CNat} \rightarrow (\forall X. (X\rightarrow X) \rightarrow X \rightarrow X)\]

\[\text{cexp} : \text{CNat} \rightarrow \text{CNat} \rightarrow (\forall X. (X\rightarrow X) \rightarrow X \rightarrow X)\]

have the indicated types. Sketch an informal argument that they implement the arithmetic multiplication and exponentiation operators.

So, if we wanted to, we could actually drop \text{Nat} and iteration from the language. This doesn’t affect real programming languages based on System F, since we want to build in booleans for efficiency and syntactic convenience, but it helps when we’re doing theoretical work because it keeps the system small.

18.4.5 Exercise [Recommended]: In what sense does the type

\[
\text{PairNat} = \forall X. (\text{CNat} \rightarrow \text{CNat} \rightarrow X) \rightarrow X;
\]

represent pairs of numbers? Write functions
18.4.6 Exercise [Moderately difficult, recommended]: Use the functions defined in Exercise 18.4.5 to write a function pred that computes the predecessor of a church numeral (returning 0 if its input is 0). (Hint: the key idea is developed in the example in Section ??.) Define a function \(f : \text{PairNat} \rightarrow \text{PairNat} \) that maps the pair \((i, j)\) into \((i + 1, i)\)—that is, it throws away the second component of its argument, copies the first component to the second, and increments the first. Then \(n \) applications of \(f \) to the starting pair \((0, 0)\) yields the pair \((n, n - 1)\)... □

18.4.7 Exercise [Optional]: There is another way of computing the predecessor function on church numerals. Let \(K \) stand for the untyped lambda-term \(\lambda x. \lambda y. x \) and \(I \) for \(\lambda x. x \). The untyped lambda-term

\[
\text{vpred} = [n] \lambda s. \lambda z. n \ (\lambda p. \lambda q. q (p s)) \ (K \ z) \ I
\]

(due to J. Velmans) computes the predecessor of an untyped Church numeral. Show that this term can be typed in System F by adding type abstractions and applications as necessary and annotating the bound variables in the untyped term with appropriate types. For extra credit, explain why it works! (Solution on page ??.) [Thanks to Michael Levin for making me aware of this example.] □

18.5 Metatheory

Soundness

The preservation and progress properties from the simply typed lambda-calculus holds exactly the same here. To prove it, we need one additional substitution lemma, for types.

Strong Normalization

The strong normalization property for System F, proved using an extension of the method presented in Chapter ??, was one of the major achievements of Girard’s Ph.D. thesis. Since then, this proof technique has been studied and reworked by many authors, including [?].

18.5.1 Theorem [Strong normalization]: All well-typed System F terms are strongly normalizing. □
Erasure and Typeability

There are two reasonable definitions of erasure for System F: the “type-passing” and “type-forgetting” interpretations...

18.5.2 Exercise: The strong normalization property of System System F implies that the term

\[\Omega = (\lambda x. \; x \; x) \; (\lambda y. \; y \; y) \]

in the untyped lambda-calculus cannot be typed in System F, since reduction of \(\Omega \) never reaches a normal form. However, it is possible to give a more direct, “combinatorial” proof of this fact, using just the rules defining the typing relation.

1. Let us call a System F term exposed if it is a variable, an abstraction \(\lambda x : T. \; t \), or an application \(t \; s \) (i.e., if it is not a type abstraction \(\lambda X. \; t \) or type application \(t \; S \)).

Show that if \(t \) is well typed (in some context) and \(\text{erase}(t) = M \), then there is some exposed term \(s \) such that \(\text{erase}(s) = M \) and \(s \) is well typed (possibly in a different context).

2. Write \(\lambda \overline{X}. \; t \) as shorthand for a nested sequence of type abstractions of the form \(\lambda X_1 \ldots X_n. \; t \). Similarly, write \(t \; \overline{X} \) for a nested sequence of type applications \(((t \; \overline{A_1}) \ldots \overline{A_{n-1}}) \; \overline{A_n} \) and \(\forall \overline{X}. \; T \) for a nested sequence of polymorphic types \(\forall X_1 \ldots \forall X_n. \; T \). Note that these sequences are allowed to be empty. For example, if \(\overline{X} \) is the empty sequence of type variables, then \(\forall \overline{X}. \; T \) is just \(T \).

Show that if \(\text{erase}(t) = M \) and \(\Gamma \vdash t : T \), then there exists some \(s \) of the form \(\lambda \overline{X}. \; (u \; \overline{X}) \), some sequence of type variables \(\overline{X} \), some sequence of types \(\overline{A} \), and some exposed term \(u \), with \(\text{erase}(s) = M \) and \(\Gamma \vdash s : T \).

3. Show that if \(t \) is an exposed term of type \(T \) (under \(\Gamma \)) and \(\text{erase}(t) = M \; N \), then \(t \) has the form \(s \; u \) for some terms \(s \) and \(u \) such that \(\text{erase}(s) = M \) and \(\text{erase}(u) = N \), with \(\Gamma \vdash s : U \rightarrow T \) and \(\Gamma \vdash u : U \).

4. Suppose that \(x : T \in \Gamma \). Show that if \(\Gamma \vdash u : U \) and \(\text{erase}(u) = x \; x \), then either

 (a) \(T = \forall \overline{X}. \; T_i \), where \(X_i \in \overline{X} \), or else
 (b) \(T = \forall \overline{X} \; T \cdot T_1 \rightarrow T_2 \), where \(\overline{X} \rightarrow T_1 \rightarrow T_2 = (\overline{X} \rightarrow B) \rightarrow (\forall \overline{X}. \; T_1 \rightarrow T_2) \) for some sequences of types \(\overline{X} \) and \(\overline{A} \) with \(\overline{A} = \overline{X} \) and \(\overline{A} = \overline{X} \).

5. Show that if \(\text{erase}(s) = \lambda x. \; M \) and \(\Gamma \vdash s : S \), then \(S \) has the form \(\forall \overline{X}. \; S_1 \rightarrow S_2 \), for some \(\overline{X} \), \(S_1 \), and \(S_2 \).
6. Define the leftmost leaf of a type T as follows:

\[
\begin{align*}
\text{leftmost-leaf}(X) &= X \\
\text{leftmost-leaf}(S \rightarrow T) &= \text{leftmost-leaf}(S) \\
\text{leftmost-leaf}(\forall X. S) &= \text{leftmost-leaf}(S).
\end{align*}
\]

Show that if $(X_1 X_2 \mapsto \emptyset)(\forall X. T_1) = (X_1 \mapsto \emptyset)(\forall X. (\forall Y. T_1) \rightarrow T_2)$, then leftmost-leaf$(T_1) = X_i$ for some $X_i \in X_1 X_2$.

7. Show that Ω is not typeable in System F.

(Solution on page ???)

The type erasure function for System F is the following mapping from System F to terms in the untyped lambda-calculus:

\[
\begin{align*}
\text{erase}(x) &= x \\
\text{erase}(\lambda x : T. t) &= \lambda x. \text{erase}(t) \\
\text{erase}(t \; s) &= \text{erase}(t) \; \text{erase}(s) \\
\text{erase}(\forall X. t) &= \text{erase}(t) \\
\text{erase}(t \; [s]) &= \text{erase}(t)
\end{align*}
\]

A term \mathcal{N} in the untyped lambda-calculus is said to be typeable in System F if there is some well-typed term t such that $\text{erase}(t) = \mathcal{N}$.

Type Reconstruction

18.6 Implementation

Nameless Representation of Types

ML Code

```ml
type ty =
  ...
  | TyVar of int * int
  | TyAll of string * ty

type term =
  ...
  | TmTAbs of info * string * term
  | TmTApp of info * term * ty

let tyshifti d c tyT =
  tymap
  (fun c x n -> if x=c then
```
if x+d<0 then err "Scoping error!"
else TyVar(x+d,n+d)
else TyVar(x,n+d))

c
tyT

let tmshift i d c t =
tmap
(fun fi c x n \rightarrow if x=c then TyVar(fi,x+d,n+d) else TyVar(fi,x,n+d))
tyshift i d
c
t

let tmshift t d = tmshift i d 0 t

let tyshift ty T d = tyshift i d 0 ty T

(Note that we also need to shift the type annotation in the TmAbs case.)

let tmsubsti s j t =
tmap
(fun fi j x n \rightarrow if x=j then (tmshift s j) else TyVar(fi,x,n))
tyshift j ty
j
t

let tmsubst s t = tmsubsti s 0 t

let tmsubstsnip s t = tmshift (tmsubst (tmshift s 1) t) (-1)

let tmsubst ty T s j t =
tyT
(fun j x n \rightarrow if x=j then (tyshift s j) else TyVar(x,n))
tyT

let ty T s t = tmsubst ty T 0 ty T

let tmsubstsnip ty T s T = tyshift (tmsubst (tyshift ty T 1) ty T) (-1)

let rec tmsubst ty T s j t =
tmap
(fun fi c x n \rightarrow TyVar(fi,x,n))
tyT
j t

let tmsubst ty T s t = tmsubst ty T 0 t
let tytmsubstsnip tyS t = tmshift (tytmsubst (tyshift tyS 1) t) (-1)

18.7 Further Reading
Chapter 19

Existential Types

Some writing needed.

Having seen the role of universal quantifiers in a type system, one might wonder whether existential quantifiers would also be useful in programming. In fact, they provide an elegant foundation for data abstraction and “information hiding,” as we shall see in this chapter.

19.1 Motivation

The polymorphic types in Chapter 18 can be viewed in two different ways:

1. A logical intuition is that an element of the type ∀X. T is a value that has type {X ⊢ S}T for any choice of S.

 This intuition corresponds to a “type-erasure view” of what a term means: for example, the polymorphic identify function λX.λx:X.x erases to the untyped identity function λx.x, which maps an argument of any type S to a result of the same type S.

2. A more operational intuition is that an element of ∀X. T is a function mapping a type S to a concrete instance with type {X ⊢ S}T.

 This intuition corresponds to our definition of System F in Chapter 18, where the reduction of a type application is considered an actual step of the computation.

Similarly, there are two different ways of looking at an existential type {∃X, T}:

1. The logical intuition is that an element of {∃X, T} has type {X ⊢ S}T for some type S.
2. The operational intuition is that an element of \(\exists X, T \) is a pair of a type \(S \) and a term \(t \) of type \(X \to S \).

We will take an operational view of existentials in this chapter, since it provides a closer analogy between existential packages and modules or abstract data types. Our concrete syntax for existential types \(\exists X, T \) rather than the more standard \(\forall X, T \) reflects this analogy.

As always, to understand existential types we need to know two things: how to build (or “introduce,” in the jargon of Section 2.3) elements of existential types, and how to use (or “eliminate”) these values in computations.

A value \(\{ \exists x=S, t \} \) of type \(\exists X, T \) can be thought of as a simple module with one (hidden) type component and one term component.\(^1\) The type \(S \) is often called the hidden representation type, or sometimes (to emphasize the connection with intuitionistic logic) the witness type of the package. As a simple example, the package

\[
p = \{ \exists x=\text{Nat}, \{ a=5, f=\lambda x:\text{Nat}. \text{succ}(x) \} \}
\]

has the existential type

\[
\{ \exists x, \{ a:x, f: x\to x \} \}.
\]

That is, the right-hand component of \(p \) is a record containing a field \(a \) of type \(x \) and a field \(f \) of type \(x\to x \), for some \(x \) (namely \(\text{Nat} \)).

The same package \(p \) also has the type

\[
\{ \exists x, \{ a:x, f: x\to \text{Nat} \} \},
\]

since its right-hand component is a record with fields \(a \) and \(f \) of type \(x \) and \(x\to \text{Nat} \), for some \(x \) (namely \(\text{Nat} \)). This example shows that, in general, we can’t make an automatic decision about which existential type a given package belongs to: the programmer must specify which one is intended. The simplest way to do this is just to add an annotation to every package that explicitly gives its intended type. So we’ll write

\[
p_1 = \{ \exists x=\text{Nat}, \{ a=5, f=\lambda x:\text{Nat}. \text{succ}(x) \} \} \text{ as } \{ \exists x, \{ a:x, f: x\to x \} \};
\]

\[
\triangleright p_1 : \{ \exists x, \{ a:x, f: x\to \text{Nat} \} \}
\]
or:

\[
\{ \exists x_1=S_1, \exists x_2=S_2, t_1, t_2 \} \overset{\text{def}}{=} \{ \exists x_1=S_1, \{ \exists x_2=S_2, \{ t_1, t_2 \} \} \}
\]

\(^1\) Obviously, we could generalize to many type/term components, but we’ll stick with just one of each to keep the notation tractable. The effect of multiple type components can be achieved by nesting single-type existentials, while the effect of multiple term components can be achieved by using a tuple or record as the right-hand component:
The type annotation introduced by \(\exists \) is similar to the coercion construct introduced in Section ??, which allows any term to be annotated with its intended type. We are essentially requiring a single coercion as part of the concrete syntax of the package construct.

The complete typing rule for packages is as follows:

\[
\Gamma \vdash t_2 : (X \mapsto U)T_2 \\
\Gamma \vdash \exists X = U, t_2 \text{ as } \{ \exists X, T_2 \} : \{ \forall X, T_2 \}
\]

(T-PACK)

Of course, packages with different representation types can inhabit the same existential type. For example:

\[\begin{align*}
p_3 &= \{ \exists X = \text{Nat}, 0 \} \text{ as } \{ \exists X, X \}; \\
p_4 &= \{ \exists X = \text{Bool}, \text{true} \} \text{ as } \{ \exists X, X \}; \\
\quad \triangleright p_3 : \{ \exists X, X \} \\
\quad p_4 : \{ \exists X, X \}
\end{align*}\]

Or, more usefully:

\[\begin{align*}
p_5 &= \{ \exists X = \text{Nat}, \{ a = 0, f = \lambda x:\text{Nat}. \text{succ}(x) \} \} \text{ as } \{ \exists X, \{ a : X, f : X \mapsto \text{Nat} \} \}; \\
p_6 &= \{ \exists X = \text{Bool}, \{ a = \text{true}, f = \lambda x:\text{Bool}. 0 \} \} \text{ as } \{ \exists X, \{ a : X, f : X \mapsto \text{Nat} \} \}; \\
\quad \triangleright p_5 : \{ \exists X, \{ a : X, f : X \mapsto \text{Nat} \} \} \\
\quad p_6 : \{ \exists X, \{ a : X, f : X \mapsto \text{Nat} \} \}
\end{align*}\]

19.1.1 Exercise [Quick check]: Here are three more variations on the same theme:

\[\begin{align*}
p_7 &= \{ \exists X = \text{Nat}, \{ a = 0, f = \lambda x:\text{Nat}. \text{succ}(x) \} \} \text{ as } \{ \exists X, \{ a : X, f : X \mapsto X \} \}; \\
p_8 &= \{ \exists X = \text{Nat}, \{ a = 0, f = \lambda x:\text{Nat}. \text{succ}(x) \} \} \text{ as } \{ \exists X, \{ a : X, f : \text{Nat} \mapsto X \} \}; \\
p_9 &= \{ \exists X = \text{Nat}, \{ a = 0, f = \lambda x:\text{Nat}. \text{succ}(x) \} \} \text{ as } \{ \exists X, \{ a : \text{Nat}, f : \text{Nat} \mapsto \text{Nat} \} \}; \\
\quad \triangleright p_7 : \{ \exists X, \{ a : X, f : X \mapsto X \} \} \\
p_8 : \{ \exists X, \{ a : X, f : \text{Nat} \mapsto X \} \} \\
p_9 : \{ \exists X, \{ a : \text{Nat}, f : \text{Nat} \mapsto \text{Nat} \} \}
\end{align*}\]

In what ways are these less useful than \(p_5 \) and \(p_6 \)? (Solution on page ??.)

A useful intuition for the existential elimination construct comes from the analogy with modules. If an existential package is a simple form of module, then package elimination is like an \(\text{let} \) or \(\text{import} \) construct: it allows the components of the module to be used in some other part of the program, but holds the identity of the module’s type component abstract. This can be achieved with a kind of pattern-matching binding:

\[
\Gamma \vdash t_1 : \exists X.T_{12} \\
\Gamma, X, x : T_{12} \vdash t_2 : T_2 \\
\Gamma \vdash \text{let } \{ X, x \} = t_1 \text{ in } t_2 : T_2
\]

(T-UNPACK)

That is, if \(t_1 \) is an expression that yields an existential package, then we can bind its type and term components to the pattern variables \(X \) and \(x \) and use them in computing \(t_2 \).

For example, suppose that \(p \) has the following existential type:
Then the elimination expression

\[
\text{let } \{X, x\} = p \text{ in } (x \cdot f \cdot x).a;
\]

\[
\text{1 : Nat}
\]

opens \(p\) and uses its components \((x \cdot f \text{ and } x \cdot a)\) to compute a numeric result. The body of the elimination form is also permitted to use the type variable \(X\), as in the following example:

\[
\text{let } \{X, x\} = p \text{ in } (\lambda y : X. x \cdot f \cdot y) \cdot x.a;
\]

\[
\text{1 : Nat}
\]

The fact that the package’s representation type is held abstract during the type-checking of the body \(t_1\) means that the only operations allowed on \(x\) are those warranted by its “abstract type” \(T_1\). In the present example, we are not allowed to use \(x \cdot a\) concretely as a number:

\[
\text{let } \{X, x\} = p \text{ in } \text{succ}(x.a);
\]

\[
\text{Error: argument of succ is not a number}
\]

This restriction makes good sense, since we saw above that a package \(p\) with the given existential type might use either \(\text{Nat}\) or \(\text{Bool}\) as its representation type.

There is another, more subtle, way in which type-checking of the existential elimination construct may fail. In the rule T-UNPACK, the type variable \(X\) appears in the context in which \(t_2\)’s type is calculated, but does not appear in the context of the rule’s conclusion. This means that the result type \(T_2\) cannot contain \(X\) free, since any free occurrences of \(X\) will be out of scope in the conclusion. More operationally, in terms of the nameless presentation of terms discussed in Section 5.1, the T-UNPACK rule proceeds in three steps:

1. Check the subexpression \(t_1\) and ensure that it has an existential type \(\exists X . T_{11}\).
2. Extend the context \(\Gamma\) with \(X\) and \(x : T_{11}\) and check that \(t_2\) has some type \(T_2\).
3. Shift the indices of free variables in \(T_2\) down by two, so that it makes sense with respect to \(\Gamma\).
4. Return the resulting type as the type of the whole \(\text{let } \ldots \text{ in } \ldots\) expression.

Clearly, if \(X\) occurs free in \(T_2\), then the shifting step will yield a nonsensical type containing free variables with negative indices; type-checking must fail at this point.

\[
\text{let } \{X, x\} = p \text{ in } x.a;
\]

\[
\text{Error: Scoping error!}
\]
The computation rule for existentials is straightforward: if the package subexpression has already been reduced to a concrete package, then we may substitute the components of the package for the variables X and x in the body t_2:

In terms of the analogy with modules, this rule can be viewed as a kind of “linking” operation, in which symbolic names (X and x) referring to the components of a separately compiled module are replaced by direct references to the actual contents of the module.

Since the type variable X is substituted away by this rule, the resulting program actually has concrete access to the package’s internals. This is just another example of a phenomenon we have seen several times: expressions can become “more typed” as computation proceeds, and in particular an ill-typed expression can reduce to a well-typed one.

Existential types

$$\rightarrow \forall \exists$$

New syntactic forms

- $t ::= ...$
 - $\{\exists T, t\} \text{ as } T$
 - let $\{X, x\} = t$ in t

- $v ::= ...$
 - $\{\exists T, v\} \text{ as } T$

- $T ::= ...$
 - $\{\exists X, T\}$

New evaluation rules $\ (t \rightarrow t')$

- $\frac{\text{let } \{X, x\} = \{\exists T_{11}, v_{12}\} \text{ as } T_1 \text{ in } t_2}{\rightarrow \{X \mapsto T_{11}, x \mapsto v_{12}\} t_{12}}$ (E-PACKBETA)

- $\frac{t_{12} \rightarrow t'_{12}}{\frac{\{\exists T_{11}, t_{12}\} \text{ as } T_1}{\rightarrow \{\exists T_{11}, t'_{12}\} \text{ as } T_1}}$ (E-PACK)

- $\frac{t_{1} \rightarrow t'_{1}}{\text{let } \{X, x\} = t_1 \text{ in } t_2 \rightarrow \text{let } \{X, x\} = t'_{1} \text{ in } t_2}$ (E-UNPACK)

New typing rules $\ (\Gamma \vdash t : T)$

- $\frac{\Gamma \vdash t_2 : \{X \mapsto U\} T_2}{\Gamma \vdash \{\exists X = U, t_2\} \text{ as } \{\exists X, T_2\} : \{\exists X, T_2\}}$ (T-PACK)
19.2 Data Abstraction with Existentials

Abstract Data Types

For a more interesting example, here is a simple package defining an abstract data type of (purely functional) counters.

```haskell
counterADT =
  {exists Counter = Nat,
   {new = 0,
    get = λi:Nat. i,
    inc = λi:Nat. succ(i)}
   as {exists Counter,
       {new: Counter -> Nat,
        inc: Counter -> Counter}};
  counterADT = {exists Counter,
                {new: Counter, get: Counter -> Nat, inc: Counter -> Counter}}
```

The concrete representation of a counter is just a number. The package provides three operations on counters: a constant `new`, a function `get` for extracting a counter’s current value, and a function `inc` for creating a new counter whose stored value is one more than the given counter’s. Having created the counter package, we next open it, exposing the operations as the fields of a record `counter`:

```haskell
let {Counter, counter} = counterADT in
  counter.get (counter.inc counter.new);
```

If we organize our code so that the body of this `let` contains the whole remainder of the program, then this idiom

```haskell
let {Counter, counter} = <counter package> in
  <rest of program>
```

has the effect of declaring a fresh type `Counter` and a variable `counter` of type `{new: Counter, get: Counter -> Nat, inc: Counter -> Counter}`.

It is instructive to compare the above with a more standard abstract data type declaration, such as might be found in a program in Ada [oD80] or Clu [LAB81]:

\[
\Gamma \vdash t_1 : \exists X.T_{12} \quad \Gamma, X, x : T_{12} \vdash t_2 : T_2 \\
\Gamma \vdash \text{let } \{X, x\} = t_1 \text{ in } t_2 : T_2
\]

(T-Unpack)
The version using existential types is somewhat harder to read, compared to the syntactically sugared second version, but otherwise the two programs are essentially identical.

Note that we can substitute an alternative implementation of the `Counter` ADT—for example, one where the internal representation is a record containing a `Nat` rather than just a single `Nat` in complete confidence that the whole program will remain typesafe, since we are guaranteed that the rest of the program cannot access instances of `Counter` except using `get` and `inc`. This is the essence of data abstraction by information hiding.

In the body of the program, the type name `Counter` can be used just like the base types built into the language. We can define functions that operate on counters:

```plaintext
let (Counter, counter) = counterADT in

let addthree = λc:Counter.
    counter.inc (counter.inc (counter.inc c)) in

counter.get (addthree counter.new);
```
We can even define new abstract data types whose representation involves counters. For example, the following program defines an ADT of flip-flops, using a counter as the (not very efficient) representation type:

```tcl
let {Counter,counter} = {Counter = Nat,
{new = 0,
get = \ai:Nat. i,
inc = \ai:Nat. succ(i)}
as {{Counter,
{new: Counter,
get: Counter\rightarrow Nat,
inc: Counter\rightarrow Counter}}

in

let {FlipFlop,flipflop} = {FlipFlop = Counter,
{new = counter.new,
read = \ac:Counter. iseven (counter.get c),
toggle = \ac:Counter. counter.inc c,
reset = \ac:Counter. counter.new}}
as {{FlipFlop,
{new: FlipFlop,
read: FlipFlop\rightarrow Bool,
toggle: FlipFlop\rightarrow FlipFlop,
reset: FlipFlop\rightarrow FlipFlop}}

in

flipflop.read (flipflop.toggle (flipflop.toggle flipflop.new));

> false : Bool
```

19.2.1 Exercise [Recommended]: Follow the model of the above example to define an abstract data type of stacks of numbers, with operations new, push, pop, and isempty. Use the List type introduced in Exercise ?? as the underlying representation. Write a simple main program that creates a stack, pushes a couple of numbers onto it, pops off the top element, and returns it.

This exercise is best done on-line. Use the checker named “everything” and copy the contents of the file test.t from the everything directory (which contains definitions of the List constructor and associated operations) to the top of your own input file.

\[\square \]
Existential Objects

The sequence of “pack then open” that we saw in the last section is the hallmark of ADT-style programming using existential packages. A package defines an abstract type and its associated operations, and each package is opened immediately after it is built, binding a type variable for the abstract type and exposing the ADT’s operations abstractly, with this variable in place of the concrete representation type. Existential types can also be used to model other common types of data abstraction. In this section, we show how a simple form of objects can be understood in terms of a different idiom based on existentials.

We will again use simple counters as our running example, as we did both in the previous section on existential ADTs and in our previous encounter with objects, in Chapter 14. Unlike the counters of Chapter 14, however, the counter objects in this section will be purely functional: sending the message inc to a counter will not change its internal state in-place, but rather will return a fresh counter object with incremented internal state.

A counter object, then, will comprise two basic components: a number (its internal state), and a pair of methods, get and inc, that can be used to query and update the state. We also need to ensure that the only way that the state of a counter object can be queried or updated is by using one of its two methods. This can be accomplished by wrapping the state and methods in an existential package, abstracting the type of the internal state. For example, a counter object holding the value 5 might be written

\[
c = \{\exists x. \text{Nat}, \{\text{state} = 5, \text{methods} = \{\text{get} = \lambda x. \text{Nat}. x, \text{inc} = \lambda x. \text{Nat}. \text{succ}(x)\}\}\}
\]

as Counter;

where:

Counter = \{\exists X, \{\text{state}: X, \text{methods}: X \rightarrow \text{Nat}, \text{inc}: X \rightarrow X\}\};

To use a method of a counter object, we will need to open it up and apply the appropriate element of its methods to its state field. For example, to get the current value of \(c\) we can write:

let \{X, body\} = c in
body.methods.get(body.state);

\(\triangleright 5 : \text{Nat}\)

More generally, we can define a little function that “sends the get message” to any counter:

sendget = \(\lambda c.\text{Counter}.\)

let \{X, body\} = c in
body.methods.get(body.state);
Invoking the `inc` method of a counter object is a little more complicated. If we simply do the same as for `get`, the typechecker complains

```hs
let \{X,\text{body}\} = c in
  \text{body.methods.inc(\text{body.state});}
```

> Error: Scoping error!

because the type variable `X` appears free in the type of the body of the `let`. Indeed, what we’ve written doesn’t make intuitive sense either, since the result of the `inc` method is a “bare” internal state, not an object. To satisfy both the typechecker and our informal understanding of what invoking `inc` should do, we must take this fresh internal state and “repackage” it as a counter object, using the same record of methods and the same internal state type as in the original object:

```hs
\text{c1 = let \{X,\text{body}\} = c in}
  \{\exists X = X,
    \{\text{state = body.methods.inc(\text{body.state)},
          methods = body.methods}\}
  \text{as Counter;}
```

More generally, to “send the `inc` message” to an arbitrary counter object, we can write:

```hs
\text{sendinc} = \lambda c:\text{Counter}.
  \text{let \{X,\text{body}\} = c in}
  \{\exists X = X,
    \{\text{state = body.methods.inc(\text{body.state)},
          methods = body.methods}\}
  \text{as Counter;}
```

> sendinc : Counter \rightarrow Counter

More complex operations on counters can be implemented in terms of these two basic operations:

```hs
\text{addthree} = \lambda c:\text{Counter}. \text{sendinc (sendinc (sendinc c));}
```

> addthree : Counter \rightarrow Counter

19.2.2 Exercise: Implement `FlipFlop` objects with `Counter` objects as their internal representation type, following the model of the `FlipFlop` ADT in Section 19.2. □
Objects vs. ADTs

What we have seen in Section 19.2 falls significantly short of a full-blown model of object-oriented programming. Many of the features that we saw in Chapter 14, including subtyping, classes, inheritance, and recursion through self and super, are missing here. We will come back to modeling these features in later chapters, when we have added a few necessary refinements to our modeling language. But even for the simple objects we have developed so far, there are several interesting comparisons to be made with ADTs.

At the coarsest level, the two programming idioms fall at opposite ends of a spectrum: when programming with ADTs, packages are opened immediately after they are built; on the other hand, when packages are used to model objects they are kept closed as long as possible—until the moment when they must be opened so that one of the methods can be applied to the internal state.

A consequence of this difference is that the “abstract type” of counters refers to different things in the two styles. In an ADT-style program, the counter values manipulated by client code such as \texttt{add} and \texttt{inc} are elements of the underlying representation type (e.g., simple numbers). In an object-style program, a counter value is a whole package—not only a number, but also the implementations of the \texttt{get} and \texttt{inc} methods. This stylistic difference is reflected in the fact that, in the ADT style, the type \texttt{Counter} is a bound type variable introduced by the \texttt{let} construct, while in the object style \texttt{Counter} abbreviates the whole existential type \(\exists X, \{\text{state}:X, \text{methods}: \{\text{get}:X\to\text{Nat}, \text{inc}:X\to X\}\}\). Thus:

- All the counter values generated from the counter ADT are elements of the same internal representation type; there is a single implementation of the counter operations that works on this internal representation.

- Each counter object, on the other hand, carries its own representation type and its own set of methods that work for this representation type.

\begin{exercise} In what ways do the classes found in mainstream object-oriented languages like C++ and Java resemble the simple object types discussed here? In what ways do they resemble ADTs? \end{exercise}

19.3 Encoding Existentials

The encoding of pairs as a polymorphic type in Exercise 18.4.5 suggests a similar encoding for existential types in terms of universal types, using the intuition that an element of an existential type is a pair of a type and a value:

\[
\{\exists X,T\} \equiv \forall Y. (\forall X. T\to Y) \to Y.
\]

That is, an existential package is thought of as a data value that, given a result type and a “continuation,” calls the continuation to yield a final result. The continuation
takes two arguments—a type \(\mathcal{X} \) and a value of type \(\mathcal{Y} \)—and uses them in computing the final result.

Given this encoding of existential types, the encoding of the packaging and unpackaging constructs is essentially forced. To encode a package

{\exists \mathcal{X}=\mathcal{S}, \mathcal{t}} \ as \ {\exists \mathcal{X}, \mathcal{Y}}

we must exhibit a value of type \(\forall \mathcal{Y}. \ (\forall \mathcal{X}. \ \mathcal{T} \rightarrow \mathcal{Y}) \rightarrow \mathcal{Y} \). This type begins with a universal quantifier, the body of which is an arrow. An element of this type should therefore begin with two abstractions:

{\exists \mathcal{X}=\mathcal{S}, \mathcal{t}} \ as \ {\exists \mathcal{X}, \mathcal{T}} \quad \text{def} \quad \lambda \mathcal{Y}. \ \lambda \mathcal{f}: (\forall \mathcal{X}. \ \mathcal{T} \rightarrow \mathcal{Y}). \ \mathcal{f} \ [\mathcal{S}] \ ...

To complete the job, we need to return a result of type \(\mathcal{Y} \); clearly, the only way to do this is to apply \(\mathcal{f} \) to some appropriate arguments. First, we supply the type \(\mathcal{S} \) (this is a natural choice, being the only type we have lying around at the moment):

{\exists \mathcal{X}=\mathcal{S}, \mathcal{t}} \ as \ {\exists \mathcal{X}, \mathcal{T}} \quad \text{def} \quad \lambda \mathcal{Y}. \ \lambda \mathcal{f}: (\forall \mathcal{X}. \ \mathcal{T} \rightarrow \mathcal{Y}). \ \mathcal{f} \ [\mathcal{S}] \ ...

Now, the type application \(\mathcal{f} \ [\mathcal{S}] \) has type \(\lambda \mathcal{X}: \mathcal{X} \rightarrow \mathcal{S}; (\mathcal{X} \rightarrow \mathcal{Y}) \), i.e., \((\mathcal{x} \rightarrow \mathcal{S}[\mathcal{T}] \rightarrow \mathcal{Y}) \). We can thus supply \(\mathcal{t} \) (which, by rule T-PACK, has type \(\lambda \mathcal{X}: \mathcal{X} \rightarrow \mathcal{S}[\mathcal{T}] \) as the next argument:

{\exists \mathcal{X}=\mathcal{S}, \mathcal{t}} \ as \ {\exists \mathcal{X}, \mathcal{T}} \quad \text{def} \quad \lambda \mathcal{Y}. \ \lambda \mathcal{f}: (\forall \mathcal{X}. \ \mathcal{T} \rightarrow \mathcal{Y}). \ \mathcal{f} \ [\mathcal{S}] \ \mathcal{t}

The type of the whole application \(\mathcal{f} \ [\mathcal{S}] \ \mathcal{t} \) is now \(\mathcal{Y} \), as required.

To encode the unpacking construct

{\exists \mathcal{X}=\mathcal{S}, \mathcal{t}} \ as \ {\exists \mathcal{X}, \mathcal{T}} \quad \text{def} \quad \lambda \mathcal{Y}. \ \lambda \mathcal{f}: (\forall \mathcal{X}. \ \mathcal{T} \rightarrow \mathcal{Y}). \ \mathcal{f} \ [\mathcal{S}] \ \mathcal{t}

we proceed as follows. First, the typing rule T-UNPACK tells us that \(\mathcal{t}_1 \) should have some type \(\exists \mathcal{X}, \mathcal{T}_1 \), that \(\mathcal{t}_2 \) should have type \(\mathcal{T}_2 \) (under an extended context binding \(\mathcal{X} \) and \(\mathcal{X}: \mathcal{T}_1 \), and that \(\mathcal{T}_2 \) is the type we expect for the whole \(\text{let} \ldots \text{in} \ldots \) expression.\(^2\) As in the Church encodings in Section 18.4, the intuition here is that the introduction form \(\exists \mathcal{X}=\mathcal{S}, \mathcal{t} \) is encoded as an active value that “performs its own elimination.” So the encoding of the elimination form here should simply take the existential package \(\mathcal{t}_1 \) and apply it to enough arguments to yield a result of the desired type \(\mathcal{T}_2 \):

{\exists \mathcal{X}=\mathcal{S}, \mathcal{t}} \ as \ {\exists \mathcal{X}, \mathcal{T}} \quad \text{def} \quad \lambda \mathcal{Y}. \ \lambda \mathcal{f}: (\forall \mathcal{X}. \ \mathcal{T} \rightarrow \mathcal{Y}). \ \mathcal{f} \ [\mathcal{S}] \ \mathcal{t}

The first argument to \(\mathcal{t}_1 \) should be the desired result of the whole expression, i.e., \(\mathcal{T}_2 \):

{\exists \mathcal{X}=\mathcal{S}, \mathcal{t}} \ as \ {\exists \mathcal{X}, \mathcal{T}} \quad \text{def} \quad \lambda \mathcal{Y}. \ \lambda \mathcal{f}: (\forall \mathcal{X}. \ \mathcal{T} \rightarrow \mathcal{Y}). \ \mathcal{f} \ [\mathcal{S}] \ \mathcal{t}

\(^2\)Strictly speaking, the fact that the translation requires these extra bits of type information not present in the syntax of terms means that what we are translating is actually typing derivations, not terms.
Now, the application $t_1 \ [T_2]$ has type $(\forall X. \ T \rightarrow T_2) \rightarrow T_2$. That is, if we can now supply another argument of type $(\forall X. T \rightarrow T_2)$, we will be finished. Such an argument can be obtained by abstracting the body t_2 on the variables X and x:

$$
\text{let } \{X,x\}=t_1 \text{ in } t_2 \overset{\text{def}}{=} t_1 \ [T_2] (\lambda X. \lambda x:T_{11}. \ t_2).
$$

This finishes the encoding.

19.3.1 Exercise: What must we prove to show that our encoding of existentials is correct? □

19.3.2 Exercise [Recommended]: Take a blank piece of paper and, without looking at the above encoding, regenerate it from scratch. □

19.3.3 Exercise: Can universal types be encoded in terms of existential types? □

19.4 Implementation

type ty =
 ...
 | TySome of string * ty

let term =
 ...
 | Term of info * string * ty * term * ty
 | Term of info * string * string * term * term

19.5 Historical Notes

The correspondence between ADTs and existential types was first developed by Mitchell and Plotkin [MP88]. (They also noticed the correspondence with objects.)
Chapter 20

Bounded Quantification

Many of the interesting problems in type systems arise from the combination of features that, in themselves, may be quite simple. In this chapter, we encounter our first substantial example: a system that mixes subtyping with polymorphism.

The most basic combination of these features is actually quite straightforward. We simply add to the subtyping relation a rule for comparing quantified types:

\[
S <: T \quad \frac{}{\forall X.S <: \forall X.T}
\]

We consider here a more interesting combination, in which the syntax, typing, and subtyping rules for universal quantifiers are actually refined to take subtyping into account. The resulting notion of bounded quantification substantially increases both the expressive power of the system and its metatheoretic complexity.

20.1 Motivation

To see why we might want to combine subtyping and polymorphism in this more intimate manner, consider the identity function on records with a numeric field a:

\[
f = \lambda x: \{a: \text{Nat}\}. x;
\]

\[
\triangleright f : \{a: \text{Nat}\} \rightarrow \{a: \text{Nat}\}
\]

If we define a record of this form

\[
ra = \{a=0\};
\]

then we can apply \(f \) to \(ra \) (in any of the systems that we have seen), yielding a record of the same form.

\[
(f \ ra);
\]

\[
\triangleright \{a=0\} : \{a: \text{Nat}\}
\]
If we define a larger record `rab` with two fields, `a` and `b`,

```
rab = {a=0, b=true};
```

we can also apply `f` to `rab`, using the rule of subsumption introduced in Chapter 13.

```
(f rab);
```

```
-> {a=0, b=true} : {a:Nat}
```

However, the type of the result has only the field `a`, which means that a term like `(f rab),b` will be judged ill typed. In other words, by passing `rab` through the identity function, we have lost the ability to access its `b` field!

Using the polymorphism of System F, we can write `f` in a different way:

```
fpoly = λX. λx:X. x;
```

```
fpoly : ∀X. X → X
```

The application of `fpoly` to `rab` (and an appropriate type argument) yields the desired result:

```
(fpoly [{a:Nat, b:Boolean}] rab);
```

```
-> {a=0, b=true} : {a:Nat, b:Boolean}
```

But in making the type of `x` into a variable, we have given up some information that `f` might have wanted to use. For example, suppose we intend that `f` return a pair of its original argument and the numeric successor of its `a` field.

```
f2 = λx:{a:Nat}. {orig=x, asucc=succ(x.a)};
```

```
f2 : {a:Nat} → {orig:{a:Nat}, asucc:Nat}
```

Again, we can apply `f2` to both `ra` and `rab`, losing the `b` field in the second case.

```
(f2 ra);
```

```
-> {orig={a=0}, asucc=1} : {orig:{a:Nat}, asucc:Nat}
```

```
(f2 rab);
```

```
-> {orig={a=0, b=true}, asucc=1} : {orig:{a:Nat}, asucc:Nat}
```

But this time polymorphism offers us no solution. If we replace the type of `x` by a variable `X` as before, we lose the constraint that `x` must have an `a` field, which is required to compute the `asucc` field of the result.

```
f2poly = λX. λx:X. {orig=x, asucc=succ(x.a)};
```

```
Error: Expected record type
```

The fact about the operational behavior of `f2` that we want to express in its type is:
\(f2 \) takes an argument of any record type \(R \) that includes a numeric a field and returns as its result a record containing a field of type \(R \) and a field of type \(\text{Nat} \).

We can use the subtype relation to express this concisely as follows:

\(f2 \) takes an argument of any subtype \(R \) of the type \(\{a: \text{Nat}\} \) and returns a record containing a field of type \(R \) and a field of type \(\text{Nat} \).

This intuition can be formalized by introducing a subtyping constraint on the bound variable \(X \) of \(f2 \text{poly} \).

\[
\begin{align*}
f2 \text{poly} &= \lambda X:\{a: \text{Nat}\}. \lambda x:X. \{\text{orig}=x, \text{asucc}=\text{succ}(x.a)\}; \\
\Rightarrow f2 \text{poly} & : \forall X:\{a: \text{Nat}\}. X \rightarrow \{\text{orig}=X, \text{asucc}=\text{Nat}\}
\end{align*}
\]

This interaction of subtyping and polymorphism, called bounded quantification, leads us to a type system commonly called System \(F_c \) (“\(F \) sub”), which is the topic of this chapter.

20.2 Definitions

We form System \(F_c \) by combining the types and terms of System \(F \) with the subtype relation from Chapter 13 and refining universal quantifiers with subtyping constraints on their bound variables. When we define the subtyping rule for these bounded quantifiers, there will actually be two choices: a more tractable but less flexible rule called the kernel rule and a more expressive full subtyping rule, which will turn out to raise some unexpected difficulties when we come to designing typechecking algorithms.

Kernel \(F_c \)

Since type variables now have associated bounds (just as ordinary variables have associated types), we must keep track of them during both subtyping and typechecking. We change the type bindings in contexts to include an upper bound for each type variable, and add contexts to all the rules in the subtype relation. These bounds will be used during subtyping to justify steps of the form “the type variable \(X \) is a subtype of the type \(T \) because we assumed it was.”

\[
\frac{X <: T \in \Gamma}{\Gamma \vdash X <: T} \quad \text{(S-TVAR)}
\]

20.2.1 Exercise [Quick check]: Exhibit a subtyping derivation showing that

\(B <: \text{Top}, X <: B, Y <: X \vdash B \rightarrow Y <: X \rightarrow B \).
Next, we introduce bounded universal types, extending the syntax and typing rules for ordinary universal types in the obvious way. The only rule where the extension is not completely obvious is the subtyping rule for quantified types, S-ALL. We give here the simpler variant, called the kernel subtyping rule for universal quantifiers, in which the bounds of the two quantifiers being compared must be identical. (The term “kernel” comes from Cardelli and Wegner’s original paper [CW85], where this variant of F_c was called Kernel Fun.)

$$\frac{X <: T \in \Gamma}{\Gamma \vdash X <: T} \quad \text{(S-TVAR)}$$

For easy reference, here is the complete definition of kernel F_c, with differences from previous systems highlighted:

$$F_c^k : Bounded \text{ quantification} \quad \rightarrow \forall < \ bq$$

Syntax

$$t ::= \begin{cases} x & \text{(terms...)} \\ \lambda x : T . t & \text{variable} \\ t \ t & \text{application} \\ \lambda X <: T . t & \text{type abstraction} \\ t [T] & \text{type application} \end{cases}$$

$$v ::= \begin{cases} \lambda x : T . t & \text{abstraction value} \\ \lambda X <: T . t & \text{type abstraction value} \end{cases}$$

$$T ::= \begin{cases} x & \text{type variable} \\ \top & \text{maximum type} \\ \top \rightarrow T & \text{type of functions} \\ \forall X <: T . T & \text{universal type} \end{cases}$$

$$\Gamma ::= \begin{cases} \emptyset & \text{empty context} \\ \Gamma , x : T & \text{term variable binding} \\ \Gamma , X <: T & \text{type variable binding} \end{cases}$$

Evaluation

$$\begin{align*}
(\lambda x : T_{11} . t_{12} \rightarrow (x \mapsto v_2) t_{12} & \quad \text{(E-Beta)} \\
\frac{t_1 \rightarrow t_1'}{t_1 \rightarrow (x \mapsto v_2) t_{12}} & \quad \text{(E-App1)}
\end{align*}$$
\[
\frac{t_2 \rightarrow t_2'}{\nu_1 t_2 \rightarrow \nu_1 t_2'} \quad (\text{E-APP2})
\]

\[
(\lambda x : T_{11}. t_{12})[T_{12}] \rightarrow (x \mapsto T_2)t_{12} \quad (\text{E-BETA2})
\]

\[
t_1 \rightarrow t_1' \quad \frac{t_1}{[T_{12}] \rightarrow t_1'[T_{12}]} \quad (\text{E-TAPP})
\]

Subtyping \((\Gamma \vdash S < T)\)

\[
\Gamma \vdash S < S
\]

\[
\Gamma \vdash S < U \quad \Gamma \vdash U < T
\]

\[
\Gamma \vdash S < T
\]

\[
\Gamma \vdash S < \text{Top}
\]

\[
X : T \in \Gamma
\]

\[
\Gamma \vdash X < T
\]

\[
\Gamma \vdash T_1 < S_1 \quad \Gamma \vdash S_2 < T_2
\]

\[
\frac{\Gamma \vdash S_1 \rightarrow S_2 < T_1 \rightarrow T_2}{\Gamma \vdash S_1 \rightarrow S_2 < T_1 \rightarrow T_2}
\]

\[
\Gamma, X : U_1 \vdash S_2 < T_2
\]

\[
\Gamma \vdash \forall X : U_1 . S_2 < \forall X : U_1 . T_2
\]

Typing \((\Gamma \vdash t : T)\)

\[
x : T \in \Gamma
\]

\[
\frac{\Gamma \vdash x : T}{\Gamma \vdash x : T}
\]

\[
\Gamma, x : T_1 \vdash t_2 : T_2
\]

\[
\frac{\Gamma \vdash \lambda x : T_1 . t_2 : T_1 \rightarrow T_2}{\Gamma \vdash \lambda x : T_1 . t_2 : T_1 \rightarrow T_2}
\]

\[
\frac{\Gamma \vdash t_1 : T_{11} \rightarrow T_{12} \quad \Gamma \vdash t_2 : T_{11}}{\Gamma \vdash t_1 \ t_2 : T_{12}}
\]

\[
\frac{\Gamma \vdash X : T_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda X : T_1 . t_2 : \forall X : T_1 . T_2}
\]

\[
\frac{\Gamma \vdash t_1 : \forall X : T_{11} . T_{12} \quad \Gamma \vdash T_2 < T_{11}}{\Gamma \vdash t_1 [T_{12}] : (X \mapsto T_2)[T_{12}]}
\]

\[
\frac{\Gamma \vdash t : S \quad \Gamma \vdash S < T}{\Gamma \vdash t : T}
\]

(T-SUB)
Full F_c.

In kernel F_c, two quantified types can only be compared if their upper bounds are identical. If we think of quantifiers as a kind of arrow types (since they classify functions from types to terms), then the kernel rule corresponds to a “covariant” version of the subtyping rule for arrows, in which the domain of an arrow type is not allowed to vary in subtypes:

$$\frac{S_2 <: T_2}{U \rightarrow S_2 <: U \rightarrow T_2}$$

This restriction feels rather unnatural, both for arrows and for quantifiers. Carrying the analogy a little further, we can allow the “left-hand side” of bounded quantifiers to vary (contravariantly) during subtyping:

$$f : "\text{Full } \text{bounded quantification} \rightarrow \forall <: \text{ bq } \text{ full}$$

New subtyping rules ($\Gamma \vdash S <: T$)

$\Gamma \vdash T_1 <: S_1$, $\Gamma, X <: T_1 \vdash S_2 <: T_2$

$\Gamma \vdash \forall X <: S_1, S_2 <: \forall X <: T_1, T_2$ (S-ALL)

Intuitively, the “full F_c” quantifier subtyping rule can be understood as follows. A type $T = \forall X <: T_1, T_2$ describes a collection of polymorphic values (functions from types to values), each mapping subtypes of T_1 to instances of T_2. If T_1 is a subtype of S_1, then the domain of T is smaller than that of $S = \forall X <: S_1, S_2$, so S is a stronger constraint and describes a smaller collection of polymorphic values. Moreover, if, for each type U that is an acceptable argument to the functions in both collections (i.e., one that satisfies the more stringent requirement $U <: T_1$), the U-instance of S_2 is a subtype of the U-instance of T_2, then S is a “pointwise stronger” constraint and again describes a smaller collection of polymorphic values.

The system with just the kernel subtyping rule for quantified types is called Kernel F_c (or F_c^k). The same system with the full quantifier subtyping rule is called Full F_c (or F_c^f). The bare name F_c refers ambiguously to both systems.

20.2.2 **Exercise [Quick check]**: Give a couple of examples of pairs of types that are related by the subtype relation of full F_c, but are not subtypes in kernel F_c.

20.2.3 **Exercise [Challenging]**: Can you find any *useful* examples with this property?
20.3 Examples

We now present some simple examples of programming in F_{BO}. More sophisticated uses of bounded quantification will appear in later chapters.

Encoding Products

In Exercise ??, we gave the following encoding of pairs in System F. The elements of the type

$\text{Pair } T_1 \times T_2 = \forall X. (T_1 \rightarrow T_2 \rightarrow X) \rightarrow X;$

correspond to pairs of T_1 and T_2. The constructor pair and the destructors fst and snd were defined as follows:

\[\text{pair} = \lambda X. \lambda Y. \lambda x: X. \lambda y: Y. (\lambda p: X \times Y. p x y) \text{ as Pair } X \ Y; \]
\[\text{fst} = \lambda X. \lambda Y. \lambda p: \text{Pair } X \ Y. p \begin{array}{c} \exists \end{array} \ (\lambda x: X. \lambda y: Y. x); \]
\[\text{snd} = \lambda X. \lambda Y. \lambda p: \text{Pair } X \ Y. p \begin{array}{c} \exists \end{array} \ (\lambda x: X. \lambda y: Y. y); \]

Of course, the same encoding can be used in F_{c}, since F_{c} contains all the features of System F. What is interesting, though, is that this encoding also has some natural subtyping properties. In fact, the expected subtyping rule for pairs

$\Gamma \vdash S_1 \triangleleft T_1, \quad \Gamma \vdash S_2 \triangleleft T_2$

follows directly from the encoding.

20.3.1 Exercise [Quick check]: Show this. \hfill \Box

Encoding Records

It is interesting to notice that records and record types—including subtyping—can actually be encoded in the pure calculus. The encoding presented here was discovered by Cardelli [Car92]. We begin by defining flexible tuples as follows:

20.3.2 Definition: For each $n \geq 0$ and types T_1 through T_n, let

\[\{T_i : i \in 1..n\} \overset{\text{def}}{=} \text{Pair } T_1 \ (\text{Pair } T_2 \ ... \ (\text{Pair } T_n \ \text{Top}) \ ...). \]

In particular, $\{\} = \text{Top}$. Similarly, for terms t_1 through t_n, let

\[\{t_i : i \in 1..n\} \overset{\text{def}}{=} \text{pair } t_1 \ (\text{pair } t_2 \ ... \ (\text{pair } t_n \ \text{top}) \ ...), \]
where we elide the type arguments to \(\texttt{pair}\), for the sake of brevity. (Recall that \(\texttt{top}\) is just some element of \(\text{Top}\).) The projection \(\texttt{t.n}\) (again eliding type arguments) is:

\[
\text{\texttt{fst} (snd (snd \ldots (snd t)) \ldots)}
\]

From this abbreviation, we immediately obtain the following rules for subtyping and typing.

\[
\begin{align*}
\Gamma \vdash \cdot: & \cdot \\
\Gamma \vdash \{S_i : l \in \text{L} \mid i \leq n\} \prec \{T_i : l \in \text{L} \mid i \leq n\} \\
\Gamma \vdash \{T_i : l \in \text{L} \mid i \leq n\} : \{T_i : l \in \text{L} \mid i \leq n\} \\
\Gamma \vdash t : \{T_i : l \in \text{L} \mid i \leq n\} \\
\Gamma \vdash t.n : T_i
\end{align*}
\]

Now, let \(\mathcal{L}\) be a countable set of labels, with a fixed total ordering given by the bijective function \(\text{label-with-index} : \mathbb{N} \rightarrow \mathcal{L}\). We define records as follows:

20.3.3 Definition: Let \(\text{L}\) be a finite subset of \(\mathcal{L}\) and let \(S_i\) be a type for each \(l \in \text{L}\). Let \(m\) be the maximal index of any element of \(\text{L}\), and

\[
\tilde{S}_l = \begin{cases} S_l & \text{if } \text{label-with-index}(i) = l \in \text{L} \\ \texttt{top} & \text{if } \text{label-with-index}(i) \not\in \text{L} \end{cases}
\]

The record type \(\{l: S_i \mid l \in \text{L}\}\) is defined as the flexible tuple \(\{\tilde{S}_i \mid l \in \text{L}\}\). Similarly, if \(t_1\) is a term for each \(l : \text{L}\), then

\[
\tilde{t}_l = \begin{cases} t_l & \text{if } \text{label-with-index}(i) = l \in \text{L} \\ \texttt{top} & \text{if } \text{label-with-index}(i) \not\in \text{L} \end{cases}
\]

The record value \(\{l: t_i \mid l \in \text{L}\}\) is \(\{\tilde{t}_i \mid l \in \text{L}\}\). The projection \(\texttt{t.i}\) is just the tuple projection \(\texttt{t.i}\).

This encoding validates the expected rules for typing and subtyping:

\[
\begin{align*}
\Gamma \vdash \{1_i : T_i \mid l \in \text{L} \mid i \leq n\} \prec \{1_i : T_i \mid l \in \text{L} \mid i \leq n\} & \quad \text{(S-RCD-WIDTH)} \\
\text{for each } i & \quad \Gamma \vdash S_i \prec T_i \Rightarrow \Gamma \vdash \{1_i : S_i \mid l \in \text{L} \mid i \leq n\} \prec \{1_i : T_i \mid l \in \text{L} \mid i \leq n\} & \quad \text{(S-RCD-DEPTH)}
\end{align*}
\]
Church Encodings with Subtyping

As a last simple illustration of the expressiveness of F_ω, let’s take a look at what happens when we add bounded quantification to the encoding of Church Numerals in System F that we saw in Section 18.4. The original polymorphic type of church numerals was:

$$C\text{Nat} = \forall X. (X \to X) \to X \to X;$$

The intuitive reading of this type was: “Tell me a result type T and give me a function on T and an element of T, and I’ll give you back another element of T formed by iterating the function you gave me n times over the base value you gave.”

We can generalize this by adding two bounded quantifiers and refining the types of the parameters s and z.

$$S\text{Nat} = \forall X:\!\!\top. \forall S:\!\!\top. \forall Z:\!\!\top. (X \to S) \to Z \to X;$$

Intuitively, this type can be read as follows: “Give me a generic result type T and two subtypes S and Z. Then give me a function that maps from the whole set T into the subset S and an element of the special set Z, and I’ll return you an element of T formed in the same way as before.”

To see why this is an interesting generalization, consider this slightly different type:

$$S\text{Zero} = \forall X:\!\!\top. \forall S:\!\!\top. \forall Z:\!\!\top. (X \to S) \to Z \to Z;$$

Although $S\text{Zero}$ has almost the same form as $S\text{Nat}$, it says something much stronger about the behavior of its elements, since it promises that its result will be an element of Z, not just of T. In fact, there is just one way that an element of Z could be returned—namely by yielding just z itself. In other words, the value

$$s\text{zero} = (\lambda X. \lambda s:\!\!\top. \lambda z:\!\!\top. \lambda s: X \to S. \lambda z: Z. z) \text{ as } S\text{Zero};$$

is the only inhabitant of the type $S\text{Zero}$. On the other hand, the similar type

$$S\text{Pos} = \forall X:\!\!\top. \forall S:\!\!\top. \forall Z:\!\!\top. (X \to S) \to Z \to S;$$

has more inhabitants; for example,

$$s\text{one} = (\lambda X. \lambda s:\!\!\top. \lambda z:\!\!\top. \lambda s: X \to S. \lambda z: Z. s z) \text{ as } S\text{Pos};$$

$$s\text{two} = (\lambda X. \lambda s:\!\!\top. \lambda z:\!\!\top. \lambda s: X \to S. \lambda z: Z. s (s z)) \text{ as } S\text{Pos};$$

$$s\text{three} = (\lambda X. \lambda s:\!\!\top. \lambda z:\!\!\top. \lambda s: X \to S. \lambda z: Z. s (s (s z))) \text{ as } S\text{Pos};$$

and so on.

Moreover, notice that $S\text{Zero}$ and $S\text{Pos}$ are both subtypes of $S\text{Nat}$ (Exercise: check this), so we also have $s\text{zero} : S\text{Nat}$, $s\text{one} : S\text{Nat}$, $s\text{two} : S\text{Nat}$, etc.

Finally, we can similarly refine the typings of operations defined on church numerals. For example, the type system is capable of detecting that the successor function always returns a positive number:
ssucc = \texttt{\lambda} n: \texttt{SNat}. \\
(\texttt{\lambda} x. \texttt{\lambda} s: x. \texttt{\lambda} \texttt{\forall} z: x. \texttt{\forall} s: z \texttt{\rightarrow} s. \texttt{\lambda} z: z.

\texttt{s (n [x] [s] [z] s z))

\texttt{as SPos;}

\textbf{\texttt{\narrow} ssucc : SNat \rightarrow SPos

Similarly, by refining the types of its parameters, we can write the function \texttt{plus} in such a way that the typechecker gives it the refined type \texttt{SPos \rightarrow SZero \rightarrow SPos}.

\texttt{\begin{array}{lcl}
+spuzx = \texttt{\lambda} n: \texttt{SPos}. \texttt{\lambda} m: \texttt{SZero}.

(\texttt{\lambda} [x]. \texttt{\lambda} s: x. \texttt{\lambda} \texttt{\forall} \texttt{\forall} z: x. \texttt{\forall} s: z \texttt{\rightarrow} s. \texttt{\lambda} (n [x] [s] [z] s (m [x] [s] [z] s z))

\texttt{as SPos;}

\textbf{\texttt{\narrow} plus} : \texttt{SPos} \rightarrow \texttt{SZero} \rightarrow \texttt{SPos

\textbf{\texttt{\narrow} plus} : \texttt{\forall} \texttt{SNat} \rightarrow \texttt{\forall} \texttt{SPos} \rightarrow \texttt{\forall} \texttt{SPos} \\
\texttt{\narrow} \texttt{\forall} S \texttt{\rightarrow} \texttt{SNat} \rightarrow \texttt{SNat

The previous example and exercise raise an interesting point: obviously, we don’t want to have several different versions of \texttt{plus} lying around and have to decide which to apply based on the expected types of its arguments: we want to have a single version of \texttt{plus} whose type contains all these possibilities—something like

\texttt{\begin{array}{lcl}
\texttt{\forall} \texttt{SNat} \rightarrow \texttt{SNat} \rightarrow \texttt{SNat

The desire to support this kind of overloading has led to the study of systems with intersection types.

\textbf{\texttt{\narrow} plus} : \texttt{\forall} \texttt{SNat} \rightarrow \texttt{SNat} \rightarrow \texttt{SNat

\textbf{\texttt{\narrow} plus} : \texttt{\forall} \texttt{SZero} \rightarrow \texttt{\forall} \texttt{SZero} \rightarrow \texttt{\forall} \texttt{SZero

\textbf{\texttt{\narrow} plus} : \texttt{\forall} \texttt{SPos} \rightarrow \texttt{\forall} \texttt{SPos} \rightarrow \texttt{\forall} \texttt{SPos

\textbf{\texttt{\narrow} plus} : \texttt{\forall} \texttt{SNat} \rightarrow \texttt{\forall} \texttt{SNat} \rightarrow \texttt{\forall} \texttt{SNat

The examples that we have seen in this section are amusing to play with, but they might not convince you that \texttt{F} is a system of tremendous practical importance! We will come to some more interesting uses of bounded quantification in Chapter 28, but these will require just a little more machinery, which we will develop in the intervening chapters.
20.4 Safety

We now consider the metatheory of both kernel and full systems of bounded quantification (F^k and F^f). Much of the development is the same for both systems: we carry it out first for the simpler case of F^k, and then consider F^f.

The type preservation property can actually be proved quite directly for both systems, with minimal technical preliminaries. This is good, since the soundness of the type system is a critical property, while other properties such as decidability may be less important in some contexts. (The soundness theorem belongs in the language definition, while decision procedures are buried in the compiler.) We develop the proof in detail for F^k. The argument for F^f is very similar.

We begin with a couple of technical facts about the typing and subtyping relations. The proofs go by straightforward induction on derivations.

20.4.1 Lemma [Permutation]:

1. If $\Gamma \vdash t : T$ and Δ is a permutation of Γ, then $\Delta \vdash t : T$.
2. If $\Gamma \vdash S \prec T$ and Δ is a permutation of Γ, then $\Delta \vdash S \prec T$.

20.4.2 Lemma [Weakening]:

1. If $\Gamma \vdash t : T$ and $x \notin \text{dom}(\Gamma)$, then $\Gamma, x : S \vdash t : T$.
2. If $\Gamma \vdash S \prec T$ and $x \notin \text{dom}(\Gamma)$, then $\Gamma, X : S \vdash S \prec T$.
3. If $\Gamma \vdash S \prec T$ and $x \notin \text{dom}(\Gamma)$, then $\Gamma, X : S \vdash S \prec T$.
4. If $\Gamma \vdash S \prec T$ and $X \notin \text{dom}(\Gamma)$, then $\Gamma, X : S \vdash S \prec T$.

As usual, the proof of type preservation relies on several lemmas relating substitution with the typing and subtyping relations.

20.4.3 Definition: We write $[X \mapsto S] \Gamma$ for the context obtained by substituting S for X in the right-hand sides of all of the bindings in Γ.

20.4.4 Exercise [Quick check]: Show the following properties of subtyping and typing derivations:

1. if $\Gamma, X : Q, \Delta \vdash S \prec T$ and $\Gamma \vdash P \prec Q$, then $\Gamma, X : P, \Delta \vdash S \prec T$;
2. if $\Gamma, X : Q, \Delta \vdash t : T$ and $\Gamma \vdash P \prec Q$, then $\Gamma, X : P, \Delta \vdash t : T$;

These properties are often called narrowing because they involve restricting the range of the variable X.

Next, we have the usual lemma relating substitution and the typing relation.
20.4.5 Lemma [Substitution preserves typing]: If $\Gamma, x: q, \Delta \vdash t : T$ and $\Gamma \vdash q : Q$, then $\Gamma, \Delta \vdash \{x \mapsto q\} t : T$.

Proof: Straightforward induction on a derivation of $\Gamma, x: q, \Delta \vdash t : T$, using the properties proved above.

Since we may substitute types for type variables during reduction, we also need a lemma relating type substitution and typing, as we did in System F. Here, though, we must deal with one new twist: the proof of this lemma (specifically, the T-SUB case) depends on a new lemma relating substitution and subtyping:

20.4.6 Lemma [Type substitution preserves subtyping]: If $\Gamma, x: q, \Delta \vdash S \triangleleft: T$ and $\Gamma \vdash p \triangleleft: Q$, then $\Gamma, (x \mapsto p)\Delta \vdash (x \mapsto p) S \triangleleft: (x \mapsto p) T$.

Proof: By induction on a derivation of $\Gamma, x: q, \Delta \vdash S \triangleleft: T$. The only interesting cases are the last two:

Case S-TVAR: $S = Y \quad Y : T \in (\Gamma, x: q, \Delta)(Y)$

There are two subcases to consider. If $Y \neq x$, then the result follows immediately from S-TVAR. On the other hand, if $Y = x$, then we have $T = Q$ and $(x \mapsto p) S = Q$, and the result follows by S-REFL.

Case S-ALL: $S = \forall z: U_1, S_2 \quad T = \forall z: U_1, T_2$

$\Gamma, x: q, \Delta, z: U_1 \vdash S_2 \triangleleft: T_2$

By the induction hypothesis, $\Gamma, (x \mapsto p)\Delta, z: (x \mapsto p)U_1 \vdash (x \mapsto p) S_2 \triangleleft: (x \mapsto p) T_2$.

By S-ALL, $\Gamma, (x \mapsto p)\Delta \vdash \forall z: (x \mapsto p)U_1, (x \mapsto p) S_2 \triangleleft: \forall z: (x \mapsto p)U_1, (x \mapsto p) T_2$,

that is, $\Gamma, (x \mapsto p)\Delta \vdash (x \mapsto p) (\forall z: U_1, S_2) \triangleleft: (x \mapsto p) (\forall z: U_1, T_2)$, as required.

20.4.7 Lemma [Type substitution preserves typing]: If $\Gamma, x: q, \Delta \vdash t : T$ and $\Gamma \vdash p \triangleleft: Q$, then $\Gamma, (x \mapsto p)\Delta \vdash (x \mapsto p) t : (x \mapsto p) T$.

Proof: By induction on a derivation of $\Gamma, x: q, \Delta \vdash t : T$. We give just the interesting cases.

Case T-TAPP: $t = t_1 \ [T_2] \quad \Gamma, x: q, \Delta \vdash t_1 : \forall z: T_{11}, T_{12}$

$T = (z \mapsto T_2) T_{12}$

By the induction hypothesis, $\Gamma, (x \mapsto p)\Delta \vdash (x \mapsto p) t_1 : (x \mapsto p) (\forall z: T_{11}, T_{12})$,

i.e., $\Gamma, (x \mapsto p)\Delta \vdash (x \mapsto p) t_1 : (z \mapsto T_{11}) (x \mapsto p) T_{12}$.

By T-TAPP, $\Gamma, (x \mapsto p)\Delta \vdash (x \mapsto p) t_1 : (x \mapsto p) T_{12}$.

(20.4.6) $\Gamma, (x \mapsto p)\Delta \vdash (x \mapsto p) (t_1 \ [T_2]) : (x \mapsto p) (\forall z: T_{12})$.

Case T-SUB: $\Gamma, x: q, \Delta \vdash t : S \quad \Gamma, x: q, \Delta \vdash S \triangleleft: T$

By the induction hypothesis, $\Gamma, (x \mapsto p)\Delta \vdash (x \mapsto p) t : (x \mapsto p) T$.

By the preservation of subtyping under substitution (20.4.6), $\Gamma, (x \mapsto p)\Delta \vdash (x \mapsto p) S \triangleleft: (x \mapsto p) T$.

Next, we establish some simple structural facts about the subtype relation.
20.4.8 Lemma [Inversion of the subtyping relation, from right to left]:

1. If $\Gamma \vdash S \triangleleft x$, then S is a type variable.

2. If $\Gamma \vdash S \triangleleft T_1 \rightarrow T_2$, then either S is a type variable or else $S = S_1 \rightarrow S_2$ with $\Gamma \vdash T_1 \triangleleft S_1$ and $\Gamma \vdash S_2 \triangleleft T_2$.

3. If $\Gamma \vdash S \triangleleft \forall x : U_1 . T_2$, then either S is a type variable or else $S = \forall x : U_1 . S_2$ with $\Gamma, x : U_1 \vdash S_2 \triangleleft T_2$.

Proof: Part (1) follows by an easy induction on subtyping derivations. The only interesting case is the rule S-TRANS, which proceeds by two uses of the induction hypothesis, first on the right premise and then on the left. The arguments for the other parts are similar (part (1) is used in the transitivity cases).

20.4.9 Exercise: Show the following “left to right inversion” properties:

1. If $\Gamma \vdash S_1 \rightarrow S_2 \triangleleft T$, then either $T = \text{Top}$ or else $T = T_1 \rightarrow T_2$ with $\Gamma \vdash T_1 \triangleleft S_1$ and $\Gamma \vdash S_2 \triangleleft T_2$.

2. If $\Gamma \vdash \forall x : U . S_2 \triangleleft T$, then either $T = \text{Top}$ or else $T = \forall x : U . T_2$ with $\Gamma, x : U \vdash S_2 \triangleleft T_2$.

3. If $\Gamma \vdash x \triangleleft T$, then either $T = \text{Top}$ or else $T = x$ or $\Gamma \vdash S \triangleleft T$, where $x : S \in \Gamma$.

4. If $\Gamma \vdash \text{Top} \triangleleft T$, then $T = \text{Top}$.

We use Lemma 20.4.8 for one straightforward structural property of the subtyping relation that will be needed in the critical cases of the type preservation proof.

20.4.10 Lemma:

1. If $\Gamma \vdash \lambda x : S_1 . S_2 : T$ and $\Gamma \vdash T \triangleleft U_1 \rightarrow U_2$, then $\Gamma \vdash U_1 \triangleleft S_1$ and there is some S_2 such that $\Gamma, x : S_1 \vdash S_2 : S_2$ and $\Gamma \vdash S_2 \triangleleft U_2$.

2. If $\Gamma \vdash \lambda x : S_1 . S_2 : T$ and $\Gamma \vdash T \triangleleft \forall x : U_1 . U_2$, then $U_1 = S_1$ and there is some S_2 such that $\Gamma, x : S_1 \vdash S_2 : S_2$ and $\Gamma, x : S_1 \vdash S_2 \triangleleft U_2$.

Proof: Straightforward induction on typing derivations, using Lemma 20.4.8 for the induction case (rule T-SUB).

With all these facts in-hand, the actual proof of type preservation is straightforward.

20.4.11 Theorem [Preservation]: If $\Gamma \vdash t : T$ and $\Gamma \vdash t \rightarrow t'$, then $\Gamma \vdash t' : T$.

Proof: By induction on a derivation of $\Gamma \vdash t : T$. All of the cases are straightforward, using the facts established in the above lemmas.
Case T-VAR: \(t = x \)
This case cannot actually arise, since we assumed \(\Gamma \vdash t \longrightarrow t' \) and there are no evaluation rules for variables.

Case T-Abs: \(t = \lambda x : T_1, t_2 \)
Ditto.

Case T-App: \(t = t_1 \quad t_2 \quad \Gamma \vdash t_1 : T_{11} \rightarrow T_{12} \)
\(T = T_{12} \quad \Gamma \vdash t_2 : T_{11} \)

By the definition of the evaluation relation, there are three subcases to consider:

\[\text{Subcase:} \quad \Gamma \vdash t_1 \longrightarrow t'_1 \quad t' = t'_1 \quad t_2 \]
Then the result follows from the induction hypothesis and T-App.

\[\text{Subcase:} \quad t_1 \text{ is a value} \quad \Gamma \vdash t_2 \longrightarrow t'_2 \quad t' = t_1 \quad t'_2 \]
Similar.

\[\text{Subcase:} \quad t_1 = \lambda x : U_{11}, u_{12} \quad t' = (x \mapsto t_2)u_{12} \]
By Lemma 20.4.10, \(\Gamma, x : U_{11} \vdash u_{12} : U_{12} \) with \(\Gamma \vdash T_{11} \triangleleft U_{11} \) and \(\Gamma \vdash U_{12} \triangleleft T_{12} \). By the preservation of typing under substitution (Lemma 20.4.5), \(\Gamma \vdash (x \mapsto t_2)u_{12} : U_{12} \), from which \(\Gamma \vdash (x \mapsto T_2)u_{12} : T_{12} \) follows by T-SUB.

Case T-TabS: \(t = \lambda X < : U, t \)
Can't happen.

Case T-Tapp: \(t = t_1 \quad [T_2] \quad \Gamma \vdash t : \forall X < : T_{11}, T_{12} \)
\(T = (X \mapsto T_2)T_{12} \quad \Gamma \vdash T_2 \triangleleft T_{11} \)

By the definition of the evaluation relation, there are two subcases to consider:

\[\text{Subcase:} \quad t_1 \longrightarrow t'_1 \quad t' = t'_1 \quad [T_2] \]
The result follows from the induction hypothesis and T-TAPP.

\[\text{Subcase:} \quad t_1 = \lambda X < : U_{11}, u_{12} \quad t' = (x \mapsto T_2)u_{12} \]
By Lemma 20.4.10, \(U_{11} = T_{11} \) and \(\Gamma, X < : U_{11} \vdash u_{12} : U_{12} \) with \(\Gamma, X < : U_{11} \vdash U_{12} \triangleleft T_{12} \). By the preservation of typing under substitution (20.4.5), \(\Gamma \vdash (x \mapsto T_2)u_{12} : (x \mapsto T_2)u_{12} : (x \mapsto T_2)T_{12} \) follows by Lemma 20.4.6 and T-SUB.

Case T-Sub: \(\Gamma \vdash t : S \quad \Gamma \vdash S \triangleleft T \)
By the induction hypothesis, \(\Gamma \vdash t' : S \); the result follows by T-SUB. \(\square \)

20.4.12 Exercise: Show how to extend the argument in this section to \(F_{x,t}^f \). \(\square \)
20.5 Bounded Existential Types

This final section remains to be written.

Bounded existential quantification

\[F^k_{\xi} \vdash \exists \]

New syntactic forms

\[T ::= \ldots \{ \exists x : T, T \} \]

(types...)

existential type

New subtyping rules \((\Gamma \vdash S \prec T) \)

\[\Gamma, \exists x : U, S_2 \prec T_2 \]

(S-SOME)

\[\Gamma \vdash \{ \exists x : U, S_2 \} \prec \{ \exists x : U, T_2 \} \]

New typing rules \((\Gamma \vdash t : T) \)

\[\Gamma \vdash t_2 : \{ x \mapsto U \}_{T_2} \quad \Gamma \vdash U \prec T_1 \]

(T-PACK)

\[\Gamma \vdash \{ \exists x : U, t_2 \} \text{ as } \{ \exists x : T_1, T_2 \} : \{ \exists x : T_1, T_2 \} \]

\[\Gamma \vdash t_1 : \exists x : T_{11}, T_{12} \quad \Gamma, x : T_{11}, x : T_{12} \vdash t_2 : T_2 \]

(T-UNPACK)

20.5.1 **Exercise:** Show how the subtyping rule S-SOME can be obtained from the subtyping rules for universals by extending the encoding of existential types in terms of universal types described in Section 19.3. □

20.6 **Historical Notes and Further Reading**

The idea of bounded quantification was introduced by Cardelli and Wegner [CW85] in the language Fun. (Their “Kernel Fun” calculus corresponds to our \(F^k_{\xi} \).) Based on informal ideas by Cardelli and formalized using techniques developed by Mitchell [Mit84b], Fun integrated Girard-Reynolds polymorphism [Gir72, Rey74] with Cardelli’s first-order calculus of subtyping [? , Car84]. The original Fun was simplified and slightly generalized by Bruce and Longo [BL90], and again by Curien and Ghelli [CG92], yielding the calculus we call \(F_{\xi} \).

The most comprehensive single paper on bounded quantification is the survey by Cardelli, Martini, Mitchell, and Scedrov [CMMS94].

Fun and its relatives have been studied extensively by programming language theorists and designers. Cardelli and Wegner’s survey paper gives the first programming examples using bounded quantification; more are developed in Cardelli’s study of power kinds [Car88]. Curien and Ghelli [CG92, Ghe90] address a number of syntactic properties of \(F_{\xi} \). Semantic aspects of closely related systems have been studied by Bruce and Longo [BL90], Martini [Mar88], Breazu-Tannen, Coquand,
Gunter, and Scedrov [BCGS91], Cardone [Car89], Cardelli and Longo [CL91], Cardelli, Martini, Mitchell, and Scedrov [91], Curien and Ghelli [CG92, CG91], and Bruce and Mitchell [BM92]. F_c has been extended to include record types and richer notions of inheritance by Cardelli and Mitchell [CM91], Bruce [Br91], Cardelli [Car92], and Canning, Cook, Hill, Olthoff, and Mitchell [CCH89, BM92]. Bounded quantification also plays a key role in Cardelli's programming language Quest [Car91, CL91] and in the Abel language developed at HP Labs [CCHO89, CCH89, CHO88, CHC90].

The undecidability of full F_c was shown by Pierce [Pie94] and further analyzed by Ghelli [Ghe95].

The effect of bounded quantification on Church encodings of algebraic datatypes (cf. Section 20.3) was considered by Ghelli thesis [Ghe90] and Cardelli, Martini, Mitchell, and Scedrov [CMMS94].

An extension of F_c with intersection types was studied by Pierce [Pie91a, Pie97] and applied to the modeling of object-oriented languages with multiple inheritance by Compagnoni and Pierce [CP96].
Chapter 21

Implementing Bounded Quantification

Next we consider the problem of building a typechecking algorithm for a language with bounded quantifiers. The algorithm that we construct will be parametric in an algorithm for the subtype relation, which we consider in the following section.

21.1 Promotion

In the typechecking algorithm for λ_e in Section 13.2, the key idea was that we can calculate a minimal type for each term from the minimal types of its subterms. We will use the same basic idea to typecheck λ_k, but we need to take into account one slight complication arising from the presence of type variables in the system.

Consider the term

$$f = \lambda x: \text{Nat} \rightarrow \text{Nat} . \lambda y:X. y \ 5;$$

$$\triangleright f : \forall X: \text{Nat} \rightarrow \text{Nat} . X \rightarrow \text{Nat}$$

This term is clearly well typed, since the type of the variable y in the application $(y \ 5)$ is X, which can be promoted to $\text{Nat} \rightarrow \text{Nat}$ by T-SUB. But the minimal type of y is not an arrow type. In order to find the minimal type of the application, we need to find the minimal arrow type that y possesses—i.e., the minimal arrow type that is a supertype of X. Not too surprisingly, the correct way to find this type is to promote the minimal type of y until it is something other than a type variable.

Formally, write $\Gamma \vdash S \uparrow T$ to mean “T is the least nonvariable supertype of S,” defined by repeated promotion of variables as follows:
21. Implementing Bounded Quantification

Exposure

\[(\Gamma \vdash T \uparrow T') \]

\[
\begin{array}{c}
X <: T \in \Gamma \\
\Gamma \vdash T \uparrow T'
\end{array}
\]

(XA-PROMOTE)

\[
\begin{array}{c}
T \text{ is not a type variable} \\
\Gamma \vdash T \uparrow T
\end{array}
\]

(XA-OTHER)

It is easy to check that these rules define a total function. Moreover, the result of promotion is always the least supertype that has some shape other than a variable.

21.1.1 Lemma: Suppose \(\Gamma \vdash S \uparrow T \).

1. \(\Gamma \vdash S <: T \).

2. If \(\Gamma \vdash S <: U \) and \(U \) is not a variable, then \(\Gamma \vdash T <: U \).

Proof: Part (1) is easy. Part (2) goes by straightforward induction on a derivation of \(\Gamma \vdash S <: U \).

21.2 Minimal Typing

The algorithm for calculating minimal types is built along the same basic lines as the one for \(\lambda \), with one additional twist: the minimal type of a term may always be a type variable, and such a type will need to be promoted to its smallest non-variable supertype (its smallest concrete supertype, we might say) in order to be used on the left of an application or type application.

Algorithmic typing

\[(\Gamma \vdash t : T) \]

\[
\begin{array}{c}
x : T \in \Gamma \\
\Gamma \vdash x : T
\end{array}
\]

(TA-VAR)

\[
\begin{array}{c}
\Gamma, x : T_1 \vdash t_2 : T_2 \\
\Gamma \vdash \lambda x : T_1 \cdot t_2 : T_1 \rightarrow T_2
\end{array}
\]

(TA-ABS)

\[
\begin{array}{c}
\Gamma \vdash t_1 : T_1 \\
\Gamma \vdash T_1 \uparrow (T_{11} \rightarrow T_{12}) \\
\Gamma \vdash t_2 : T_2 \\
\Gamma \vdash T_2 \uparrow T_{11} \\
\Gamma \vdash t_1 \ t_2 : T_{12}
\end{array}
\]

(TA-APP)
The proofs of soundness and completeness of this algorithm with respect to the original typing rules are fairly routine.

21.2.1 Theorem [Minimal typing]:

1. If $\Gamma \vdash t : \tau$, then $\Gamma \vdash t : \tau$.

2. If $\Gamma \vdash t : \tau$, then $\Gamma \vdash t : \eta$ where $\Gamma \vdash \eta : \tau$. \hfill \Box

Proof: Part (1) proceeds by a straightforward induction on algorithmic derivations. Part (2) is more interesting; it goes by induction on a derivation of $\Gamma \vdash t : \tau$. (The most important cases are those for the rules T-APP and T-TAPP.)

Case T-VAR: $t = x \quad x : \tau \in \Gamma$

By TA-VAR, $\Gamma \vdash x : \tau$. By S-REFL, $\Gamma \vdash \tau : \tau$.

Case T-ABS:

$t = \lambda x : \tau_1 . t_2 \quad \Gamma, x : \tau_1 \vdash t_2 : \tau_2 \quad \tau = \tau_1 \rightarrow \tau_2$

By the induction hypothesis, we have $\Gamma \vdash t_1 : \eta_1$ and $\Gamma \vdash t_2 : \eta_2$, with $\Gamma \vdash \eta_1 : \tau_1 \rightarrow \tau_1$ and $\Gamma \vdash \eta_2 : \tau_2$. Let η_1 be the least nonvariable supertype of η_1—i.e., suppose $\Gamma \vdash \eta_1 : \eta_1$. By the promotion lemma (21.1.1), $\Gamma \vdash \eta_1 : \tau_1 \rightarrow \tau_1$. But we know that η_1 is not a variable, so the inversion lemma for the subtype relation (20.4.8) tells us that $\eta_1 = \eta_1 \rightarrow \eta_1$, with $\Gamma \vdash \eta_1 : \eta_1$ and $\Gamma \vdash \eta_1 : \eta_1$. By transitivity, $\Gamma \vdash \eta_2 : \eta_1$, so rule TA-APP applies and gives us $\Gamma \vdash t_1 t_2 : \tau_1 \rightarrow \tau_2$.

Case T-APP:

$t = t_1 t_2 \quad \Gamma \vdash t_1 : \tau_1 \rightarrow \tau_1 \quad \Gamma \vdash t_2 : \tau_2$

By the induction hypothesis, we have $\Gamma \vdash t_1 : \eta_1$ and $\Gamma \vdash t_2 : \eta_2$, with $\Gamma \vdash \eta_1 : \eta_1 \rightarrow \eta_2$ and $\Gamma \vdash \eta_2 : \eta_2$. Let η_1 be the least nonvariable supertype of η_1—i.e., suppose $\Gamma \vdash \eta_1 : \eta_1$. By the promotion lemma (21.1.1), $\Gamma \vdash \eta_1 : \eta_1 \rightarrow \eta_1$. But we know that η_1 is not a variable, so the inversion lemma for the subtype relation (20.4.8) tells us that $\eta_1 = \eta_1 \rightarrow \eta_1$, with $\Gamma \vdash \eta_1 : \eta_1$ and $\Gamma \vdash \eta_1 : \eta_1$. By transitivity, $\Gamma \vdash \eta_2 : \eta_1$, so rule TA-APP applies and gives us $\Gamma \vdash t_1 t_2 : \eta_2$, which satisfies the requirements.

Case T-TABS:

$t = \lambda x : \tau_1 . t_2 \quad \Gamma, x : \tau_1 \vdash t_2 : \tau_2 \quad \tau = \forall x : \tau_1 . \tau_2$

By the induction hypothesis, $\Gamma, x : \tau_1 \vdash t_2 : \eta_2$ for some η_2 with $\Gamma, x : \tau_1 \vdash \eta_2 : \tau_2$. By TA-TABS, $\Gamma \vdash t : \forall x : \tau_1 . \eta_2$. Finally, by S-REFL and S-ALL, we have $\Gamma \vdash \forall x : \tau_1 . \eta_2 : \forall x : \tau_1 . \tau_2$.
Case T-TAPP: \(t = t_1 \ [T_2] \quad \Gamma \vdash t_1 : \forall X <\!: T_1 \cdot T_{12} \)
\[T = (X \mapsto T_2)T_{12} \quad \Gamma \vdash T_2 <\!: T_{11} \]
By the induction hypothesis, we have \(\Gamma \vdash t_1 : \mathbb{N}_1 \), with \(\Gamma \vdash \mathbb{N}_1 <\!: \forall X <\!: T_1 \cdot T_{12} \).
Let \(\mathbb{N}_1 \) be the least nonvariable supertype of \(\mathbb{N}_1 \)—i.e., suppose \(\Gamma \vdash \mathbb{N}_1 \vdash \mathbb{N}_1 \). By the promotion lemma (21.1.1), \(\Gamma \vdash \mathbb{N}_1 <\!: \forall X <\!: T_{11} \cdot T_{12} \). But we know that \(\mathbb{N}_1 \) is not a variable, so the inversion lemma for the subtype relation (20.4.8) tells us that \(\mathbb{N}_1 = \forall X <\!: \mathbb{N}_{11} \cdot \mathbb{N}_{12} \), with \(\mathbb{N}_{11} = T_{11} \) and \(\Gamma \), \(X <\!: T_{11} \vdash \mathbb{N}_{12} <\!: T_{12} \). Rule TA-TAPP gives us \(\Gamma \vdash t_1 \ [T_2] \ : \ (X \mapsto T_2)\mathbb{N}_{12} <\!: (X \mapsto T_2)T_{12} = T \).

Case T-SUB: \(\Gamma \vdash t : S \quad \Gamma \vdash S <\!: T \)
By the induction hypothesis, \(\Gamma \vdash t : \mathbb{M} \) with \(\Gamma \vdash \mathbb{M} <\!: S \). By S-TRANS, \(\Gamma \vdash \mathbb{M} <\!: T \), from which T-SUB yields the desired result.

21.2.2 Corollary [Decidability of typing]: The \(F_k^2 \) typing relation is decidable (if we are given a decision procedure for the subtyping relation).

Proof: Given \(\Gamma \) and \(t \), we can check whether there is some \(T \) such that \(\Gamma \vdash t : T \) by using the algorithmic typing rules to generate a proof of \(\Gamma \vdash t : T \). If we succeed, then this \(T \) is also a type for \(T \) in the original typing relation (by part (1) of 21.2.1). If not, then part (2) of 21.2.1 implies that \(t \) has no type in the original typing relation.

Finally, note that the algorithmic typing rules constitute a terminating algorithm, since they are syntax-directed and always reduce the size of \(t \) when read from bottom to top.

21.2.3 Exercise: Show how to add primitive booleans and conditionals to the minimal typing algorithm for \(F_c^k \). (Solution on page 261.)

21.3 Subtyping in \(F_k^c \)
As we saw in the simply typed lambda-calculus with subtyping, the subtyping rules in their present form do not constitute an algorithm for deciding the subtyping relation. We cannot use them “from bottom to top,” for two reasons:

1. There are some overlaps between the conclusions of different rules (specifically, between S-REFL and nearly all the other rules). That is, looking at the form of a derivable subtyping statement \(\Gamma \vdash S <\!: T \), we cannot decide which of the rules must have been used last in deriving it.

2. More seriously, one rule (S-TRANS) contains a metavariable in the premises that does not appear in the conclusion. To apply this rule from bottom to top, we’d need to guess what type to replace this metavariable with.
The overlap between S-Refl and the other rules is easily dealt with, using exactly the same technique as we used in Chapter 13: we remove the full reflexivity rule and replace it by a restricted reflexivity rule that applies only to type variables.

\[\Gamma \vdash x : x \]

Next we must deal with S-Trans. Unfortunately, unlike the simple subtyping relation studied in Chapter 13, the transitivity rule here interacts in an important way with another rule—namely S-TVar, which allows assumptions about type variables to be used in deriving subtyping statements. For example, if

\[\Gamma = w : \text{Top}, x : w, y : x, z : y \]

then the statement

\[\Gamma \vdash z : w \]

is provable using all the subtyping rules, but cannot be proved if S-Trans is removed. That is, an instance of S-Trans whose left-hand subderivation is an instance of the axiom S-TVar, as in

\[
\begin{array}{c}
\Gamma \vdash z : y \quad (\text{S-TVar}) \\
\Gamma \vdash y : w \quad (\text{S-Trans})
\end{array}
\]

\[\therefore \Gamma \vdash z : w \]

cannot, in general, be eliminated.

Fortunately, it turns out that derivations of this form are the only essential uses of transitivity in subtyping. This observation can be made precise by introducing a new subtyping rule

\[
\Gamma \vdash x : U \in \Gamma, \quad \Gamma \vdash U : T
\]

that captures exactly this pattern of variable lookup followed by transitivity, and showing (as we will do below) that replacing the transitivity and variable rules by this one does not change the set of derivable subtyping statements.

These intuitions are summarized in the following definition. The algorithmic subtype relation of \(\Gamma^k \) is the least relation closed under the following rules:

Algorithmic subtyping

\[
\begin{array}{c}
\Gamma \vdash S : T \\
\Gamma \vdash S : \text{Top} \quad (\text{SA-Top}) \\
\Gamma \vdash x : x \quad (\text{SA-Refl-TVar}) \\
\Gamma \vdash x : T, \quad \Gamma \vdash U : T \\
\Gamma \vdash x : T \\
\end{array}
\]
21.3.1 Lemma [Reflexivity of the algorithmic subtype relation]: The statement \(\Gamma \vdash T \ll T \) is provable for all \(\Gamma \) and \(T \).

Proof: Easy induction on \(T \).

21.3.2 Lemma [Transitivity of the algorithmic subtype relation]: If \(\Gamma \vdash S \ll Q \) and \(\Gamma \vdash Q \ll T \), then \(\Gamma \vdash S \ll T \).

Proof: By induction on the sum of the sizes of the two derivations. Given two derivations of some total size, we proceed by considering the final rules in each.

First, if the right-hand derivation is an instance of SA-TOP, then we are done, since \(\Gamma \vdash S \ll \text{Top} \) by SA-TOP. Moreover, if the left-hand derivation is an instance of SA-TOP, then \(Q = \text{Top} \) and by looking at the algorithmic rules we see that the right-hand derivation must also be an instance of SA-TOP.

If either derivation is an instance of SA-REFL-TVAR, then we are again done since the other derivation is the desired result.

Next, if the left-hand derivation ends with an instance of SA-TRANS-TVAR, then \(S = X \) with \(X \ll U \in \Gamma \) and we have a subderivation with conclusion \(\Gamma \vdash U \ll Q \).

By the induction hypothesis, \(\Gamma \vdash U \ll T \), and, by SA-TRANS-TVAR again, \(\Gamma \vdash X \ll U \ll T \), as required.

If the left-hand derivation ends with an instance of SA-ARROW, then we have \(S = S_1 \rightarrow S_2 \) and \(Q = Q_1 \rightarrow Q_2 \), with subderivations \(\Gamma \vdash Q_1 \ll S \) and \(\Gamma \vdash S_2 \ll Q \).

But, since we have already considered the case where the right-hand derivation is SA-TOP, the only remaining possibility is that the right-hand derivation also ends with SA-ARROW; we therefore have \(T = T_1 \rightarrow T_2 \), and two more subderivations \(\Gamma \vdash T_1 \ll Q_1 \) and \(\Gamma \vdash Q_2 \ll T_2 \). We now apply the induction hypothesis twice, obtaining \(\Gamma \vdash T_1 \ll S_1 \) and \(\Gamma \vdash S_2 \ll T_2 \). Finally, SA-ARROW yields \(\Gamma \vdash S_1 \rightarrow S_2 \ll T_1 \rightarrow T_2 \), as required.

The case where the left-hand derivation ends with an instance of SA-ALL is similar.

21.3.3 Theorem [Soundness and completeness of algorithmic subtyping]:

1. If \(\Gamma \vdash S \ll T \) then \(\Gamma \vdash S \ll T \).

2. If \(\Gamma \vdash S \ll T \) then \(\Gamma \vdash S \ll T \).
Proof: Both directions proceed by induction on derivations. Soundness is routine. Completeness is also straightforward, since we have already done the hard work (for the reflexivity and transitivity rules of the original subtype relation) in Lemmas 21.3.1 and 21.3.2.

Finally, we should check that the subtyping rules define an algorithm that is total—i.e., that always terminates no matter what input it is given. We do this by assigning a weight to each subtyping statement, and checking that the algorithmic rules all have conclusions with greater weight than their premises.

21.3.4 Definition: The weight of a type \(T \) in a context \(\Gamma \), written \(\text{weight}_\Gamma(T) \), is defined as follows:

\[
\begin{align*}
\text{weight}_\Gamma(X) &= \text{weight}_{\Gamma_1}(U) + 1 & &\text{if } \Gamma = \Gamma_1, X : U, \Gamma_2 \\
\text{weight}_\Gamma(\text{Top}) &= 1 \\
\text{weight}_\Gamma(T_1 \rightarrow T_2) &= \text{weight}_{\Gamma_1}(T_1) + \text{weight}_{\Gamma_2}(T_2) + 1 \\
\text{weight}_\Gamma(\forall X : T_1. T) &= \text{weight}_{\Gamma, X : T_1}(T_2) + 1
\end{align*}
\]

The weight of a subtyping statement \(\Gamma \vdash S \prec T \) is the maximum weight of \(S \) and \(T \) in \(\Gamma \).

21.3.5 Theorem: The weight of the conclusion in an instance of any of the algorithmic subtyping rules is strictly greater than the weight of any of the premises.

Proof: Straightforward inspection of the rules.

21.4 Subtyping in \(F^f_k \)

The only difference in the full system \(F^f_k \) is that the quantifier subtyping rule \(S\text{-ALL} \) is replaced by the more expressive variant:

\[
\Gamma \vdash T_1 \prec S_1 \quad \Gamma, X : T_1 \vdash S_2 \prec T_2 \quad \frac{}{\Gamma \vdash \forall X : S_1, S_2 \prec \forall X : T_1, T_2} (S\text{-ALL})
\]

The algorithmic subtype relation of \(F^f_k \) consists of exactly the same set of rules as the algorithm for \(F^k_c \), except that \(S\text{-ALL} \) is refined to reflect the new version of \(S\text{-ALL} \):

\[
\Gamma \vdash T_1 \prec S_1 \quad \Gamma, X : T_1 \vdash S_2 \prec T_2 \quad \frac{}{\Gamma \vdash \forall X : S_1, S_2 \prec \forall X : T_1, T_2} (S\text{-ALL})
\]

As with \(F^k_c \), the soundness and completeness of this algorithmic relation with respect to the original subtype relation can be shown easily, once we have established that the algorithmic relation is reflexive and transitive. For reflexivity, the argument is exactly the same as before. For transitivity, on the other hand, the issues are more subtle.
21.4.1 Lemma [Transitivity and narrowing]:

1. If \(\Gamma \vdash S \ll Q \) and \(\Gamma \vdash Q \ll T \), then \(\Gamma \vdash S \ll T \).

2. If \(\Gamma, x \ll Q, \Delta \vdash X \ll N \) and \(\Gamma \vdash P \ll Q \) then \(\Gamma, x \ll P, \Delta \vdash S \ll T \).

Proof: The two parts are proved simultaneously, by induction on the size of \(Q \). At each stage of the induction, the argument for part (2) assumes that part (1) has been established already for the \(Q \) in question; part (1), on the other hand, uses part (2) only for strictly smaller \(Q \)s.

1. Most of the argument is identical to the proof of 21.3.2. The only difference lies in the case where both of the given derivations end in instances of SA-ALL. In this case, we have

\[
\begin{align*}
S &= \forall X \ll S_1, S_2 \\
Q &= \forall X \ll Q_1, Q_2 \\
T &= \forall X \ll T_1, T_2 \\
\Gamma \vdash Q_1 \ll S_1 \\
\Gamma, x \ll Q_1 &\vdash S_2 \ll Q_2 \Gamma \vdash T_1 \ll Q_1 \\
\Gamma, x \ll T_1 &\vdash Q_2 \ll S_2
\end{align*}
\]

as subderivations. By part (1) of the induction hypothesis, we can immediately combine the three subderivations for the bounds to obtain \(\Gamma \vdash T_1 \ll S_1 \). For the bodies, we need to work a little harder, since the two contexts do not quite agree. We first use part (2) of the induction hypothesis to “narrow” the bound of \(X \) in the derivation of \(\Gamma, x \ll Q_1 \vdash S_2 \ll Q_2 \), obtaining \(\Gamma, x \ll T_1 \vdash S_2 \ll Q_2 \). Now part (1) of the induction hypothesis applies, yielding \(\Gamma, x \ll T_1 \vdash S_2 \ll T_2 \). Finally, by SA-ALL, \(\Gamma \vdash \forall X \ll S_1, S_2 \ll \forall X \ll T_1, T_2 \), as required.

2. Given \(Q \) of a certain size, we use an inner induction on the size of a derivation of \(\Gamma, x \ll Q, \Delta \vdash S \ll T \), with a case analysis on the last rule used in this derivation.

The only interesting case is SA-TRANS-TVAR, where \(S = X \) and \(\Gamma, x \ll Q, \Delta \vdash Q \ll T \) as a subderivation. By the inner induction hypothesis, \(\Gamma, x \ll P, \Delta \vdash X \ll T \). Rule SA-TRANS-TVAR now yields \(\Gamma, x \ll P, \Delta \vdash X \ll T \), as required.

21.4.2 Exercise: Show that \(T^1 \) has joins and bounded meets. (Solution on page 261.)

21.4.3 Exercise: Consider the types (due to Ghelli [Ghe90, p. 92])

\[
S = \forall X \ll Y \rightarrow Z, Y \rightarrow Z
\]
21. Implementing Bounded Quantification

and

\[T = \forall X <: Y’ \to Z’. Y’ \to Z’ \]

and the context \(\Gamma = Y <: \text{Top}, Z <: \text{Top}, Y’ <: Y, Z’ <: Z. \)

1. In \(F’ \), how many types are subtypes of both \(S \) and \(T \) under \(\Gamma \).
2. Show that, in \(F’ \), the types \(S \) and \(T \) have no meet under \(\Gamma \).
3. Exhibit a pair of types that has no join (under \(\Gamma \)) in \(F’ \).

(Solution on page 265.) \(\square \)

21.5 Undecidability of Subtyping in Full \(F_c \)

Unfortunately, the proof of termination of the \(F_c \) subtyping algorithm in Section ?? does not work for \(F_c \).

21.5.1 Exercise [Quick check]: Why not? \(\square \)

In fact, not only does this particular proof technique not work—the subtyping algorithm actually does not terminate on some inputs. Here is an example, due to Ghelli [Ghe95], that makes the algorithm diverge. First define the following abbreviation:

\[-S \overset{\text{def}}{=} \forall X <: S. X. \]

21.5.2 Fact: \(\Gamma \vdash -S \lhd -T \iff \Gamma \vdash T \lhd S. \) \(\square \)

Proof: Exercise.

Now, define a type \(T \) as follows:

\[T = \forall X <: \text{Top}. - (\forall Y <: X. -Y). \]

If we use the algorithmic subtyping rules bottom-to-top to attempt to construct a subtyping derivation for the statement

\[X_0 <: T \vdash X_0 \lhd (\forall X_1 <: X_0. -X_1) \]

we end up in an infinite regress of larger and larger “subgoals”:

\[
\begin{align*}
X_0 &: T & \vdash & X_0 & \lhd & (\forall X_1 <: X_0. -X_1) \\
X_0 &: T & \vdash & \forall X_1 &: \text{Top}. - (\forall X_2 <: X_1. -X_2) & \lhd & (\forall X_1 <: X_0. -X_1) \\
X_0 &: T, X_1 <: X_0 & \vdash & - (\forall X_2 <: X_1. -X_2) & \lhd & -X_1 \\
X_0 &: T, X_1 <: X_0 & \vdash & X_1 & \lhd & (\forall X_2 <: X_1. -X_2) \\
X_0 &: T, X_1 <: X_0 & \vdash & X_0 & \lhd & (\forall X_2 <: X_1. -X_2)
\end{align*}
\]
The α-conversion steps necessary to maintain the well-formedness of the context when new variables are added are performed tacitly here, choosing new names so as to clarify the pattern of regress. The crucial trick is the “re-bounding” that occurs, for instance, between the second and third lines, where the bound of X_1 on the left-hand side is changed from \top in line 2 to X_0 in line 3. Since the whole left-hand side in line 2 is itself the upper-bound of X_0, the re-bounding creates a cyclic pattern where longer and longer chains of variables in the context must be traversed on each loop. (The reader is cautioned not to look for semantic intuitions behind this example; in particular, $\neg \top$ is a negation only in the sense that it allows the left- and right-hand sides of subtyping judgements to be swapped.)

Worse yet, not only does this particular algorithm fail to terminate on some inputs, it can be shown [Pie94] that there is no algorithm that is sound and complete for the original $\forall \exists$ subtyping relation and that terminates on all inputs.

The full proof of this fact is beyond the scope of this book (the argument requires no particularly deep mathematics, but takes several pages to develop). However, to give a little of its flavor, let’s look at one more example.

21.5.3 Definition: The positive and negative occurrences in a type T are defined as follows:

- T itself is a positive occurrence in T.
- If $T_1 \rightarrow T_2$ is a positive (respectively, negative) occurrence, then T_1 is a negative (resp. positive) occurrence and T_2 is a positive (negative) occurrence.
- If $\forall X < : T_1 \cdot T_2$ is a positive (respectively, negative) occurrence, then T_1 is a negative (resp. positive) occurrence and T_2 is a positive (negative) occurrence.

The positive and negative occurrences in a subtyping statement $\Gamma \vdash S \ll T$ are defined as follows: the type S and the bounds of type variables in Γ are negative occurrences. The type T is a positive occurrence.

The words “positive” and “negative” come from logic. According to the well-known “Curry-Howard isomorphism” [How80, CF58] between propositions and types, the type $S \rightarrow T$ corresponds to the logical proposition $S \implies T$, which, by the definition of logical implication, is equivalent to $\neg S \lor T$. The subproposition S here is obviously in a “negative” position—that is, inside of an odd number of negations—if and only if the whole implication appears inside an even number of negations.

21.5.4 Fact: If X occurs only positively in S and negatively in T, then $X <: U \vdash S <: T$ iff $\vdash \lbrace X \mapsto U \rbrace S <: \lbrace X \mapsto U \rbrace T$.

Proof: Exercise.
Now, let T be the following (pretty horrible) type

$$T = \forall x_0:\text{Top}. \forall x_1:\text{Top}. \forall x_2:\text{Top}. \neg(\forall y_0<x_0. \forall y_1<x_1. \forall y_2<x_2. \neg x_0)$$

and consider the subtyping statement

$$\vdash T <: \forall x_0<T. \forall x_1:P. \forall x_2:Q. \neg(\forall y_0<y_0. \forall y_1<y_1. \forall y_2<y_2. \neg y_0)$$

We can think of this statement as a description of the state of a simple computer:

- The variables x_1 and x_2 are the “registers” of this machine. Their current contents are the types P and Q.
- The “instruction stream” of the machine is the last line of the statement: the first instruction is encoded in the bounds (y_2 and y_1—note their order!) of the variables Z_1 and Z_2, and the type U is the remaining instructions in the program.
- The type T, the nested negations, and the bound variables x_0 and y_0 here play much the same role as their counterparts in the simpler example above: they allow us to “turn the crank” and get back to a subgoal of the same shape as the original goal. One turn of the crank will correspond to one cycle of our machine.

In this example, the instruction at the front of the instruction stream encodes the command “switch the contents of registers 1 and 2.” To see this, we use the two facts stated above to calculate as follows. (The values P and Q in the two registers are highlighted, to make them easier to track through the derivation.)

```
$\vdash T$
$\vdash \forall x_0<T. \forall x_1<P. \forall x_2<Q. \neg(\forall y_0<y_0. \forall y_1<y_1. \forall y_2<y_2. \neg y_0)$
iff $\vdash \neg(\forall y_0<T. \forall y_1<P. \forall y_2<Q. \neg T)$
iff $\vdash \neg(\forall y_0<T. \forall y_1<P. \forall y_2<Q. \neg T)$ by Fact 21.5.4
iff $\vdash \neg T$ by Fact 21.5.4
```

```
$\vdash T$
$\vdash \forall z_0<T. \forall z_1<Q. \forall z_2<P. \neg(\forall y_0<y_0. \forall y_1<y_1. \forall y_2<y_2. \neg y_0)$
iff $\vdash \neg T$ by Fact 21.5.4
```

```
$\vdash T$
$\vdash \forall z_0<T. \forall z_1<Q. \forall z_2<P. \neg(\forall y_0<y_0. \forall y_1<y_1. \forall y_2<y_2. \neg y_0)$
iff $\vdash \neg T$ by Fact 21.5.4
```
Note that, at the end of the derivation, not only have the values P and Q switched places, but the instruction that caused this to happen has been used up in the process, leaving U at the front of the instruction stream to be “executed” next. By choosing a value of U that begins in the same way as the instruction we just executed

$$U = \neg (\forall Y_0 <: \text{Top}. \forall Y_1 <: \text{Top}. \forall Y_2 <: \text{Top}.$$

$$- (\forall Z_0 <: Y_0. \forall Z_1 <: Y_2. \forall Z_2 <: Y_1. \ U'))$$

we can perform another swap and return the registers to their original state before continuing with U'. More interestingly, we can choose other values for U that cause different sorts of behavior. For example, if

$$U = \neg (\forall Y_0 <: \text{Top}. \forall Y_1 <: \text{Top}. \forall Y_2 <: \text{Top}.$$

$$- (\forall Z_0 <: Y_0. \forall Z_1 <: Y_2. \forall Z_2 <: Y_1. \ U'))$$

then, on the next cycle of the machine, the current value of register 1 (Q) will appear in the position of U—in effect, performing an “indirect branch” through register 1 to the stream of instructions Q. Conditional constructs and arithmetic (successor, predecessor, and zero-test) can be encoded using a generalization of this trick.

Putting all of this together, we arrive at a proof of undecidability, via a reduction from two-counter machines—a simple variant on ordinary turing machines, consisting of a finite control and two counters, each holding a natural number (cf. [HU79], for example)—to subtyping statements.

21.5.5 Theorem [Undecidability]: For each two-counter machine M, there exists a subtyping statement $S(M)$ such that $S(M)$ is derivable in F_u iff the execution of M halts.

Thus, if we could decide whether any subtype statement is provable, then we could also decide whether any given two-counter machine will eventually halt.

21.5.6 Exercise [Challenging]:

1. Define a variant of F_u with no Top type but with both $X <: T$ and X bindings.
2. Show that the subtype relation for this system is decidable.
3. Does this restriction offer a satisfactory solution to the basic problem? In particular, does it work for languages with additional features such as numbers, records, variants, etc.?

(Hint on page 265.)
Denotational Semantics

By Martin Hofmann and Benjamin Pierce

Some notation is out of date in this chapter.

Denotational semantics is a compositional assignment of mathematical objects to program phrases (terms, types, and typing and subtyping statements). Compositional means that the meaning of a phrase is defined in terms of its outermost constructor and the meanings of its immediate subphrases.

The foremost and easiest application of semantics is demonstrating the soundness and consistency of equational theories—in particular, the one generated by the reduction rules. (To show that the equational theory is sound, we show that terms equated by the theory have equal interpretations; to show that it is consistent—i.e., that not all terms are equated by the equational theory—it suffices to exhibit two terms with different interpretations.) Semantic models can also suggest extensions to the syntax, in particular program logics.

If a semantics is “computationally adequate” (we’ll come back to this term later on), it can also be used to reason about observational equivalence of programs. For example, it is intuitively the case that the two records \(p = \{x=0, y=0\} \) and \(q = \{x=0, y=1\} \) are equal when used at type \(\{x: \text{Nat}\} \), because the only thing that a program can do with a record of type \(\{x: \text{Nat}\} \) is to project out its \(x \) field, and \(p.x = q.x = 0 \). The semantics we are going to develop will allow us to argue that, indeed, \(p \) and \(q \) are observationally equivalent at type \(\{x: \text{Nat}\} \), i.e., that for every closed term \(c : \{x: \text{Nat}\} \rightarrow \text{Nat} \), the terms \(c\ p \) and \(c\ q \) of type \(\text{Nat} \) yield the same result.

Finally, in some cases a (non-standard) semantics can be employed to establish syntactic meta-properties such as normalization or confluence.
22.1 Types as Subsets of the Natural Numbers

In building semantic models of programming languages, types are commonly modeled as sets (or, if the language includes recursion, “domains”); closed terms are modeled as elements of the appropriate sets, open terms as functions of the interpretations of their free variables. For example, a straightforward model of the simply typed lambda-calculus can be obtained by interpreting base types as arbitrary sets (e.g. $\text{Nat} = \mathbb{N}$) and each function type $S \rightarrow T$ as the set of functions from $\llbracket S \rrbracket$ to $\llbracket T \rrbracket$.

For $F\omega$, a more refined framework is required, due principally to the impredicativity of the universal quantifier in System F—the fact that the bound type variable in a type $\forall X T$ ranges over all types, including $\forall X T$ itself. Accordingly, in a simple set-theoretic model, the first candidate for an interpretation of a universal type would be a function whose domain is the set of all sets; such a function cannot exist, for cardinality reasons. A more refined strategy would be to restrict the domain of polymorphic functions to only those sets which actually arise as interpretations of types in our programming language. However, Reynolds [Rey84, RP] has shown that, no matter how we interpret universal types, there cannot exist a model of System F in which a function type $S \rightarrow T$ is interpreted as the full set of functions from $\llbracket S \rrbracket$ to $\llbracket T \rrbracket$. Intuitively, what Reynolds shows is that there is a type R in System F whose interpretation must be the same size as the function space $(\text{R} \rightarrow \text{Bool}) \rightarrow \text{Bool}$; the fact that no such set exists is a direct consequence of Russell’s Paradox.

The key to a successful interpretation of $F\omega$ lies in the observation that the functions we are interested in always arise as the interpretations of finite expressions in our programming language—they are “algorithms,” not arbitrary set-theoretic functions. This means that we may restrict the interpretations of types to subsets of some $a priori$ given universe of data values and algorithms; universal quantifiers may now be taken to range over the subsets of this set.

The Universe of Natural Numbers

A convenient choice for the universe of data values and algorithms is the set \mathbb{N} of natural numbers. As is well known, all flat datatypes such as integers, strings, lists, floating point numbers, etc. can be encoded as natural numbers.\footnote{For example, a pair (m, n) of numbers can be encoded as $2^m \cdot (2 \cdot n + 1)$.}

We will not need to be too formal, here, about the precise encoding of algorithms as numbers. We just assume that

1. we are given some way of interpreting a number n as a partial function $\llbracket n \rrbracket$ from numbers to numbers, and that

\[\text{Namely } R = \forall X \left((\forall X \rightarrow \text{Bool}) \rightarrow \text{Bool} \rightarrow X \rightarrow X \right). \]
2. every “intuitively computable partial function” \(f \) on the natural numbers is represented by some number \(n \), in the sense that \((n)(m) = f(m) \) (where by the equality symbol here we mean the so-called “Kleene equality”: either both \((n)(m)\) and \(f(m)\) are undefined, or both are defined and they are equal).

We write \(\lambda x. \ g(x) \) for the number representing the function mapping each \(x \) to \(g(x) \), where \(g(x) \) is some concrete description of a computable function.

Subset Semantics for \(F_e \)

We can obtain a simple semantics for \(F_e \), in this setting by interpreting types as subsets of \(\mathbb{N} \) and terms as elements of the meaning of their types. More formally, the interpretation of simple types (i.e., the types of the simply typed lambda-calculus) is given by the following recursive definition:

\[
\begin{align*}
[S \rightarrow T] & \quad = \quad \{ t \mid \forall x \in [S]. \ (t)(x) \in [T] \} \\
[\mathbf{1}_1: T_1 \ldots 1_n: T_n] & \quad = \quad \{ t \mid \forall 1_i \in \{1_1 \ldots 1_n\}. \ (t)(1_i) \in [T_i] \}
\end{align*}
\]

A few comments about this definition are in order:

- By convention, a statement like \(\{t\}(x) \in [T] \) means, in particular, that \(\{t\}(x) \) is defined. Thus, if \(t \in [S \rightarrow T] \), then \(\{t\} \) is defined whenever it is applied to an element of \([S]\).

 In other words, although we are interpreting the elements of \(\mathbb{N} \) as partial functions, the interpretations of types turn out to be functions that are total on the elements of their domains.

- For notational convenience, we assume that record labels are drawn from \(\mathbb{N} \), so that records can be modeled as partial functions on numbers and field projection as application.

In order to interpret types containing variables, we must parameterize the above definition with an environment mapping type variables to subsets of \(\mathbb{N} \) and (for subsequent use) term variables to natural numbers. We parameterize the above definition by an environment \(\rho \)

\[
\begin{align*}
[S \rightarrow T]_\rho & \quad = \quad \{ t \mid \forall x \in [S]_\rho. \ (t)(x) \in [T]_\rho \} \\
[\mathbf{1}_1: T_1 \ldots 1_n: T_n]_\rho & \quad = \quad \{ t \mid \forall 1_i \in \{1_1 \ldots 1_n\}. \ (t)(1_i) \in [T_i]_\rho \}
\end{align*}
\]

and add appropriate clauses for type variables and universal types:

\[
\begin{align*}
[X]_\rho & \quad = \quad \rho(X) \\
[\forall [X<S]T]_\rho & \quad = \quad \{ t \mid \forall U \subseteq [S]_\rho. \ t \in [T]_\rho + [U \rightarrow U] \}
\end{align*}
\]

That is, \(\bigcap_{U \subseteq [S]_\rho} [T]_\rho + [U \rightarrow U] \)
Similarly we define the meaning of terms:

\[
\begin{align*}
[x]_\rho & = \rho(x) \\
[0]_\rho & = 0 \\
[succ~t]_\rho & = [t]_\rho + 1 \\
[\text{iter}~T~t_1~t_2~t_3]_\rho & = [t_2]_\rho^n([t_3]_\rho), \text{ where } n = [t_1]_\rho \\
[t.1]_\rho & = ([t]_\rho)(1) \\
[(\{1=t_i\}]_\rho & = \Delta \nu \{ \text{if } l = 1 \text{ then } [t_i]_\rho \text{ else undefined} \} \\
[t.~t']_\rho & = ([t]_\rho)([t']_\rho) \\
[\text{fun}~[x:S]~t]_\rho & = \Delta v \cdot [t]_{\rho + [x:v]} \\
[\text{fun}~[X:S]~t]_\rho & = [t]_\rho \\
[t.~S]_\rho & = [t]_\rho
\end{align*}
\]

Notice that the meaning $[t]_\rho$ only depends on the restriction of ρ to term variables; the interpretation of types, even of those which occur as annotations in t, is irrelevant.

Notice also that the semantics of a term may be undefined either because one of its variables is not declared in the environment or because one of the semantic applications is undefined. Our aim is to formulate a soundness theorem which states that the meaning of every well-typed term is defined and is contained in the meaning of its type. To this end, we need to define what it means for an environment to match a typing context.

22.1.1 Definition: Let ρ be an environment and Γ be a context. Say that ρ satisfies Γ (written $\rho \vdash \Gamma$) if, whenever $x : S$ occurs in Γ, we have $\rho(x)$ and $[S]_\rho$ both defined and the former a subset of the latter and, similarly, whenever $x : S$ occurs in Γ, we have $\rho(x)$ and $[S]_\rho$ both defined with the former an element of the latter. \hfill \square

22.1.2 Theorem [Soundness]: If Γ is a context and ρ an environment satisfying Γ, then:

1. If all the free type variables in S appear in $\text{dom}(\Gamma)$ then $[S]_\rho$ is defined.
2. If $\Gamma \vdash x : S$ then $[[S]]_\rho \subseteq [T]_\rho$.
3. If $\Gamma \vdash t \in S$ then $[t]_\rho$ is an element of $[S]_\rho$. \hfill \square

The proof is by induction on derivations. The most important ingredient is the following substitution lemma.

22.1.3 Lemma [Semantic substitution]:

1. If $[[S]]_\rho + [x:T]_{\rho}$ is defined, then so is $[[X \mapsto T]S]_\rho$ and they are equal.
2. If $[[t]_\rho + [x:T]_{\rho}$ is defined, then so is $[[x \mapsto t']_\rho$ and they are equal. \hfill \square
Proof: By induction on types (part 1) or terms (part 2).

Notice that this substitution lemma is nothing but a formalisation of the requirement of compositionality mentioned in the introduction to this chapter.

Proof of Theorem 22.1.2: Part (1) is by induction on types. Part (2) is by induction on subtyping derivations (not necessarily algorithmic derivations: the transitivity rule is not problematic). Part (3) is by induction on typing derivations. None of the cases in these inductions are difficult; as examples, we show the cases for function abstraction and type application in part (3).

For the function abstraction case, suppose that $\Gamma, x : S \vdash t : T$ and that $\rho \models \Gamma$. Then $\llbracket \text{fun}(x : S)t \rrbracket_\rho = \Lambda x. \llbracket t \rrbracket_{\rho + \{x : S\}}$; call this number d. We must show $d \in \llbracket S \rightarrow T \rrbracket_\rho$—that is, if $a \in \llbracket S \rrbracket_\rho$, then $(d)(a)$ is defined and belongs to $\llbracket T \rrbracket_\rho$. Now, if $a \in \llbracket S \rrbracket_\rho$, then $(d)(a) = \llbracket t \rrbracket_{\rho + \{x : S\}}(a)$. Since $a \in \llbracket S \rrbracket_\rho$, the extended environment $\rho + \{x \mapsto a\}$ satisfies $\Gamma, x : S$, so the induction hypothesis applies, yielding $(d)(a) \in \llbracket T \rrbracket_\rho$, as required.

For the type application case, suppose that $\Gamma \vdash t : \forall X : S T$, that $\Gamma \vdash U < S$, and that $\rho \models \Gamma$. Part (2) gives us $\llbracket U \rrbracket_\rho \subseteq \llbracket S \rrbracket_\rho$. Using the induction hypothesis on t and the interpretation of universal types, we obtain $\llbracket t \rrbracket_\rho \in \llbracket \forall X : S T \rrbracket_\rho$. Thus, by Lemma 22.1.3 and the interpretation of type application, we have $\llbracket t \cdot U \rrbracket_\rho = \llbracket t \rrbracket_\rho \in \llbracket (x \mapsto U)T \rrbracket_\rho$. \bbox

22.1.4 Exercise [Quick check]: How can it happen that $\llbracket x \mapsto t' \rrbracket_\rho$ is defined, but $\llbracket x \mapsto t \rrbracket_\rho$ is not? \bbox

22.1.5 Exercise: Show the proofs of the cases for record and quantifier subtyping for part (2) of the last proof. \bbox

An application of the subset model is that it can be used to decide whether certain types are inhabited by any closed terms. For example, $\llbracket \forall X : \text{Top} \forall X \rrbracket = \bigcap_{\Gamma \in \text{CN}} \Gamma$ is the empty set; so there can be no closed term of type $\forall X : \text{Top} X$, because its interpretation would have to be an element of the empty set. Similarly, the set $\llbracket \forall Y : \text{Top} \forall X : \text{Top} \forall X (X \rightarrow Y) \rightarrow (X \rightarrow Y) \rightarrow X \rightarrow Y \rrbracket$—the interpretation of the type of the fixed-point combinator—is empty, which shows that the fixed-point combinator cannot be interpreted in the subset model, and hence cannot be defined in pure System F_C. This ties in with the observation made above that all functions in the subset model are total.

3From here on, when the environment ρ in an expression $\llbracket t \rrbracket_\rho$ is empty, we will usually omit it.
Problems with the Subset Semantics

Though it validates the typing, subtyping, and evaluation relations, the subset semantics is unsatisfactory because it does not validate some of the rules of the reduction relation. More precisely, from

\[\text{for all } v \in [S] \]

we cannot conclude that

\[[\text{fun}[x:S] \, v] = [\text{fun}[x:S] \, v'] \]

For instance, we have \([0] = 0 = (\text{fun}[y:\text{Nat}] \, 0 \cdot x)\), but not necessarily \([\text{fun}[x:\text{Nat}] \, 0] = [\text{fun}[x:\text{Nat}] \, (\text{fun}[y:\text{Nat}] \, 0 \cdot x)]\), because the semantical lambda abstraction is defined on descriptions, not on actual functions. This possibility represents a failure of extensionality of the semantics.

Another problem with the subset semantics is that, since subtypes are modeled as subsets, the model fails to validate some expected typed equations between records, such as the one we saw above:

\[\{x=0, y=0\} = \{x=0, y=1\} \in \{x: \text{Nat}\} \]

22.2 The PER interpretation

We can obtain these missing equations by endowing each type interpretation with its own “local” notion of equality. In the case of function types, this equality will be defined in such a way that algorithms that map equal arguments to equal results are regarded as equal. (This will solve both of the problems observed at the end of the previous Section, since records are interpreted as partial functions on labels.)

22.2.1 Definition: A partial equivalence relation (PER) is a symmetric and transitive relation (not, in general, reflexive) on the set \(\mathbb{N}\) of natural numbers. □

We write \(mRn\) when \(m\) and \(n\) are related by \(R\); alternatively, we can view \(R\) as a subset of \(\mathbb{N} \times \mathbb{N}\) and write \((m, n) \in R\). When \(R\) is a PER, we write \(\text{dom}(R)\) for the set \(\{n \mid nRn\}\), the set of numbers related to themselves by \(R\). Notice that \(R\) is an equivalence relation on \(\text{dom}(R)\), so a PER can be thought of as consisting of a subset of \(\mathbb{N}\) together with a local equality relation. Also, note that if \(xRy\) then both \(x\) and \(y\) are in \(\text{dom}(R)\).

If \(R\) and \(S\) are PERs, we write \(R \subseteq S\) to mean that \(R\) is a subrelation of \(S\) in the set-theoretic sense—i.e., \(xRy\) implies \(xSy\). This means that \(\text{dom}(S)\) is a superset of \(\text{dom}(R)\) and that the equality in \(S\) on the common part is coarser than the one in \(R\). This will account for the “non-injective” nature of the subtyping relation between record types (the fact that two different records in a type \(S\) can become equal when viewed at a supertype \(T\)).
Interpretation of Types

The types of F_C are interpreted as PERs as follows. (The environment ρ here assigns PERs, not just sets of numbers, to type variables—and, as before, natural numbers to term variables.)

\[
\begin{align*}
\text{[Nat]}_\rho &= \{(n, n) \mid n \in \mathbb{N}\} \\
\text{[Top]}_\rho &= \mathbb{N} \times \mathbb{N} \quad \text{(the everywhere-true relation)} \\
[S \to T]_\rho &= \{(t, t') \mid \forall (x, x') \in [S]_\rho. (t)(x) \equiv (t')\,(x')\} \\
[S_1 : T_1 \ldots 1_n : T_i]_\rho &= \{(t, t') \mid \forall 1_i \in \{1_1 \ldots 1_n\}. (\{t1_i, (t')1_i\} \in \{T_i\}_\rho)\} \\
[\forall [X:S]T]_\rho &= \{(t, t') \mid t[T]_\rho + [I_\omega + \cup] t' \text{ for all } \cup \subseteq [S]_\rho\} \\
\end{align*}
\]

22.2.2 Exercise [Quick check]: Show that, if $f, g \in dom([S \to T]_\rho)$, then $f[S \to T]_\rho g$ iff $f(\alpha)[T]_\rho \cap g(\alpha)$ for all $\alpha \in dom([S])$. □

The interpretation of terms is exactly as in the subset interpretation in Section 22.1. To show that this interpretation is sound, we must slightly modify the definition of satisfaction between environments and contexts: when $x : S$ is a binding in Γ, we require that $\rho(x) \in dom([S]_\rho)$.

22.2.3 Theorem [Semantic soundness of the PER interpretation]: The PER interpretation is sound in the sense that all statements are validated semantically. If $\rho \models \Gamma$, then:

1. $\Gamma \vdash S \triangleleft T$ implies $[S]_\rho \subseteq [T]_\rho'$;
2. $\Gamma \vdash t : S$ implies $[t]_\rho \in \mathit{dom}(S)_\rho$;
3. $t \to^* t'$, with $\Gamma \vdash t : T$ and $\Gamma \vdash t' : T$, implies $[t]_\rho, [T]_\rho, [t']_\rho$. □

Proof: Exercise. The argument is similar to the proof of 22.1.2. First, one establishes the validity of the semantic substitution lemma, replacing subsets by PERs. The proofs then proceed by induction on derivations. In part (2), the statement must be strengthened as follows:

2'. If $\rho \models \Gamma$ and $\rho' \models \Gamma$, and if $\rho(\alpha) = \rho'(x)$ for all α declared in x of Γ and $\rho(\alpha)[S]_\rho \rho'(\alpha)$ for all α of Γ, then $\Gamma \vdash t : S$ implies $[t]_\rho, [S]_\rho, [t']_\rho$. □

Notice that $[S]_\rho = [S]_\rho'$.

One technical note is in order. Strictly speaking, the PER semantics does not model reduction as equality, but rather as relatedness in a certain PER. If one desires actual equality, one can decree that the meaning of a term is not a natural number, but rather an equivalence class of natural numbers; then, however, the meaning of a term depends on its type, which makes the interpretation of subtyping more complicated.
Applications of the PER model

Now we come to the promised application of the PER model as a means to establish observational equivalence of programs. The main idea is that, at the atomic type \mathbb{N}^at, the semantic equality agrees with the syntactic equality given by the reduction relation.

22.2.4 Lemma: If t_1 and t_2 are closed terms of type \mathbb{N}^at, then $[t_1] \equiv [\mathbb{N}^\text{at}] [t_2]$ implies that t_1 and t_2 have the same number as normal form. □

Proof: By the strong normalization of System F (BO, BM, Theorem ??) together with preservation (?), t_1 and t_2 each have some number as normal form. By the soundness theorem (22.2.3, part 3), the interpretation of a term is related to the interpretation of its normal form, so the normal forms of t_1 and t_2 are related by $[\mathbb{N}^\text{at}]$, hence equal. □

The proof of this lemma relies heavily on the strong normalization of F_c. An analogous property also holds in the absence of strong normalization (e.g., in the presence of the fixed-point operator). Here, one must show that, if the interpretation of a term is a number, then the term admits a reduction to this number.

22.2.5 Exercise: Give this argument in detail. □

22.2.6 Definition: Two closed terms t_1, t_2 of type S are observationally equivalent at type S (written $t_1 \equiv_{S} t_2$ or, when S is clear from context, just $t_1 \equiv t_2$) if, for every closed term $c : S \rightarrow \mathbb{N}^\text{at}$, it holds that $c \ t_1$ and $c \ t_2$ reduce to the same number. □

The idea is that $t_1 \equiv t_2$ means that t_1 and t_2 can be replaced by one another in an arbitrary program, since the visible output of a program must be a number.

22.2.7 Remark: This rather simple definition of observational equivalence relies on the fact that there is a distinguished atomic type in which to make observations and on the fact that open terms can be treated as closed terms using functional abstraction (so that we can regard every term containing t as a subphrase is equal to an term of the form $c \ t$, where t does not occur in c). In more complex languages where other binders are available, it may be necessary to extend the notion of observational equivalence to so-called contextual equivalence, where the observing context is a term with a hole somewhere inside it. In particular, such a context may bind free variables in the observed term. □

22.2.8 Theorem [Computational adequacy]: Let t_1 and t_2 be closed terms of a closed type S. If $[t_1] [S] [t_2]$, then $t_1 \equiv_{S} t_2$. □
Thus, we have
\[[c \ t_1] = ([c\!] ([t_1]\!] \Nat\! ([c\!] ([t_2]\!)) = [c \ t_2]. \]

Hence, by Lemma 22.2.4, \(c \ t_1 \) and \(c \ t_2 \) must have the same number as normal form, and \(t_1 \Rightarrow obs \ t_2 \).

The computational adequacy theorem shows how the PER model can be employed to reason about observational equivalence. For example, the two records \(p = \{x=0,y=0\} \) and \(q = \{x=0,y=1\} \) are observationally equivalent at type \(\{x:\Nat\} \).

To see this, note that \([p] \Rightarrow obs \ [q] \), since \(([p])|x = ([q])|x \).

22.2.9 Exercise [Recommended]:

1. Show that if \(e \) and \(f \) are closed, well typed terms, then \(e \Rightarrow obs \ f \).

2. Show that whenever \(\vdash p : T \) where \(T = \{l_1:T_1 \ldots l_n:T_n\} \), we have \(p \Rightarrow obs \{l_1=p.1_1 \ldots l_n=p.1_n\} \).

We now investigate observational equivalence at polymorphic types. As we did with the subset semantics, we can use the PER semantics to argue that types such as \(\forall [X] \forall [Y] (X \rightarrow Y)
\rightarrow (X \rightarrow Y) \rightarrow X \rightarrow Y \) are empty (showing that no fixed-point operator can be defined). Unlike the subset model, though, the PER model can also be used to constrain the elements of inhabited universal types, validating some useful principles of uniformity.

22.2.10 Notation: To reduce clutter in the following, we will often abbreviate \(\{t|n\} \) by \(t \ n \) or \(t|n \).

22.2.11 Proposition: Let \(S \) be an arbitrary type and \(U = \forall \forall [X:S]X \rightarrow X \). If \(f \in \text{dom}(U) \), then \(f \ U \Delta x. x \).

\begin{proof}
We must show that, for every \(\text{PER} \ X \subseteq \{S\} \) and every \(x \in \text{dom}(X) \), we have \(f(x) \in X \). From \(f \in \text{dom}(U) \), we know that, for each \(\text{PER} \ Y \subseteq \{S\} \) and \(x \in \text{dom}(Y) \), we have \(f(x) \in \text{dom}(Y) \). Suppose that \(X \subseteq \{S\} \) and \(x \in \text{dom}(X) \). Choose \(Y \subseteq X \subseteq \{S\} \) to be the singleton \(\{(x, x)\} \). From \(x \in \text{dom}(Y) \) we infer \(f(x) \in \text{dom}(Y) \), so \(f(x) = x \). Thus, \(f(x) \) \(x \) for every \(x \in \text{dom}(X) \).
\end{proof}

Notice that this excludes the possibility of "polymorphically updating" fields of records in the PER model; for example, it follows by a similar argument that every function of type \(\forall [X:1:\Nat]\Nat \rightarrow X \) must discard its \(\Nat \) argument and return its \(X \) argument unchanged. In particular, such a function cannot have the effect of replacing the \(x \) field in its first argument by the number given as its second argument. Also, notice that, by computational adequacy, every closed term
of this type must be observationally equivalent to such a constant function. Polymorphic update can be supported by extending the syntax of F_c, as we shall see in Chapter 23, but such extensions cannot be interpreted in the PER model as it stands; it is, however, possible to construct a more refined PER model, using a different interpretation of subtyping, in which polymorphic update functions do exist [HP95, Pol96, ?].

Next we examine the interpretations of impredicative encodings of algebraic datatypes, such as the Church booleans and Church numerals introduced in Section 18.4.

22.2.12 Proposition: Let CBool be the PER $\forall[X] \ X \rightarrow \{0,1\}$. Let $\text{tt} = \lambda x. \lambda y. \ x$ and $\text{ff} = \lambda x. \lambda y. \ y$. We have $\text{ff}, \text{tt} \in \text{dom}(\text{CBool})$ and, whenever $f \in \text{dom}(\text{CBool})$, either $f \text{CBool} \text{tt}$ or $f \text{CBool} \text{ff}$.

Proof: First, recall that $f \in \text{dom}(\text{CBool})$ means that $x \ X \ x'$ and $y \ X \ y'$ imply $f \ x \ y \ X \ f \ x' \ y'$, for every PER X and numbers x, x', y, y'. In particular, if $x, y \in \text{dom}(X)$, then $f \ x \ y \in \text{dom}(X)$.

Now consider the PER $X = \{(0,0), (1,1)\}$, with $\text{dom}(X) = \{0,1\}$. Since $f \ 0 \ 1 \in \text{dom}(X)$, we have either $f \ 0 \ 1 = 0$ or $f \ 0 \ 1 = 1$. Suppose, without loss of generality, that $f \ 0 \ 1 = 0$. We claim that, in this case, $f \text{CBool} \text{tt}$. Letting x and y be natural numbers, we must show that $f \ x \ y = x$. Using the same argument as before, with 0 and 1 replaced by x and y, we find that $f \ x \ y \in \{x, y\}$. So if $x = y$, then $f \ x \ y = x$ and we are done. Suppose, on the other hand, that x and y are different. There are several cases to consider.

- Suppose x and y are both different from 0 and 1. Let X be the PER with equivalence classes $\{x,0\}$ and $\{y,1\}$—i.e.,

 $X = \{(0,0), (0,x), (y,0), (x,x), (1,1), (1,y), (y,1), (y,y)\}$.

 From $x \ X \ 0$ and $y \ X \ 1$, we get $(f \ x \ y) \ X \ (f \ 0 \ 1)$ so $(f \ x \ y) \ X \ 0$ and $f \ x \ y = x$, using the fact that $f \ x \ y$ is either x or y, hence not 0.

- Suppose x is 0. Let X be the PER with equivalence classes $\{0\}$ and $\{y,1\}$. Since $x \neq y$, these two classes are different. Reasoning as before, we have $(f \ x \ y) \ X \ 0$, so $f \ x \ y = 0 = x$.

- Suppose $x = 1$ and $y = 0$. Let X be the PER with equivalence classes $\{0,2\}$ and $\{1\}$ and let Y be the PER with equivalence classes $\{0,1\}$ and $\{2\}$. From $2 \ X \ 0$ and $1 \ X \ 1$, we obtain $2 \ 1 = 2$. From $2 \ Y \ 2$ and $0 \ Y \ 1$, we get $f \ 2 \ 0 = f \ 2 \ 1 = 2$. Finally, using Z with classes $\{1,2\}$ and $\{0\}$, we get $(f \ 1 \ 0)Z(f \ 2 \ 0)$, and hence $f \ 1 \ 0 \in \{1,2\}$. Since $f \ x \ y \in \{x,y\}$, we conclude that $f \ 1 \ 0 = 1$.

The other cases are left as exercises.

\hfill \Box
Similar in spirit but more complex is Freyd’s proof that every element of the type \[\forall X. (X \rightarrow X) \rightarrow X\] must be related to the interpretation of a Church numeral [Fre89].

The above characterisation of Church booleans would be much easier if we were allowed to use arbitrary relations, not just PERs—if it were the case, for example, that \(\text{dom}(\text{CBool})\) implied \((f \times y) \rightarrow R (f \times' y')\) whenever \(x \times R x'\) and \(y \times R y'\) for some relation \(R\). We could then directly use the relation defined by \(0 \times R x\) and \(1 \times R y\) and wouldn’t need any case distinctions. A model in which such relation based reasoning principles are valid for arbitrary polymorphic types (not only booleans) is called parametric [Rey83, ?]. In a parametric model, very powerful principles for polymorphic encodings of inductive types and abstract datatypes are available (cf. [PA93]). However, it is an open problem whether the PER model is parametric, and the only known parametric models are rather syntactic in flavor.

However, some simple instances of parametric reasoning do go through in the PER model.

22.2.13 Proposition: Let \(f \in \forall X. X \rightarrow S\), where \(X\) is not free in \(S\). Then \(f\) is constant—that is, for each PER \(X\) and element \(x \in \text{dom}(X)\), we have \((f x) \equiv (f 0)\).

Proof: Using the everywhere true relation \([\text{Top}]\). (Let \(x\) be given. Then \(x \equiv \text{Top} 0\), so \((f x) \equiv (f 0)\).)

The above example is a a simple case of representation independence. One can view \(f \in \forall X. X \rightarrow A\) as a piece of code depending on a module that supplies a type \(X\) and a constant of that type. (Think of the encoding of existential types in terms of universal types sketched in Exercise ??.) If there are no other constants or functions defined on this type, then intuitively it should not be possible to make any use of it. The PER model validates this intuition.

Here is another reasoning principle based on the observation that the PER semantics uses neither type annotations nor type applications or abstractions.

22.2.14 Reasoning Principle [Mitchell]: Any two \(F\) terms of the same type and with equal erasures are observationally equal.

For example, if
\[
\begin{align*}
f : \forall X. (X \rightarrow X) & \rightarrow (\text{Nat} \rightarrow X) \\
v & : \text{Top} \\
u & : v \\
g : v \rightarrow u \\
h : \text{Nat} \rightarrow u,
\end{align*}
\]
then
\[
f u (\text{fun}[u : U] g(u)) (h) \equiv_f v (\text{fun}[v : V] g(v)) (h).
\]

Proof: Exercise.
Digression on full abstraction

One may ask whether the reasoning method arising from Theorem 22.2.8 is complete, i.e., whether $t_1 \overset{\text{obs}}{=} t_2$ implies $[s] = [t]$. Semantic models for which this is the case are called fully abstract. It is an open problem (as far as we know) whether the PER model is fully abstract, but it seems unlikely for the following reason.

We might attempt to prove full abstraction by induction on the type dom and obs. If $\text{dom} \overset{\text{obs}}{=} \text{obs}$, then it clearly holds; but for the function space $\text{dom} \rightarrow \text{dom}$ we encounter the following problem. Suppose $\text{dom} \overset{\text{obs}}{=} \text{obs}$ and $\text{dom} \overset{\text{obs}}{=} \text{obs}$. To prove $[\text{dom}] = [\text{obs}]$, we have to show that $[[\text{dom}]](v) \uparrow \text{dom}[[\text{obs}]](v)$ for all $v \in \text{dom}[[\text{dom}]]$. Using full abstraction inductively on dom, we get $[[\text{dom}]](v) \uparrow \text{dom}[[\text{obs}]](v)$ for all definable v, i.e., those of the form $[t]$ for some $\vdash t : S$. But even $\text{dom}[[\text{dom} \rightarrow \text{dom}]]$ contains non-definable elements (since it contains all total computable functions, and some of these cannot be defined in F_c). It could, however, be that every non-definable element is observationally equivalent to a definable one, in which case we could salvage this argument.

22.3 General Recursion and Recursive Types

Although the PER semantics is based on arbitrary computable functions, only the total ones actually arise as denotations. In order to account for general recursion and recursive types, we need a more generous notion of model.

Continuous Partial Orders

We have already seen that the PER model does not account for general recursion—although the elements of the underlying universe (\mathbb{N}) encode partial functions, the interpretations of types include only elements encoding functions that are total on the relevant domain. There does not seem to be an easy way of removing this restriction: if we insist on interpreting types as PERs over \mathbb{N}, our model will account only for total functions. To model recursive types (and accordingly, general recursion and higher-order partial functions), we must adopt a richer view of the underlying computations. The required machinery comes from the mathematical area of domain theory.

22.3.1 Definition: A domain is a partial ordering (D, \sqsubseteq) (that is, a set D with a transitive, reflexive, and anti-symmetric ordering \sqsubseteq) with the following properties:

1. If $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \ldots$ is an increasing chain in D then there exists a least upper bound $\bigcup_i x_i \in D$. That is, $x_i \sqsubseteq \bigcup_i x_i$ for all i and, if $x_i \sqsubseteq y$ for all i, then $\bigcup_i x_i \sqsubseteq y$.

This can be seen from a simple diagonalization argument. Suppose that $\{f_x\}_{x \in \mathbb{N}}$ is an effective enumeration of all closed F_c terms of type $\mathbb{N} \rightarrow \mathbb{N}$. Then $\forall x. f_x(x) + 1$ is a computable function that is not definable in F_c.
2. D has a least element (written \(\bot\) or \(\bot_D\) and pronounced “bottom”).

22.3.2 Exercise [Easy]: Show that the least upper bound of each chain in a domain D is uniquely determined, in the sense that, if \(x_i \sqsubseteq z\) for all \(i\) and whenever \(x_i \sqsubseteq y\) for all \(i\), we have \(z \sqsubseteq y\), then \(z = \bigsqcup_i x_i\).

The structures we call domains are often called “omega-complete partial orders (with bottom),” reserving the word “domain” for structures satisfying further properties such as “algebraicity” or “continuity.”

Let D and E be domains. We define the space \([D \rightarrow E]\) of continuous functions from D to E as the set of monotone functions \(f \in D \rightarrow E\) that preserve suprema, i.e.,

- \(x \sqsubseteq y\) implies \(f(x) \sqsubseteq f(y)\), and
- \(f(\bigsqcup_i x_i) = \bigsqcup_i f(x_i)\) for every increasing chain \(\{x_i\}_{i \in \mathbb{N}}\).

\(D \rightarrow E\) can be viewed as a domain itself by ordering its elements pointwise, i.e., \(f \sqsubseteq g\) iff \(f(x) \sqsubseteq g(x)\) for all \(x \in D\). The bottom element and least upper bounds in this domain are also calculated pointwise. Note that we do not require that the elements of \([D \rightarrow E]\) should be strict (i.e., map \(\bot_D\) to \(\bot_E\)).

22.3.3 Proposition: Every continuous function \(f \in [D \rightarrow D]\) has a fixed point given as the least upper bound of the chain \(\bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \ldots\)

Proof: Exercise.

22.3.4 Definition: Let \(I\) denote the set of natural numbers considered as record labels. (For technical convenience, we continue using numbers as labels.) We define \(Rcd(D)\) as the set of functions \(f \in I \rightarrow D\), ordered pointwise, plus a distinguished least element \(\bot_{Rcd(D)}\) (usually written just \(\bot\)). Again, this forms a domain.

We will use \(Rcd(D)\) to interpret record types. The addition of the \(\bot\) element allows us to distinguish a nonterminating computation of record type (such as \(\text{fix } \text{fun}[x: \text{II}] x\)) from a record containing an undefined (nonterminating) field (such as \(\{1=\text{omega}\}\)). This reflects the fact that the call-by-name evaluation relation does not evaluate within the fields of a record, but waits until a field is projected to evaluate it further.

22.3.5 Definition: The flat domain of natural numbers \(\mathbb{N}_\bot\) has as elements the natural numbers plus an extra bottom element \(\bot\). The ordering is: \(x \sqsubseteq y\) iff \(x = \bot\) or \(x = y\).

As before, types will be interpreted as partial equivalence relations. Instead of the natural numbers, though, the underlying universe of these PERs will be the domain that forms the least solution of the following equation:

\[
D \equiv \mathbb{N}_\bot + [D \rightarrow D] + Rcd(D)
\]
That is, we will use a domain \(D\) that "contains" the flat domain of natural numbers, the function space \([D \to D]\), and the record domain \(Rcd(D)\). Rather than developing a general theory of such equations and their solutions, we simply assert (without proof) the existence of a suitable domain and list its relevant properties:

22.3.6 Proposition: There exists a domain \(D\) with functions

\[
\begin{align*}
\mathbb{N} &\in [\mathbb{N}_\bot \to D] & \mathbb{N}^* &\in [D \to \mathbb{N}_\bot] \\
\text{fun} &\in [[D \to D] \to D] & \text{fun}^* &\in [D \to [D \to D]] \\
\text{rcd} &\in [Rcd(D) \to D] & \text{rcd}^* &\in [D \to Rcd(D)] \\
\end{align*}
\]

satisfying the following equations (for \(\circ \in \{\mathbb{N}, \text{fun}, \text{rcd}\}\))

\[
\begin{align*}
\circ(\circ^*(x)) &= x \\
\circ(\bot) &= \bot_D \\
\circ^*(d) &= \begin{cases}
 e & \text{if } d = \circ(e) \text{ for some } e \\
 \bot & \text{otherwise}
\end{cases}
\end{align*}
\]

and such that every element \(d \in D\) can be expressed as \(d = \circ(e)\) for some \(e\), where \(\circ\) is one of \(\{\mathbb{N}, \text{fun}, \text{rcd}\}\). Furthermore, there is an increasing sequence of projection functions

\[
\pi_r \in [D \to D] \quad \text{for all } r \in \mathbb{N}
\]

with the following properties:

1. \(\pi_r(d) \sqsubseteq d\)
2. \(\pi_r(\pi_s(d)) = \pi_{\min(r,s)}(d)\)
3. \(\pi_0(d) = \bot\)
4. \(\bigvee_r \pi_r(d) = d\)
5. \(D_r \overset{\text{def}}{=} \{d \mid \pi_r(d) = d\}\) is a finite set
6. the projections \(\pi_r\) are compatible with the structure of \(D\) in the following sense:

 - (a) \(\pi_{r+1}(\mathbb{N}(n)) = \begin{cases}
 \mathbb{N}(n) & \text{if } n \leq r \\
 \bot & \text{otherwise}
\end{cases}\)
 - (b) \(\pi_{r+1}(\text{fun}(f)) = \text{fun}(\lambda x. \pi_r(f(\pi_r(x))))\).
 - (c) \(\pi_{r+1}(\text{rcd}(f)) = \text{rcd}(\lambda l. \text{if } l \leq r \text{ then } \pi_r(f(l)) \text{ else } \bot)\)

Proof: See [Gun92] or any other standard text on domain theory.
In other words, D has \mathbb{N}_\bot, $\text{Rcd}(D)$, and—in particular—its own function space $[D \to D]$ as “subdomains,” and D is obtained as the “limit” of an increasing sequence of finite subsets—the ranges D_τ of the π_τ. These approximating subdomains can be explicitly constructed by taking the clauses under (6) as an inductive definition. In particular,

$$
\begin{align*}
D_0 &= \{\bot\} \\
D_1 &= \{\bot, \mathbb{N}(0), \text{Rcd}(\lambda x. \bot)\} \\
D_2 &= \{\bot, \mathbb{N}(0), \mathbb{N}(1), \\
&\quad \text{Rcd}(\lambda x. \bot), \text{Rcd}(0 \mapsto \mathbb{N}(0), 1 \mapsto \bot), \text{Rcd}(0 \mapsto \text{Rcd}(\lambda x. \bot), 1 \mapsto \text{Rcd}(\lambda x. \bot), \\
&\quad 1 \mapsto \bot\}, \text{ and 5 more records . . . ,} \\
&\quad \text{fun}(\lambda x \in D_1. \mathbb{N}(0)), \text{fun}(\lambda x \in D_1. x), \text{ and 8 more functions . . .}\}
\end{align*}
$$

etc.

22.3.7 Exercise:

1. How many elements does D_3 contain?

2. Convince yourself that D_τ can be described as $\{\pi_\tau(d) \mid d \in D\}$.

3. Describe explicitly the action of the projection π_1 viewed as a function from D_2 to D_1. \hfill \square

22.3.8 Exercise [Recommended]:

1. Call a domain D finitary if every increasing chain in D contains a finite number of elements. Show that, if D is finitary, then the least upper bound of every increasing chain in D is an element of the chain. Does this implication hold in the other direction?

2. Note that \mathbb{N}_\bot and each D_τ are (trivially) finitary. Give an example of an increasing chain with infinitely many distinct elements in $[\mathbb{N}_\bot \to \mathbb{N}_\bot]$.

3. Consider an increasing chain $x_0 \subseteq x_1 \subseteq \ldots$ in D. Show that $\pi_\tau(\bigsqcup x_i) = \pi_\tau(x_j)$ for some j. \hfill \square

22.3.9 Exercise: Give an explicit definition of a continuous function $\text{succ} \in [D \to D]$ with the property that $\text{succ}(\mathbb{N}(n)) = \mathbb{N}(n + 1)$. \hfill \square
The CUPER Interpretation

As before, we will interpret types as “subsets of D equipped with local notions of equality”—i.e., PERs over D. However, in order to interpret general recursion and recursive types, some additional conditions will be needed.

1. In order to ensure that the fixed-point functional described in Exercise 22.2.9 (which sends \mathbb{N} to $\text{fix}(\mu \mathbb{N} \times \mathbb{N} \to \mathbb{N})$), we require that every PER used to interpret types contains the pair (\bot, \bot) and is closed under least upper bounds of increasing chains. (Informally, if R is such a PER and sends R-related elements to R-related elements, then from (\bot, \bot) we see by induction that $f^i \bot R \bot$ for every i. Hence $\text{fix}(f) \in \text{dom}(R)$.) This condition is called completeness.

2. In order to interpret recursive types, we must further require that the PERs used to interpret types be determined by their restrictions to the finite sets \mathbb{N}. This condition is called uniformity.

22.3.10 Definition: A complete uniform PER (CUPER) is a symmetric, transitive relation R on \mathbb{N} such that:

1. $\bot R \bot$.

2. If $(x_i)_{i \in \mathbb{N}}$ and $(y_i)_{i \in \mathbb{N}}$ are two increasing chains such that $x_i R y_i$ for all i, then $\bigcup_i x_i R \bigcup_i y_i$ (completeness).

3. $x R y$ iff $\pi_x(x) R \pi_y(y)$ for all x (uniformity). □

22.3.11 Exercise: There is some redundancy in this definition: we can either drop (2) or replace the “iff” in (3) by “implies.” Show this. □

22.3.12 Definition:

1. The CUPER Nat is defined by $\{(\mathbb{N}[n], \mathbb{N}[n]) \mid n \in \mathbb{N}\}$.

2. The CUPER Top is the total relation $\mathbb{N} \times \mathbb{N}$.

3. When R and S are CUPERs, the CUPER $R \Rightarrow S$ is defined by $\{(\text{fun}(f), \text{fun}(g)) \mid f, g \in D, f(x) R g(y)\}$.

4. If R_1 through R_n are CUPERs and $l_1 \ldots l_n$ are labels, then the CUPER $\{l_1; R_1 \ldots l_n; R_n\}$ is defined by $\{(\bot, \bot) \cup \{\text{rcd}(f), \text{rcd}(g)\} \mid f, g \in L \to D \text{ and } f(l_i) R_i g(l_i) \text{ for } i = 1 \ldots n\}$.

5. Let I be any set and $(R_i)_{i \in I}$ be an I-indexed family of CUPERs. The CUPER $\bigcap_i R_i$ is defined as the intersection of all the R_i, i.e., $x \bigcap_i R_i y$ iff $x R_i y$ for all $i \in I$.

(When we use this definition below, the index set I will always be the set of sub-CUPERs of some CUPER.)
6. \(\bot \) is the CUPER \((\bot, \bot)\).

22.3.13 Exercise [Recommended]: Show that all of these constructions actually define CUPERs.

These constructions on CUPERs allow us to define a semantics that maps types of \(F_c \) (without recursive types) to CUPERs and maps terms to elements of \(D \) lying in the domains of their types, using essentially the same definition as in Section 22.2 (the interpretations of both types and terms are with respect to an environment, as before). In this semantics, the type \(\text{dom}(\forall [X] \quad (X \to X) \to X) \) is non-empty; in particular, it contains the function that sends \(f \in [D \to D] \) to its least fixed point. Other elements of this type are finite approximations of the fixed point, i.e., functionals mapping functions \(f \) to \(f^n(\bot) \) for some \(n \).

It remains to show how to interpret recursive types.

Interpreting Recursive Types

22.3.14 Definition: Let \(R \) be a CUPER and \(r \in \mathbb{N} \). We write \(R \upharpoonright_r \) for the restriction of \(R \) to the finite set \(D_r \), i.e., \(x \in R \upharpoonright_r \) iff \(x \in R \) and \(\pi_r(x) = x \) and \(\pi_r(y) = y \).

Notice that \(R \upharpoonright_0 = \bot \) and \(R \upharpoonright_r \) is a sub-CUPER of \(R \) and \(R \upharpoonright_{r+1} \), for each CUPER \(R \). Also note that, by the uniformity condition, two CUPERs \(R \) and \(S \) are equal iff \(R \upharpoonright_r = S \upharpoonright_r \) for all \(r \in \mathbb{N} \).

22.3.15 Definition: A function \(F \) mapping CUPERs to CUPERs is called contractive if, for each CUPER \(R \) and \(r \in \mathbb{N} \) we have \(F(R) \upharpoonright_{r+1} = F(R \upharpoonright_r \upharpoonright_{r+1}) \). \(F \) is called nonexpansive if \(F(R) \upharpoonright_{r+1} = F(R) \upharpoonright_{r+2} \upharpoonright_{r+1} \). \(F \) is contractive if \(F \) is non-expansive, since \(F(R) \upharpoonright_{r+1} = F(R \upharpoonright_r \upharpoonright_{r+1}) \).

22.3.16 Exercise [Recommended]: Show that \(F(R) = R \Rightarrow \mathbb{N} \) is contractive. Give an example of a nonexpansive function on CUPERs that is not contractive.

22.3.17 Definition: Let \(F \) be a contractive function mapping CUPERs to CUPERs. The CUPER \(\mu F \) is defined by \(x \in \mu F \quad y \) iff \(\pi_r(x) \upharpoonright_r \pi_r(y) \) for all \(r \).

22.3.18 Lemma: \(\mu F \upharpoonright_r \subseteq F \upharpoonright_r \). \(\pi_r(\bot) \) is immediate from the definitions. For the other direction, we first establish

\[
F^{k+1}(\bot) \upharpoonright_k = F^k(\bot) \upharpoonright_k \quad \text{for all } k \in \mathbb{N} \quad (22.1)
\]
by calculating as follows: \(F^{k+1}(\bot)k = F^k(F(\bot)k) = F^k(\bot)k \). The penultimate step follows by “commuting” \(\bot \) with \(k \) applications of \(F \), reducing the index by 1 at each step using contractiveness.

Now assume that \(xF^r(\bot)r \in D \), hence, \(x, y \in D \). From \(F^{k+1}(\bot)k \geq F^{k+1}(\bot)k \), we obtain inductively that \(\tau_k(x)F^k(\bot)k \tau_k(y) \) for all \(k \geq r \). (Note that \(\tau_k(x) = \tau_k(\tau_r(x)) = \tau_r(x) = x \).)

On the other hand, \(\tau_{r-1}(x)F^r(\bot)r \tau_{r-1}(y) \) by uniformity, hence

\[
\tau_{r-1}(x)F^{r-1}(\bot)r-1 \tau_{r-1}(y)
\]

by Equation 22.1. Proceeding inductively in this way yields \(\tau_k(x)F^k(\bot)k \tau_k(y) \) for all \(k < r \). □

22.3.19 Proposition: \(\mu(F) \) is the unique fixed point of \(F \), that is, \(F(\mu(F)) = \mu(F) \) and, if \(F(R) = R \) then \(R = \mu(F) \).

Proof: To show that \(\mu(F) \) is a fixed point of \(F \), it suffices to show that \(\mu(F)|_{r+1} = F(\mu(F))|_{r+1} \) for all \(r \in \mathbb{N} \). Now, since \(F \) is contractive, \(F(\mu(F))|_{r+1} = F(\mu(F))|_{r+1} = F(F^r(\bot)r \tau_r \tau_{r+1} = \mu(F)|_{r+1} \) (using Lemma 22.3.18 in the second step and the definition of contractiveness in the third step). On the other hand, if \(F(R) = R \), we can show \(R|_{r+1} = \mu(F)|_{r+1} \) by induction on \(r \). If \(r = 0 \), both sides are \(\bot \). Otherwise, we have \(R|_{r+1} = F(R)|_{r+1} = F(R)|_{r+1} = \mu(F)|_{r+1} = \mu(F)|_{r+1} \), where the induction hypothesis is used in the penultimate step. □

22.3.20 Proposition: All functions on CUPERS definable from the operations in Definition 22.3.12 plus \(\mu \) are nonexpansive; they are contractive if their outermost operation is record formation or function space formation.

Proof: Straightforward induction (see [AC96]). □

22.3.21 Exercise [Possibly difficult]: We believe that the only nonexpansive but not contractive function that can be constructed using these operators is the identity. Prove or refute this claim. □

It follows that, if a function \(F \) on CUPERS is definable from the operations in Definition 22.3.12 plus \(\mu \), then the function \(G \) mapping each CUPER \(R \) to \(Top \Rightarrow F(R) \) is contractive. This enables us to interpret recursive types by adding the following semantic clauses:

\[
\begin{align*}
[\mu(X)T]_\rho & = \mu(\lambda R. Top => [T]_{\rho+\langle X\mapsto R \rangle}) \\
[\text{foldd } (\mu(X)T)]_\rho & = \text{fun}(\lambda d. \text{fun}(\lambda x. d)) \\
[\text{unfoldd } (\mu(X)T)]_\rho & = \text{fun}(\lambda d. \text{fun}^*(d)(0))
\end{align*}
\]

For the last two clauses, we use the fact that \([\mu(X)T]_\rho = Top \Rightarrow [X \mapsto \mu(X)T]_\rho \), which follows from Proposition 22.3.20 and an appropriate substitution lemma.
This semantics shows us (somewhat trivially) that the reduction rules for the system including recursive types do not equate different natural numbers. It also shows the soundness of an equational theory for F_{c_μ} including additional equations like

$$\text{fold } (\mu(X)T) \ (\text{unfold } (\mu(X)T) \ t) = t \in \mu(X)T.$$

An appropriate definition of observational equivalence for F_{c_μ} must deal with the possibility of nontermination—for example, as follows:

Two closed terms t_1 and t_2 of type T are observationally equivalent (at type T) if, for all closed terms $C : T \rightarrow \text{Nat}$, the terms $C \ t_1$ and $C \ t_2$ either both diverge (i.e., admit no normal form) or can be reduced to the same number.

Computational adequacy of the CUPER semantics with respect to this notion of equivalence now becomes a nontrivial result. We must show that, if m is a closed term of type Nat, then $[m] = \bot$ iff m has no normal form. One direction is trivial (which?). The other requires a “logical relations” proof, i.e., an induction over terms using a suitable generalization of the desired property for types other than Nat. (We are not aware of such a proof in the literature, but there seem to be no major obstacles.)

22.4 Further Reading

The subset and PER models of the simply typed lambda-calculus are due to Kreisel, who called them HRO (“hereditarily recursive operations”) and HEO (“hereditarily effective operations”), respectively. A good reference with pointers to related topics of historical interest is Troelstra and van Dalen’s book [TvD88]. A standard reference on PER models in a computer science context is Mitchell’s book [Mit96]. Our presentation of CUPERs is a simplified version of the one used by Abadi and Cardelli [AC96]. Other treatments of CUPERs can be found in [? ,?].

The concept of full abstraction was introduced by Plotkin in [Plo77], which is still well worth reading. Recent progress in the construction of fully abstract models (albeit not yet for F_{c_μ}) is reported in [AJM94, HO94, OR94].

Parametricity was first studied by Reynolds in the context of representation independence [Rey83]. Parametric models of System F are described in [BFS90, RR94]. Parametricity in System F_{c_μ} is considered in [CMMS94].

Good general textbooks on semantics include [Sch86, Gun92, Ten81, Win93, Mit96].
Chapter 23

Polymorphic Update

This chapter is just a sketch.

The mechanism of polymorphic update is quite a bit less “mainstream” than almost all of what’s covered in the rest of the chapters. It’s not completely clear that it belongs. On the other hand, it makes the object encoding examples in Chapter 28 vastly clearer.

In fact, I’m tempted to go even further and introduce an ad-hoc “in place update” operation for existential types (following a suggestion in [HP98]). This makes it possible to do the whole of Chapter 28 in a second-order setting, before discussing type operators.

Polymorphic update

New syntactic forms

\[
\begin{align*}
t & ::= \ldots \\
 & \{ t_i \leftarrow t \}_{i \in \text{1..n}} \\
 & t \leftarrow t
\end{align*}
\]

\(F_{\text{c} + \{ \}} \) update

\[
\begin{align*}
 \text{field update} & \\
 \text{record} & \\
 \text{term (..)}
\end{align*}
\]

\[
\begin{align*}
T & ::= \ldots \\
 & \{ t_i \leftarrow T \}_{i \in \text{1..n}} \\
\end{align*}
\]

\(\text{types (..)} \)

\[
\begin{align*}
U & ::= \# \\
 & \text{omitted}
\end{align*}
\]

invariant (updatable) field
covariant (fixed) field

New evaluation rules

\[
\begin{align*}
 \{ t_i \leftarrow v_i \}_{i \in \text{1..n}} & \leftarrow t \leftarrow v \\
 \rightarrow \{ t_i \leftarrow v_i, t_i = v_i, t_k \leftarrow v_k \}_{i \in \text{1..n}} \\
 \{ t_i \leftarrow v_i \}_{i \in \text{1..n}}, t_i \leftarrow v_i
\end{align*}
\]

(E-UPDATEBETA)

(E-REDBETA)
New type equivalence rules (\(\Gamma \vdash S \equiv T\))

\[
\pi \text{ is a permutation of } \{1..n\} \\
\Gamma \vdash \{ t_{\pi(i)} : T_i \in L^n \} \equiv \{ t_{\pi(i)} : T_i \in L^n \}
\]

New subtyping rules (\(\Gamma \vdash S \subset T\))

\[
\Gamma \vdash \{ t_{\pi(i)} : T_i \in L^n \} \subset \{ t_{\pi(i)} : T_i \in L^n \} \text{ for each } i \\
\Gamma \vdash S_i \subset T_i \text{ if } t_i = \#, \text{ then } \Gamma \vdash T_i \subset S_i \\
\Gamma \vdash \{ t_{\pi(i)} : S_i \in L^n \} \subset \{ t_{\pi(i)} : T_i \in L^n \} \\
\Gamma \vdash \{ \ldots \#_1 ; S_i \ldots \} \subset \{ \ldots 1_i ; S_i \ldots \}
\]

New typing rules (\(\Gamma \vdash t : T\))

\[
\Gamma \vdash t_i : T_i \\
\Gamma \vdash \{ t_{\pi(i)} : T_i \in L^n \} \\
\Gamma \vdash t : \{ t_{\pi(i)} : T_i \in L^n \} \\
\Gamma \vdash t \cdot 1_j : T_j
\]

\[
\Gamma \vdash x : R \\
\Gamma \vdash R \subset \{ \#_1 ; T_j \} \\
\Gamma \vdash t : T_j \\
\Gamma \vdash x \leftarrow 1_j = t : R
\]
Chapter 24

Type Operators and Kinding

The introduction to this chapter is in good shape. The technicalities are all missing at the moment.

In previous chapters, we have often made use of informal abbreviations like /C8/CP/CX/D6 /CB /CC /BP
/BK /CG /BA /B4/CB
/AX
/CC
/AX
/CG/B5
/A
/BK /CG/BA /B4/C6/CP/D8 /AX
/BU/D3/D3/D0 /AX
/CG/B5
/AX
/CG
for brevity and readability, writing Pair Nat Bool, for example, instead of the more cumbersome \forall X. (Nat\rightarrow Bool\rightarrow X) \rightarrow X. What sort of thing is Pair in itself?

Given any pair of types S and T, it picks out the type of “pairs of S and T”—that is, it is intuitively a function from types to types. The definition of Pair can thus be written explicitly as follows:

\[
\text{Pair} = \lambda A. \lambda B. \forall X. (A\rightarrow B\rightarrow X) \rightarrow X;
\]

Formally, then, the type expression Pair S T is actually a nested operator application (Pair S) T. In other words, Pair itself is a function from types to type operators mapping types to types. In this chapter, we take a more careful look at the mechanisms involved in defining and using such functions.

24.1 Intuitions

Once we have introduced syntax for abstracting type expressions on type expressions (\lambda) and performing the corresponding instantiations (application), nothing prevents us from considering functions mapping type operators to types, functions mapping type operators to type operators, etc. To keep things organized and prevent ourselves from writing nonsensical type applications like Pair Pair, we
classify types and type operators by kinds. E.g.,

- * the kind of "proper types" like Bool and Bool→Bool
- *→* the kind of type operators (functions from types to types)
- *→*→* the kind of functions from types to type operators
- (*→*)→* the kind of functions from type operators to types

etc.

Kinds can be thought of as the “types of types.” In essence, the system of kinds is a little copy of the simply typed lambda-calculus, placed one level higher in the hierarchy of classification. Just as in the lambda-calculus, we shall henceforth annotate the bound variables in operator abstractions with the kind of the bound type variable, so that Pair is really defined as:

\[\text{Pair} = \lambda x:\cdot. \lambda b:\cdot. \forall x. (A\rightarrow B\rightarrow X) \rightarrow X; \]

However, since * is by far the most common case, we allow \(\lambda X. T\) as an abbreviation for \(\lambda X::*;T\).

A few pictures should make all this easier to understand. The phrases of our language are divided now into three separate classes: terms, types, and kinds. The level of terms contains actual data values (integers, records, etc.) and computations (functions) over them.

The level of types contains proper types like Nat, Nat→Nat, Pair Nat Bool and \(\forall X. X\rightarrow X\), which classify terms,
as well as type operators like \(\text{T}_{\text{Pair}} \) and \(\lambda X.X \rightarrow X \) that do not themselves classify terms but that can be applied to type arguments to form type expressions like \((\lambda X.X \rightarrow X)\text{T}_{\text{Nat}}\) that do classify terms. (We use the word “types” to include both proper types and type operators.)

Proper types are classified by the kind \(\star \), pronounced “kind type” or just “type.” Type operators are classified by more complex kinds, such as \(\star \rightarrow \star \) and \(\star \rightarrow \star \rightarrow \star \rightarrow \star \).

Note that proper types (type expressions of kind \(\star \)) can include type operators of higher kinds as subphrases, as in \((\lambda X.\star \rightarrow X)\text{T}_{\text{Nat}}\) or \(\text{T}_{\text{Pair}}\text{T}_{\text{Nat}}\text{T}_{\text{Bool}}\).

Also, note the different roles in this diagram of the proper type \(\forall X.X \rightarrow X \) and the type operator \(\lambda X.X \rightarrow X \). The former classifies terms like \(\lambda X.\lambda X.X \rightarrow X \)—it is a type...
whose elements are functions from types to terms—while the latter is itself a function from types to types, and does not have any terms as “elements.”

A natural question to ask at this point is “Why stop at three levels of expressions?” That is, why couldn’t we go on to introduce functions from kinds to kinds, application at the level of kinds, etc., and add a fourth level to classify kind expressions according to their functionality? In fact, why stop there? We could go on adding levels indefinitely! The answer is that we could very well do this, and such systems (without subtyping) have been studied under the heading of pure type systems [Bar92a, Bar92b, JMP94, MP93, Pol94, etc.] and used in computer science for applications such as theorem proving. For purposes of this book, though, there is no need to go beyond three levels.

24.2 Definitions

We now define a core calculus with type operators. At the term level, it includes just the variables, abstraction, and application of the simply typed lambda-calculus; the type level includes the usual arrow types and type variables, plus operator abstraction and application. To formalize this system, we need to add three new things to the systems we have seen before.

First, we need a collection of rules of kinding (or, more pedantically, type well-formedness), which specify how type expressions can be combined to yield new type expressions. In effect, these rules constitute a copy of the simply typed lambda-calculus, “one level up.” We write $\Gamma \vdash T : \kappa$ for “type T has kind κ in context Γ.”

Second, whenever a type T appears in a term (as in $\lambda x : T \cdot t$), we must check that T is well formed. This involves adding a new premise to the old T-Abs rule that checks $\Gamma \vdash T : \ast$. Note that T must have exactly kind \ast—i.e., it must be a proper type—since it is being used to describe the values that x may range over.

Third, note that, by introducing abstraction and application in types, we have given ourselves the ability to write different “names” for the same type. For example, if $\text{Id} = \lambda x . x$, then

\[
\begin{align*}
\text{Nat} & \to \text{Bool} \\
\text{Nat} & \to \text{Id Bool} \\
\text{Id Nat} & \to \text{Id Bool} \\
\text{Id Nat} & \to \text{Bool} \\
\text{Id (Id Nat)} & \to \text{Bool}
\end{align*}
\]

all mean the same thing, in the sense that they have the same terms as members.
Type operators and kinding

Syntax

\[t ::= \]
\[x \]
\[\lambda x : T . t \]
\[t \ t \]

\[v ::= \]
\[\lambda x : T . t \]

\[(\text{terms...}) \]

\[(\text{values...}) \]

\[(\text{types...}) \]

\[(\text{kinds...}) \]

\[T ::= \]
\[X \]
\[\lambda x : K . T \]
\[T \ T \]
\[T \rightarrow T \]

\[\Gamma ::= \]
\[\emptyset \]
\[\Gamma , x : T \]
\[\Gamma , x : K \]

\[\Lambda ::= \]
\[* \]
\[\Lambda \Rightarrow \Lambda \]

\[(\text{empty context}) \]

\[(\text{term variable binding}) \]

\[(\text{type variable binding}) \]

\[(\text{kind of proper types}) \]

\[(\text{kind of operators}) \]

Evaluation \((t \rightarrow t')\)

\[(\lambda x : T . t_{12}) \ v_2 \rightarrow (x \mapsto v_2) t_{12} \]

\[(E-\text{BETA}) \]

\[t_1 \rightarrow t_1' \]

\[t_1 \ t_2 \rightarrow t_1' \ t_2 \]

\[t_2 \rightarrow t_2' \]

\[v_1 \ t_2 \rightarrow v_1 \ t_2' \]

\[(E-\text{APP1}, E-\text{APP2}) \]

Type equivalence \((\Gamma \vdash S \equiv T)\)

\[\Gamma \vdash T \equiv K \]

\[\Gamma \vdash T \equiv T \equiv K \]

\[\Gamma \vdash T \equiv S \equiv K \]

\[\Gamma \vdash S \equiv T \equiv K \]

\[(Q-\text{REFL}) \]

\[(Q-\text{SYMM}) \]

\[(Q-\text{TRANS}) \]
\[
\begin{align*}
\Gamma, x : K_{11} &\vdash T_{12} :: K_{12} \quad \Gamma \vdash T_2 :: K_{11} \\
\Gamma \vdash (\lambda x : K_{11}. T_{12}) &\equiv (\lambda x \mapsto T_2) T_{12} :: K_{12} \\
\Gamma \vdash S :: K_1 \Rightarrow K_2 \quad \Gamma \vdash T :: K_1 \Rightarrow K_2 \\
\Gamma, x : K_1 \vdash S &\equiv T : K_1 \Rightarrow K_2 \\
\Gamma, x : K_1 \vdash S &\equiv T : K_1 \Rightarrow K_2 \\
\Gamma \vdash \lambda x : K_1. S_2 &\equiv \lambda x : K_1. T_2 :: K_1 \Rightarrow K_2 \\
\Gamma \vdash S_1 &\equiv T_1 :: K_{11} \quad \Gamma \vdash S_2 &\equiv T_2 :: K_{11} \\
\Gamma \vdash S_1 &\equiv T_1 \Rightarrow T_2 :: * \\
\Gamma \vdash S_2 &\equiv T_1 \Rightarrow T_2 :: * \\
\Gamma \vdash S_1 &\equiv T_1 \Rightarrow T_2 :: * \\
\Gamma \vdash S_2 &\equiv T_1 \Rightarrow T_2 :: * \\
\Gamma \vdash x : T &\in \Gamma \\
\Gamma \vdash x : T &\in \Gamma \\
\Gamma \vdash T_1 &\equiv T_2 :: * \\
\Gamma \vdash T_1 &\equiv T_2 :: * \\
\Gamma \vdash x : T_1 :: T_2 &\in \Gamma \\
\Gamma \vdash \lambda x : T_1. T_2 &\equiv \lambda x : T_1 \Rightarrow T_2 \\
\Gamma \vdash t_1 &\equiv T_1 \Rightarrow T_2 :: T_{12} \\
\Gamma \vdash t_2 &\equiv T_{11} :: T_{12} \\
\Gamma \vdash t_1 &\equiv T_{11} :: T_{12} \\
\Gamma \vdash t_2 &\equiv T_{11} :: T_{12} \\
\end{align*}
\]

Kinding (Γ ⊢ T :: K)

\[
\begin{align*}
\Gamma &\vdash x : K \in \Gamma \\
\Gamma &\vdash x : K \\
\Gamma, x : K_1 &\vdash T_2 :: K_2 \\
\Gamma &\vdash \lambda x : K_1. T_2 :: K_1 \Rightarrow K_2 \\
\Gamma &\vdash T_1 :: K_{11} \Rightarrow K_{12} \quad \Gamma &\vdash T_2 :: K_{11} \\
\Gamma &\vdash T_1 :: K_{12} \\
\Gamma &\vdash T_1 :: * \\
\Gamma &\vdash T_2 :: * \\
\end{align*}
\]

Typing (Γ ⊢ t : T)

\[
\begin{align*}
\Gamma &\vdash t : S \\
\Gamma &\vdash S \equiv T :: * \\
\Gamma &\vdash T :: T \\
\Gamma &\vdash x : T \\
\Gamma &\vdash T_1 :: * \\
\Gamma, x : T_1 &\vdash t_2 : T_2 \\
\Gamma &\vdash \lambda x : T_1. T_2 :: T_1 \Rightarrow T_2 \\
\Gamma &\vdash t_1 :: T_{11} \Rightarrow T_{12} \quad \Gamma &\vdash t_2 :: T_{11} \\
\Gamma &\vdash t_1 : T_{12} \\
\end{align*}
\]

Abbreviations

unannotated binder for \(x \) \(\overset{\text{def}}{=} \) \(x :: * \)
Chapter 25

Higher-Order Polymorphism

Just a sketch.

I'm not certain whether it's productive to develop metatheory in detail for this part of
the book, or whether to refer interested readers into the literature. For F-omega itself, the
proofs are not all that hard or tedious, so it may be illuminating to go through at least some
of them. For later systems like F-omega-sub, it becomes increasingly heavy. (One purpose
of putting some of that in would probably be to give students the impression that it's not
that easy, in case they thought type systems was a trivial topic!)

When type operators are added to System F, we can abstract over types of ar-
bitrary kinds. This substantially increases the power of the system. In particular,
higher-order universal polymorphism (i.e., abstraction over types of kinds other
than *) will be used in Chapter 28 to complete our model of purely functional
object-oriented programming. Higher-order existential types have more practical
uses, for building abstract data types whose hidden representation type is actually
an operator like List or Pair.

25.1 Higher-Order Universal Types

The higher-order extension of the polymorphic lambda-calculus is formed by sim-
ply allowing X:K in place of just X in the original definition of System F.

For example, here is a ridiculously polymorphic identity function

\[\text{wayPolyId} = \lambda F : \ast \rightarrow \ast. \lambda X. \lambda x : F X. x; \]

\[\triangleright \text{wayPolyId} : \forall F : \ast \rightarrow \ast. \forall X. F X \rightarrow F X \]

and here is a typical use:

\[\text{wayPolyId} [\lambda Y.\{a:Y\}] \text{ [Bool] \{a=true\};} \]
25.1.1 Exercise: Write and typecheck a ridiculously polymorphic `applyTwice` function, of type \(\forall F :: * \Rightarrow * \). \(\forall X. \ (F \ X) \to (F \ X) \to (F \ X) \). \(\square \)

We will see some more interesting applications of higher-order universal types in later chapters.

F\(^\omega\): Higher-order polymorphic lambda-calculus

System F \(\forall \Rightarrow \)

New syntactic forms

\[
\begin{align*}
t & ::= \ldots \\
 & \quad \lambda X :: K. t \\
\end{align*}
\]

(terms...)

type abstraction

\[
\begin{align*}
v & ::= \ldots \\
 & \quad \lambda X :: K. t \\
\end{align*}
\]

(values...)

type abstraction value

\[
\begin{align*}
T & ::= \ldots \\
 & \quad \forall X :: K. T \\
\end{align*}
\]

(types...)

universal type

New evaluation rules (\(t \longrightarrow t' \))

\[
(\lambda X :: K_{11} . t_{12}) \ [T_{12}] \longrightarrow (X \mapsto T_{12}) t_{12}
\]

(E-BETA2)

New type equivalence rules (\(\Gamma \vdash S \equiv T \))

\[
\begin{align*}
\Gamma, X :: K_1 \vdash S_2 \equiv T_2 :: * \\
\hline
\Gamma \vdash \forall X :: K_1 . T_2 :: * \\
\end{align*}
\]

(Q-ALL)

New kinding rules (\(\Gamma \vdash T :: K \))

\[
\Gamma, X :: K_1 \vdash T_2 :: * \\
\hline
\Gamma \vdash \forall X :: K_1 . T_2 :: * \\
\]

(K-ALL)

New typing rules (\(\Gamma \vdash t :: T \))

\[
\begin{align*}
\Gamma, X :: K_1 \vdash t_2 :: T_2 \\
\hline
\Gamma \vdash \lambda X :: K_1 . t_2 :: \forall X :: K_1 . T_2 \\
\end{align*}
\]

(T-TABS)

\[
\begin{align*}
\Gamma \vdash t_1 :: \forall X :: K_{11} . T_{12} \\
\hline
\Gamma \vdash T_2 :: K_{11} \\
\end{align*}
\]

(T-TAPP)

\[
\begin{align*}
\Gamma \vdash t_1 \ [T_{12}] :: (X \mapsto T_{12}) T_{12} \\
\end{align*}
\]
25.2 Higher-Order Existential Types

Similarly, the higher-order variant of existential types is obtained by generalizing \(X \) to \(X : K \) in the original definition of \(\lambda \exists \).

Higher-order existential types

\[
\mathcal{T}_{\omega} + \exists
\]

New syntactic forms

\[
T ::= \ldots \{ \exists X : K, T \}
\]

New typing rules (\(\Gamma \vdash t : T \))

\[
\begin{align*}
\Gamma & \vdash t_2 : \{X \mapsto UT_2 \} \quad \Gamma \vdash \{ \exists X : K_1, T_2 \} : \ast \\
\Gamma & \vdash \{ \exists X = U, t_2 \} \text{ as } \{ \exists X : K_1, T_2 \} : \{ \exists X : K_1, T_2 \} \\
\Gamma & \vdash t_1 : \exists X : K_1, T_{12} \quad \Gamma, X : K_1, x : T_{12} \vdash t_2 : T_2 \\
\Gamma & \vdash \text{let } \{ X, x \} = t_1 \text{ in } t_2 : T_2
\end{align*}
\]

For example, here is an ADT (cf. Section ??) that provides the type operator abstractly:

```haskell
let pairADT =
\{ \exists \text{Pair} = \lambda X. \lambda Y. \forall R. (X \to Y \to R) \to R,
  \{ \text{Pair} = \lambda X. \lambda Y. \lambda x : X. \lambda y : Y.
      \lambda R. \lambda p : X \to Y \to R. p x y,
      \text{fst} = \lambda X. \lambda Y. \lambda p : \text{Pair} X Y.
      p [X] (\lambda x : X. \lambda y : Y. x),
      \text{snd} = \lambda X. \lambda Y. \lambda p : \text{Pair} X Y.
      p [Y] (\lambda x : X. \lambda y : Y. y)\}
\} as \{ \exists \text{Pair} : \ast \Rightarrow \ast \Rightarrow \ast, 
  \{ \text{Pair} = \forall X. \forall Y. X \to Y \to (\text{Pair} X Y),
  \text{fst} = \forall X. \forall Y. (\text{Pair} X Y) \to X,
  \text{snd} = \forall X. \forall Y. (\text{Pair} X Y) \to Y \}
\}

in let \{ \text{Pair}, \text{pair} = \text{pairADT} 

in
  \text{pair.fst} [\text{Nat}] [\text{Bool}] (\text{pair.pair} [\text{Nat}] [\text{Bool}] 5 \text{ true});
```

25.2.1 Exercise [Recommended]: Write a program that defines the \text{pair} ADT, opens it, and then defines a \text{List} ADT with the representation type

\[
\text{List} = \lambda X. \forall R. (X \to R \to R) \to R \to R;
\]

and with operations \text{nil}, \text{cons}, \text{car}, and \text{cdr} of appropriate types. \(\square \)
Fω: Summary

System F+ ⇔

Syntax

\[
\begin{align*}
t & ::= \quad \text{(terms...)} \\
& \quad x \quad \text{variable} \\
& \quad \lambda x : T . t \quad \text{abstraction} \\
& \quad t \ t \quad \text{application} \\
& \quad \lambda \chi : K . t \quad \text{type abstraction} \\
& \quad t [T] \quad \text{type application}
\end{align*}
\]

\[
\begin{align*}
v & ::= \quad \text{(values...)} \\
& \quad \lambda x : T . t \quad \text{abstraction value} \\
& \quad \lambda \chi : K . t \quad \text{type abstraction value}
\end{align*}
\]

\[
\begin{align*}
T & ::= \quad \text{(types...)} \\
& \quad X \quad \text{type variable} \\
& \quad T \rightarrow T \quad \text{type of functions} \\
& \quad \forall X : K . T \quad \text{universal type} \\
& \quad \lambda X : K . T \quad \text{operator abstraction} \\
& \quad T \ T \quad \text{operator application}
\end{align*}
\]

\[
\begin{align*}
K & ::= \quad \text{(kinds...)} \\
& \quad * \quad \text{kind of proper types} \\
& \quad K \Rightarrow K \quad \text{kind of operators}
\end{align*}
\]

\[
\begin{align*}
\Gamma & ::= \quad \text{(contexts...)} \\
& \quad \emptyset \quad \text{empty context} \\
& \quad \Gamma , x : T \quad \text{term variable binding} \\
& \quad \Gamma , \chi : K \quad \text{type variable binding}
\end{align*}
\]

Evaluation \((t \rightarrow t')\)

\[
\begin{align*}
(\lambda x : T_{11} . t_{12}) \ v_2 & \rightarrow (x \mapsto v_2) t_{12} \quad \text{(E-Beta)} \\
\frac{t_1 \rightarrow t_1'}{t_1 \ t_2 \rightarrow t_1' \ t_2} & \quad \text{(E-App1)} \\
\frac{t_2 \rightarrow t_2'}{v_1 \ t_2 \rightarrow v_1 \ t_2'} & \quad \text{(E-App2)} \\
(\lambda x : K_{11} . t_{12}) \ [T_2] & \rightarrow (x \mapsto T_2) t_{12} \quad \text{(E-Beta2)} \\
\frac{t_1 \rightarrow t_1'}{t_1 \ [T_2] \rightarrow t_1' \ [T_2]} & \quad \text{(E-TApp)}
\end{align*}
\]

Type equivalence \((\Gamma \vdash S \equiv T)\)
\[
\frac{
\begin{align*}
\Gamma \vdash T &: K \\
\Gamma \vdash T &\equiv T &: K
\end{align*}
}{\text{(Q-REFL)}}
\]

\[
\frac{
\begin{align*}
\Gamma \vdash S &: K \\
\Gamma \vdash S &\equiv T &: K
\end{align*}
}{\text{(Q-SYM)}}
\]

\[
\frac{
\begin{align*}
\Gamma \vdash S &\equiv U &: K \\
\Gamma \vdash U &\equiv T &: K
\end{align*}
}{\text{(Q-TRANS)}}
\]

\[
\frac{
\begin{align*}
\Gamma, X &: K_1 \vdash S_2 &\equiv T_2 &: * \\
\Gamma \vdash \forall X &: K_1, S_2 &\equiv \forall X &: K_1, T_2 &: *
\end{align*}
}{\text{(Q-ALL)}}
\]

\[
\frac{
\begin{align*}
\Gamma, X &: K_{11} \vdash T_{12} &\equiv K_{12} \\
\Gamma \vdash (\lambda X &: K_{11}, T_{12}) &T_2 \equiv (X \mapsto T_2) &: K_{12}
\end{align*}
}{\text{(Q-BETA)}}
\]

\[
\frac{
\begin{align*}
\Gamma \vdash S &: K_1 \Rightarrow K_2 \\
\Gamma \vdash S &: T &: K_1 \Rightarrow K_2 \\
\Gamma, X &: K_1 \vdash S &\equiv T &: X &: K_2
\end{align*}
}{\text{(Q-EXT)}}
\]

\[
\frac{
\begin{align*}
\Gamma \vdash \forall X &: K_1, S_2 &\equiv \forall X &: K_1, T_2 &: K_1 \Rightarrow K_2
\end{align*}
}{\text{(Q-TABS)}}
\]

\[
\frac{
\begin{align*}
\Gamma \vdash S_1 &\equiv T_1 &: K_{11} \Rightarrow K_{12} \\
\Gamma \vdash S_2 &\equiv T_2 &: K_{11}
\end{align*}
}{\text{(Q-APP)}}
\]

\[
\frac{
\begin{align*}
\Gamma \vdash S_1 &\equiv T_1 &: * \\
\Gamma \vdash S_2 &\equiv T_2 &: *
\end{align*}
}{\text{(Q-ARROW)}}
\]

Kinding \((\Gamma \vdash T &: K)\)

\[
\frac{
\begin{align*}
X &: K \in \Gamma
\end{align*}
}{\text{(K-TVAR)}}
\]

\[
\frac{
\begin{align*}
\Gamma, X &: K_1 \vdash T_2 &: *
\end{align*}
}{\text{(K-ALL)}}
\]

\[
\frac{
\begin{align*}
\Gamma \vdash \forall X &: K_1, T_2 &: *
\end{align*}
}{\text{(K-TABS)}}
\]

\[
\frac{
\begin{align*}
\Gamma \vdash \forall X &: K_1, T_2 &: K_2
\end{align*}
}{\text{(K-TAPP)}}
\]

Typing \((\Gamma \vdash t : T)\)

\[
\frac{
\begin{align*}
x &: T \in \Gamma
\end{align*}
}{\text{(T-VAR)}}
\]
25.3 Type Equivalence and Reduction

25.3.1 Definition: The type reduction relation $\Gamma \vdash S \Rightarrow T :: K$ is defined just like $\Gamma \vdash S \equiv T :: K$, replacing \equiv by \Rightarrow and dropping the rule Q-SYMM.

25.3.2 Proposition: If $\Gamma \vdash S \equiv T :: K$, then there is some U such that $\Gamma \vdash S \Rightarrow U :: K$ and $\Gamma \vdash T \Rightarrow U :: K$.

Proof: Standard.

25.4 Soundness

25.4.1 Lemma:

1. If $\Gamma, x : S, \Delta \vdash T :: K$, then $\Gamma, \Delta \vdash T :: K$.

2. If $\Gamma, x : S, \Delta \vdash S \equiv T :: K$, then $\Gamma, \Delta \vdash S \equiv T :: K$.

Proof: The kinding and type equivalence relations do not depend on term variable bindings.

25.4.2 Lemma [Substitution]: If $\Gamma, x : S, \Delta \vdash t : T$ and $\Gamma \vdash \sigma : S$, then $\Gamma, \Delta \vdash (x \mapsto \sigma)t : T$.

Proof: Straightforward. (Quick check: where is Lemma 25.4.1 used?)

25.4.3 Theorem [Preservation]: If $\Gamma \vdash t : T$ and $t \rightarrow \alpha t'$, then $\Gamma \vdash t' : T$.

Proof: Straightforward induction on evaluation derivations, using Lemma 25.4.2 for the T-VAR case.
25.4.4 Lemma:

1. If \(t \) is a value and \(\vdash t : T_1 \rightarrow T_2 \), then \(t \) is an abstraction.

2. If \(t \) is a value and \(\vdash t : \forall X . T_2 \), then \(t \) is a type abstraction. \(\square \)

Proof: The arguments for the two parts are similar; we show just (1). Since there are only two forms of values, if \(t \) is a value and not an abstraction, then it must be a type abstraction. Suppose (for a contradiction) that it is a type abstraction. Then the given typing derivation for \(\Gamma \vdash t : T_1 \rightarrow T_2 \) must end with a use of T-TABS followed by at least one use of T-EQ. That is, it must have the following form:

\[
\vdash t : \forall X . S_{12} \quad \vdash \forall X . S_{12} \equiv U_1 :: \ast \\
\vdash t : U_1 \\
\vdash t : U_{n-1} \quad \vdash U_{n-1} \equiv U_n :: \ast \\
\vdash t : U_n \\
\vdash t : T_1 \rightarrow T_2
\]

Since type equivalence is transitive, we can collapse all of these uses of equivalence into one and conclude that \(\vdash \forall X . S_{12} \equiv T_1 \rightarrow T_2 \).

By Proposition 25.3.2, there must be some type \(U \) such that \(\vdash \forall X . S_{12} \Rightarrow U \) and \(\vdash T_1 \rightarrow T_2 \Rightarrow U \). A quick inspection of the rules defining the \(\Rightarrow \) relation shows that there can be no such \(U \). \(\square \)

25.4.5 Theorem [Progress]: Suppose \(t \) is closed and stuck, and that \(\vdash t : T \). Then \(t \) is a value.

Proof: By induction on typing derivations. The T-VAR case cannot occur, because \(t \) is closed. The T-ABS and T-TABS cases are immediate, since abstractions are values. The T-EQ case follows directly from the induction hypothesis. The remaining cases, for application and type application, are more interesting.

Case T-APP: \(t = t_1 \cdot t_2 \) \(\vdash t_1 : T_1 \rightarrow T_{12} \quad \vdash t_2 : T_{11} \)

This case cannot occur. To see this, we reason by contradiction. Looking at the evaluation rules, it is clear that a term of the form \(t_1 \cdot t_2 \) can be stuck only if

1. \(t_1 \) is stuck (otherwise E-APP1 would apply to \(t \)), and

2. either \(t_1 \) is not a value or else \(t_2 \) is stuck (otherwise E-APP2 would apply).

From (1) and the induction hypothesis, we see that \(t_1 \) must be a value; so by (2) and the induction hypothesis, \(t_2 \) must also be a value. But by Lemma 25.4.4(1), \(t_1 \) must be an abstraction, which means that E-BETA applies to \(t \), contradicting our assumption that it is stuck.
Case T-TAPP:
Similar.
Chapter 26
Implementing Higher-Order Systems

Algorithmic rules for Γ^ω

Algorithmic reduction \((\Gamma \vdash T \rightarrow T')\)
\[
\begin{align*}
\Gamma \vdash (\lambda x : X_1 \cdot T_{12}) & \quad T_2 \rightarrow (\lambda x \mapsto T_2)T_{12} \\
\Gamma \vdash T_1 & \rightarrow T'_1 & \Gamma \vdash T'_1 T_2 & \rightarrow T' \\
\Gamma & \vdash T_1 T_2 & \rightarrow T'
\end{align*}
\]
\text{(RA-BETA)}
\text{(RA-APP)}

Algorithmic type equivalence \((\Gamma \vdash S \equiv T)\)
\[
\begin{align*}
\Gamma & \vdash X \equiv X \\
\Gamma & \vdash S \Rightarrow S' & \Gamma & \vdash S' \equiv T \\
\Gamma & \vdash S \equiv T \\
\Gamma & \vdash T \Rightarrow T' & \Gamma & \vdash S \equiv T' \\
\Gamma & \vdash S \equiv T \\
\Gamma & \vdash S_1 \equiv T_1 & \Gamma & \vdash S_2 \equiv T_2 \\
\Gamma & \vdash S_1 \rightarrow S_2 \equiv T_1 \rightarrow T_2 \\
\Gamma & \vdash \forall X \cdot K_1, S_2 \equiv \forall X \cdot X_1, T_2 \\
\Gamma, X : X_1 & \vdash S_2 \equiv T_2 \\
\Gamma & \vdash \forall X \cdot K_1, S_2 \equiv \forall X \cdot K_1, T_2 \\
\Gamma & \vdash S_1 \equiv T_1 & \Gamma & \vdash S_2 \equiv T_2 \\
\Gamma & \vdash S_1, S_2 \equiv T_1 T_2
\end{align*}
\]
\text{(QA-TVAR)}
\text{(QA-REDUCEL)}
\text{(QA-REDUCER)}
\text{(QA-ARROW)}
\text{(QA-ALL)}
\text{(QA-TABS)}
\text{(QA-TAPP)}

221
26. Implementing Higher-Order Systems

Exposure \(\{ \Gamma \vdash T \Downarrow T' \} \)

\[
\text{otherwise} \quad
\begin{array}{l}
\Gamma \vdash T \Downarrow T \\
\hline
\Gamma' \vdash T' \Rightarrow T'' \\
\Gamma \vdash T \Downarrow T''
\end{array}
\] (XA-OTHER)

Algorithmic typing \(\{ \Gamma \vdash t : T \} \)

\[
\begin{array}{l}
\frac{x : T \in \Gamma}{\Gamma \vdash x : T} \quad \text{(TA-VAR)} \\
\frac{\Gamma, x : T_1 \vdash t_2 : T_2 \quad \Gamma \vdash T_1 :: *}{\Gamma \vdash \lambda x : T_1 . t_2 : T_1 \Rightarrow T_2} \quad \text{(TA-ABS)} \\
\frac{\Gamma \vdash t_1 : T_1 \quad \Gamma \vdash T_1 \Downarrow (T_{11} \Rightarrow T_{12}) \quad \Gamma \vdash t_2 : T_2 \quad \Gamma \vdash T_2 :: T_{12}}{\Gamma \vdash \lambda x : T_1 . \tau_2 : T_1 \Rightarrow T_2} \quad \text{(TA-APP)} \\
\frac{\Gamma \vdash \tau_1 : T_1 \quad \Gamma \vdash T_1 \Downarrow \forall x : \tau_1 . \tau_2 \quad \Gamma \vdash \tau_2 :: \tau_1}{\Gamma \vdash \tau_1 \Downarrow \forall x : \tau_1 . \tau_2} \quad \text{(TA-TABS)} \\
\frac{\Gamma \vdash \tau_1 : T_1 \quad \Gamma \vdash T_1 \Downarrow \forall x : \tau_1 . \tau_2 \quad \Gamma \vdash \tau_2 :: \tau_1}{\Gamma \vdash \tau_1 [\tau_2] : \Downarrow \forall x : \tau_2 \tau_1} \quad \text{(TA-TAPP)}
\end{array}
\]

26.1 Definition: The set of well-formed contexts is defined as follows:

\[
\vdash \emptyset \text{ ok} \\
\vdash \Gamma \text{ ok} \quad \vdash \Gamma \vdash T :: * \\
\vdash \Gamma, x : T \text{ ok} \\
\vdash \Gamma \text{ ok} \\
\vdash \Gamma, x :: \tau \text{ ok}
\]

\[\square\]

26.2 Proposition: If \(\vdash \tau : T \) and \(\vdash \Gamma \text{ ok} \), then \(\vdash \Gamma \vdash T :: * \).

\[\square\]

26.3 Proposition: If \(\vdash \tau : T \), then every type annotation on a \(\lambda \)-abstraction within \(\tau^* \) has kind \(* \) (in the evident context).

\[\square\]

26.4 Theorem [Equivalence of declarative and algorithmic typing]: Suppose we have \(\vdash \Gamma \text{ ok} \). Then:

1. If \(\vdash \tau : T \), then \(\vdash \Gamma \vdash \tau : T \).
26. If $\Gamma \vdash t : T$, then $\Gamma' \vdash t : S$ with $\Gamma \vdash S \equiv T$.

Proof:

26.5 Theorem [Decidability]:

1. The context well-formedness rules are syntax-directed and total.

2. The algorithmic typing relation is total as long as the input context is well formed.

Proof:
Chapter 27

Higher-Order Subtyping

Just a sketch.

Some kindling premises are omitted in the subtyping rules presented here...

F^ω: Higher-order bounded quantification

**$F^{\omega}
\oplus \ F^{\omega}$**

Syntax

\[
\begin{align*}
\text{t} & ::= x \mid \lambda x : T. t \mid t \; t \mid \lambda X <: T. t \mid t \; [T] \\
\text{v} & ::= \lambda x : T. t \mid \lambda X <: T. t \\
\text{T} & ::= X \mid T \rightarrow T \mid \forall X <: T. T \mid \text{Top} \mid \lambda X : \scriptstyle \times. T \mid t \; t \\
\Gamma & ::= \emptyset \mid \Gamma, x : T
\end{align*}
\]
\[
\begin{array}{l}
\Gamma, X \ll T \\
K ::= \\
\quad * \\
K \Rightarrow K
\end{array}
\]

(type variable binding)

\textit{Evaluation } \quad (t \rightarrow t')

\[
\begin{array}{l}
(\lambda x: T_{11} \cdot t_{12}) \quad v_2 \rightarrow (x \mapsto v_2)t_{12} \\
\quad t_1 \rightarrow t_1' \\
\quad t_1 \quad t_2 \rightarrow t_1' \quad t_2
\end{array}
\]

\textit{(E-BETA)}

\[
\begin{array}{l}
(\lambda x: T_{11} \cdot t_{12}) \quad [T_2] \rightarrow (x \mapsto T_2)t_{12} \\
\quad t_1 \rightarrow t_1'
\end{array}
\]

\textit{(E-BETA2)}

\[
\begin{array}{l}
\quad v_1 \quad t_2 \rightarrow v_1 \quad t_2
\end{array}
\]

\textit{(E-APP2)}

\[
\begin{array}{l}
\quad (\lambda x: T_{11} \cdot t_{12}) \quad [T_2] \rightarrow (x \mapsto T_2)t_{12} \\
\quad t_1 \rightarrow t_1'
\end{array}
\]

\textit{(E-TAPP)}

\textit{Type equivalence } \quad (\Gamma \vdash S \equiv T)

\[
\begin{array}{l}
\Gamma \vdash T \equiv K \\
\Gamma \vdash T \equiv T \equiv K
\end{array}
\]

\textit{(Q-REFL)}

\[
\Gamma \vdash T \equiv S \equiv K
\]

\textit{(Q-SYM)}

\[
\Gamma \vdash S \equiv T \equiv K
\]

\textit{(Q-TRANS)}

\[
\Gamma \vdash S \equiv U \equiv K \\
\quad \Gamma \vdash U \equiv T \equiv K
\]

\textit{(Q-ALL)}

\[
\Gamma \vdash S_1 \equiv T_1 \equiv * \\
\quad \Gamma \vdash S_2 \equiv T_2 \equiv *
\]

\textit{(Q-EXT)}

\[
\Gamma, X : K \vdash T_1 \equiv T_2 \equiv K
\]

\textit{(Q-BETA)}

\[
\Gamma, X : K_1 \vdash T_1 \equiv T_{12} \equiv K_11
\]

\textit{(Q-TABS)}
Kinding (Γ ⊢ T :: K)

\[\begin{align*}
\text{Kinding} & \quad (\Gamma \vdash T :: K) \\
\vdash X \in \Gamma & \quad \Gamma \vdash T :: K \\
\Gamma, X \vdash T_1 \vdash T_2 :: * & \quad (K-ALL)
\end{align*} \]

\[\begin{align*}
\Gamma, \forall X < T_1 & \vdash T_2 :: * \\
\Gamma, \forall X < T_1 \vdash T_2 :: * & \quad (K-ALL)
\end{align*} \]

\[\begin{align*}
\Gamma, X < T_1 &: \text{Top} & \vdash T_2 :: K_2 \\
\Gamma \vdash \lambda X : K_1, T_2 :: K_1 \Rightarrow K_2 & \quad (K-TABS)
\end{align*} \]

\[\begin{align*}
\Gamma \vdash T_1 :: K_{11} \Rightarrow K_{12} & \quad \Gamma \vdash T_2 :: K_{11} \\
\Gamma \vdash T_1 \vdash T_2 :: K_{12} & \quad (K-TAPP)
\end{align*} \]

\[\begin{align*}
\Gamma \vdash T_1 :: * & \quad \Gamma \vdash T_2 :: * \\
\Gamma \vdash T_1 \rightarrow T_2 :: * & \quad (K-ARROW)
\end{align*} \]

Subtyping (Γ ⊢ S <: T)

\[\begin{align*}
\text{Subtyping} & \quad (\Gamma \vdash S <: T) \\
\Gamma \vdash S <: U & \quad \Gamma \vdash U <: T \\
\Gamma \vdash S <: U & \quad (S-TRANS)
\end{align*} \]

\[\begin{align*}
\Gamma \vdash S :: T :: K & \quad (S-EQV)
\end{align*} \]

\[\begin{align*}
\Gamma \vdash S <: T & \quad (S-TRANS)
\end{align*} \]

\[\begin{align*}
\Gamma \vdash S :: T :: K & \quad (S-TRANS)
\end{align*} \]

\[\begin{align*}
\Gamma \vdash S <: \text{Top} & \quad (S-TRANS)
\end{align*} \]

\[\begin{align*}
\Gamma \vdash S_1 :: S_2 & \quad (S-TRANS)
\end{align*} \]

\[\begin{align*}
\Gamma \vdash S_1 :: S_2 & \quad (S-TRANS)
\end{align*} \]

\[\begin{align*}
\Gamma \vdash S_1 ::= S_2 & \quad (S-TRANS)
\end{align*} \]

\[\begin{align*}
\Gamma \vdash S_1 ::= S_2 & \quad (S-TRANS)
\end{align*} \]

\[\begin{align*}
\Gamma \vdash S_1 ::= S_2 & \quad (S-TRANS)
\end{align*} \]

Typing (Γ ⊢ t : T)

\[\begin{align*}
\text{Typing} & \quad (\Gamma \vdash t : T) \\
x : T \in \Gamma & \quad \Gamma \vdash x : T \\
\Gamma \vdash T_1 :: * & \quad \Gamma, x : T_1 \vdash t_2 : T_2 \\
\Gamma \vdash \lambda x : T_1, t_2 :: T_1 \rightarrow T_2 & \quad (T-ABS)
\end{align*} \]
\[\Gamma \vdash t_1 : T_{11} \rightarrow T_{12} \quad \Gamma \vdash t_2 : T_{11} \]
\[
\frac{\Gamma \vdash t_1 \quad \Gamma \vdash t_2 : T_{12}}{\Gamma \vdash t : S} \]
\[
\frac{\Gamma \vdash t : S \quad \Gamma \vdash S \ll T}{\Gamma \vdash t : T} \]
\[
\frac{\Gamma, X \ll T \vdash t_2 : T_2}{\Gamma \vdash \lambda X \ll T. t_2 : \forall X \ll T. T_2} \]
\[
\frac{\Gamma \vdash t_1 : \forall X \ll T_{11} . T_{12} \quad \Gamma \vdash T_2 \ll T_{11}}{\Gamma \vdash t_1 [T_2] : (X \mapsto T_2)T_{12}} \]

Abbreviations

unannotated binder for X \(\overset{\text{def}}{=} X \ll \text{Top} \)

\[
\text{Top}^* \overset{\text{def}}{=} \text{Top} \]

\[
\text{Top}_{x_1 \mapsto x_2} \overset{\text{def}}{=} \lambda X :: K_1 . \text{Top}_{x_2} \]
Chapter 28

Pure Objects and Classes

Technically complete, more or less. Work needed on writing.

28.1 Simple Objects

Recall (from Chapter 19) the type of pure (or “purely functional”) Counter objects:

```
Counter = {∃X, {state:X, methods:{get: X→Nat, inc:X→X}}};
```

The representation type of counters:

```
CounterR = {x:Nat};
```

A counter object:

```
c = {∃x = Nat,
    {state = 5,
     methods = {get = λx:Nat. x,
                  inc = λx:Nat. succ(x)})
   as Counter;
   ▶ c : Counter
```

Message-sending operations:

```
sendget = λc:Counter.
   let {X,body} = c in
   body.methods.get(body.state);
   ▶ sendget : Counter → Nat
```

```
sendinc = λc:Counter.
   let {X,body} = c in
   {∃X = X,
    {state = body.methods.inc(body.state),
     methods = body.methods}}
   as Counter;
```
28.2 Subtyping

Recall (from Section ??) the subtyping rule for existential types:

This means that if we define an object type with more methods than our Counter type

\[
\text{ResetCounter} = \\
\{X, \{\text{state}:X, \text{methods}:\{\text{get}: X \to \text{Nat}, \text{inc}:X \to X, \text{reset}:X \to X\}\}\}
\]

we will have:

\[
\text{ResetCounter} <: \text{Counter}
\]

So if we define a reset counter object

\[
\text{rc} = \{X = \text{Nat}, \\
\{\text{state} = 0, \\
\text{methods} = \{\text{get} = \lambda x: \text{Nat}. x, \\
\text{inc} = \lambda x: \text{Nat}. \text{succ}(x), \\
\text{reset} = \lambda x: \text{Nat}. 0\}\}
\]

as \text{ResetCounter};

\[
\text{rc} : \text{ResetCounter}
\]

we can pass it as a legal argument to \text{sendget} and \text{sendinc}, and hence also \text{addthree}:

\[
\text{rc3} = \text{addthree rc}; \\
\text{sendget rc3};
\]

\[
\text{rc3} : \text{Counter}
\]

\[
3 : \text{Nat}
\]

Notice, though, that the type of \text{rc3} here is just \text{Counter} – passing it through the \text{addthree} operation has lost some information about its type.
28.3 Interface Types

Using type operators, we rewrite the type `Counter` in two parts,

\[
\text{Counter} = \text{Object \ } \text{Counter}^M;
\]

where

\[
\text{Counter}^M = \lambda R. \{\text{get: } R \rightarrow \text{Nat}, \text{inc: } R \rightarrow R\};
\]

\[
\triangleright \text{Counter}^M = \lambda R. \{\text{get: } R \rightarrow \text{Nat}, \text{inc: } R \rightarrow R\} : \ast \Rightarrow \ast
\]

is a type operator representing the interface of counter objects (the part that is specific to the fact that these are counters and not some other kind of objects) and

\[
\text{Object} = \lambda I \ z : \Rightarrow \ast. \{\exists X, \{\text{state: } X, \text{methods: (I X)}\} \};
\]

\[
\triangleright \text{Object} = \lambda I \ z : \Rightarrow \ast. \{\exists X, \{\text{state: } X, \text{methods: (I X)}\} : (\ast \Rightarrow \ast) \Rightarrow \ast
\]

is a type operator (whose parameter is a type operator!) that captures the common structure of all object types.

If we similarly define

\[
\text{ResetCounter}^M = \lambda R. \{\text{get: } R \rightarrow \text{Nat}, \text{inc: } R \rightarrow R, \text{reset: } R \rightarrow R\};
\]

\[
\triangleright \text{ResetCounter}^M = \lambda R. \{\text{get: } R \rightarrow \text{Nat}, \text{inc: } R \rightarrow R, \text{reset: } R \rightarrow R\} : \ast \Rightarrow \ast
\]

\[
\text{ResetCounter} = \text{Object \ } \text{ResetCounter}^M;
\]

we have not only

\[
\text{ResetCounter} : \Rightarrow : \text{Counter}
\]

as before but also

\[
\text{ResetCounter}^M : \Rightarrow : \text{Counter}^M
\]

by the rules above for subtyping between type operators.

28.4 Sending Messages to Objects

We can now give `sendinc` a more refined typing by abstracting over sub-operators of `Counter^M`

\[
\text{sendinc} =
\lambda M : \text{Counter}^M.
\lambda o : \text{Object}(M).
\text{let } \{X, b\} = o \text{ in}
\text{let } \{X = X,}
\{\text{state} = b.\text{methods}.\text{inc}(b.\text{state}),
\text{methods} = b.\text{methods}\}
\text{as } \text{Object}(M);
\]
28.4.1 Exercise: Check carefully that \texttt{sendinc} has the claimed type and that the expressions involving applications of \texttt{sendinc} are well typed.

28.4.2 Exercise: Define \texttt{sendget} and \texttt{sendreset}.

28.5 Simple Classes

In Chapter 14, we defined a class to be a function from states to objects, where objects were records of methods. Here, an object is more than just a record of methods: it includes a representation type and a state as well as methods. Moreover, each of the methods here takes the state as a parameter, so it doesn’t make sense to pass the state to the class. In fact, a class here (as long as we are holding the representation type fixed) is just a record of methods – no packaging, and no abstraction of the whole thing on the state.

\texttt{CounterR} = \texttt{Nat};
\texttt{counterClass} =
\{ \texttt{get} = \lambda \texttt{x}:\texttt{CounterR}. \texttt{x},
 \texttt{inc} = \lambda \texttt{x}:\texttt{CounterR}. \texttt{succ(x)}\}
\texttt{as \{get: \texttt{CounterR} → \texttt{Nat}, inc: \texttt{CounterR} → \texttt{CounterR}\};}

\texttt{counterClass} : \{get: \texttt{CounterR} → \texttt{Nat}, inc: \texttt{CounterR} → \texttt{CounterR}\}

Or, using the \texttt{CounterM} operator to write the annotation more tersely:

\begin{verbatim}
counterClass =
\{ \texttt{get} = \lambda \texttt{x}:\texttt{CounterR}. \texttt{x},
 \texttt{inc} = \lambda \texttt{x}:\texttt{CounterR}. \texttt{succ(x)}\}
\texttt{as CounterM \texttt{CounterR};}
\end{verbatim}
We then build an instance by adding state and packaging:

```java
   c = \{\exists X = CounterR,
         {state = 0,
          methods = counterClass}\}
   as Counter;
```

Here is a simple subclass...

```java
resetCounterClass =
  let super = counterClass in
  {get = super.get,
   inc = super.inc,
   reset = \lambda x:CounterR. 0}
  as ResetCounterM CounterR;
```

28.6 Adding Instance Variables

A record representation for counters:

```java
CounterR = \{x:Nat\};
counterClass =
  {get = \lambda s:CounterR. s.x,
   inc = \lambda s:CounterR. \{x=succ(s.x)\}}
  as CounterM CounterR;
```

A more interesting representation using updatable records (Chapter 23):

```java
CounterR = \{#x:Nat\};
counterClass =
  {get = \lambda s:CounterR. s.x,
   inc = \lambda s:CounterR. \{s+x=succ(s.x)\}}
  as CounterM CounterR;
```

(Note that objects built from these classes will have the same old type `Counter`, and the same message-sending code as before will apply without change.)

Now, because we’ve used polymorphic update operations to define the methods of the counter class, it is actually not necessary to know that the state has exactly type `CounterR`; we can also work with states that are subtypes of this type.
counterClass =
 \(\lambda R:\text{CounterR}. \)

 \{ get = \lambda s:R. s.x,
 inc = \lambda s:R. s\leftarrow s.succ(s.x) \}

 \as \text{CounterM} R;
 \hline
 \text{counterClass : } \forall R:\text{CounterR}. \text{CounterM} R

To build an object from the new counterClass, we simply supply CounterR itself as the representation:

c = \{ \exists X = \text{CounterR},
 \{ \text{state } = \{ X = 0 \},
 \text{methods } = \text{counterClass [CounterR]} \}\}
 \as \text{Counter};
 \hline
 \text{c : Counter}

We can write resetCounterClass in the same style:

resetCounterClass =
 \(\lambda R:\text{CounterR}. \)

 let super = \text{counterClass [R]} in

 \{ get = super.get,
 inc = super.inc,
 reset = \lambda s:R. s\leftarrow s.0 \}

 \as \text{ResetCounterM} R;
 \hline
 \text{resetCounterClass : } \forall R:\text{CounterR}. \text{ResetCounterM} R

Finally, we can write backupCounterClass in the same style, this time abstracting over a subtype of BackupCounterR: We can define another subclass – backup counters – this time using a different representation type:

\begin{align*}
\text{BackupCounterM} &= \lambda R. \{ \text{get } \rightarrow \text{Nat}, \text{inc } \rightarrow \text{R}, \text{reset } \rightarrow \text{R}, \text{backup } \rightarrow \text{R} \}; \\
\text{BackupCounterR} &= \{ \#x\text{:Nat}, \#old\text{:Nat} \}; \\
\text{backupCounterClass} &= \\
 \(\lambda R:\text{BackupCounterR}. \)

 let super = \text{resetCounterClass [R]} in

 \{ get = super.get,
 inc = super.inc,
 reset = \lambda s:R. s\leftarrow s.\text{old},
 \text{backup } = \lambda s:R. s\leftarrow \text{old} = s.x \}

 \as \text{BackupCounterM} R;
 \hline
 \text{backupCounterClass : } \forall R:\text{BackupCounterR}. \text{BackupCounterM} R
\end{align*}

\textbf{28.6.1 Exercise [Moderate]:} We have used polymorphic update in this section to allow methods in classes to update “their” instance variables while leaving room for subclasses to extend the state with additional instance variables. Show that it is possible to achieve the same effect even in a type system lacking polymorphic record update. \(\Box \)
28.7 Classes with “Self”

In Section 14.6, we saw how to extend imperative classes with a mechanism allowing the methods of a class to refer to each other recursively. This extension also makes sense in the pure setting.

We begin by abstracting `counterClass` on a collection of methods (appropriate for the same representation type `R`):

```plaintext
counterClass =
  \( \lambda R:\text{CounterR}. \)
\( \lambda \text{self: CounterR} R. \)
  \{ get = \lambda s:R. s.x,
    inc = \lambda s:R. s\leftarrow s+1
  \}
  \text{as CounterR R;}
```

To build an object from this class, we have to build the fixed point of the function `counterClass`:

```plaintext
c = \{ \exists X = \text{CounterR},
  \{ \text{state} = \{ \text{#x=0},
    \text{methods} = \text{fix} \{ \text{counterClass [CounterR]} \} \}
  \}\text{as Counter;}
```

Then, we can further extend `setCounterClass` to form a class of instrumented counters, whose `set` operation counts the number of times that it has been called:

```plaintext
setCounterClass =
  \( \lambda R:\text{CounterR}. \)
\( \lambda \text{self: SetCounterR} R. \)
  \{ \text{super} = \text{counterClass [R]} \text{self in}
  \text{get} = \text{super.get},
  \text{set} = \lambda s:R. \lambda n:\text{Nat}. s\leftarrow s+n,
  \text{inc} = \lambda s:R. \text{self.set s (succ(self.get s))}
  \}\text{as SetCounterR R;}
```

Finally, we can further extend `setCounterClass` to form a class of instrumented counters, whose `set` operation counts the number of times that it has been called:
Note that calls to inc are included in the access count, since inc is implemented in terms of self.set.

28.8 Class Types

We can write the type of counterClass as

```
CounterClass = Class CounterM CounterR;
```

where:

```
Class = λM::*:→*. λR. ∀R<:R. M R → M R;
```

In other words, Class M R is the type of classes with representation type R and methods M. Class itself is a higher-order operator, like Object.

28.9 Generic Inheritance

Going further along the same lines, we can actually use type operators to construct well-typed terms that perform instantiation of classes (object creation) and subclassing.

The code that performs the instantiation of counterClass to yield a counter does not depend in any way on the fact that we are building a counter as opposed to some other kind of object. We can avoid writing this boilerplate it over and over by abstracting out counterClass, CounterM, CounterR, and the initial value \{#x=0\} as follows:

```
new =
  λM<:TopM.
  λR<:Top.
  λc: Class M R.
  λr:R.
  {∃X = R,
    {state = r,
     methods = fix (c [R])}}
  as Object M;
```
where we write \(\text{Top}_M \) for the “maximal interface” \(\lambda X. \text{Top} \):

\[
\text{Top}_M = \lambda X. \text{Top};
\]

We can now build counter objects by applying \texttt{new} to \texttt{counterClass} as follows:

\[
c = \texttt{new} [\text{CounterM}] [\text{CounterR}] \text{counterClass} \{x=0\};
\]

Similarly, we can write a generic function that builds a subclass given a class and a “delta” that shows how the methods of the subclass are derived from the methods of the superclass. We begin with the concrete subclass \texttt{setCounterClass} from Section 28.6:

\[
\text{setCounterClass} = \\
\lambda R: \text{CounterR}. \\
\lambda \text{self}: \text{SetCounterM} R. \\
\text{let super = counterClass } [R] \text{ self in} \\
\{ \text{get = super.get,} \\
\text{set = } \lambda s: R. \lambda n: \text{Nat}. \text{ s} \leftarrow n, \\
\text{inc = } \lambda s: R. \text{ self.set s (succ(self.get s))} \}
\]

Abstracting out the parts that are specific to counters leaves the following parameterized skeleton:

\[
\texttt{extend} = \\
\lambda \text{SuperM} <: \text{TopM}. \\
\lambda \text{SuperR}. \\
\lambda \text{superClass}: \text{Class SuperM SuperR}. \\
\lambda \text{SelfM} <: \text{SuperM}. \\
\lambda \text{SelfR} <: \text{SuperR}. \\
\lambda \text{delta}: (\forall R:\text{SelfR}. \text{SuperM } R \rightarrow \text{SelfM } R \rightarrow \text{SelfM } R). \\
(\forall R:\text{SelfR}. \\
\lambda \text{self}: \text{SelfM } R. \\
\text{let super = superClass } [R] \text{ self in} \\
\text{delta } [R] \text{ super self} \\
as \text{Class SelfM SelfR};
\]

\[
\texttt{extend} : \forall \text{SuperM} <: \text{TopM}. \\
\forall \text{SuperR}. \\
\text{Class SuperM SuperR} \rightarrow \\
(\forall \text{SelfM} <: \text{SuperM}. \\
\forall \text{SelfR} <: \text{SuperR}. \\
(\forall R:\text{SelfR}. \text{SuperM } R \rightarrow \text{SelfM } R \rightarrow \text{SelfM } R) \rightarrow \\
\text{Class SelfM SelfR})
\]
In other words, \texttt{extend} takes several parameters (\texttt{SuperM} to \texttt{delta}) and returns a class—i.e., a function that takes a representation type \(R \) (the “final type” that will eventually be provided by the \texttt{new} function) and a vector of “self methods” specialized to the type \(R \) and returns a new vector of self methods. The most important bit of this definition—the bit that does all the work—is the parameter \(\texttt{delta} \). It takes the final type \(R \) and two method vectors—the “super methods” calculated by instantiating the superclass at \(R \) and \texttt{self} and the “self methods” provided by \texttt{new}—and returns the self methods.

Now we can recover \texttt{setCounterClass} by extending \texttt{counterClass} like this:

```haskell
setCounterClass =
  extend [CounterM] [CounterR] counterClass
  [SetCounterM] [CounterR]
  (λR <: CounterR.
    λsuper: CounterM R.
    λself: SetCounterM R.
    \{get = super.get,
     set = λs:R. λn:Nat. s←x=n,
     inc = λs:R. self.set s (succ(self.get s)))
   ));
```  

\textbf{28.9.1 Exercise [Recommended]:} Use the \texttt{fullupdate} checker from the course directory to implement the following extensions to the classes above:

1. Reimplement \texttt{setCounterClass} and \texttt{instrumentedCounterClass} using the generic inheritance operations explored in this section.

2. Extend your modified \texttt{instrumentedCounterClass} with a subclass that adds a \texttt{reset} method.

\(\square \)
Chapter 29

Structures and Modules

By Robert Harper and Benjamin Pierce

It’s not clear yet whether this sketch will eventually be just a chapter of the present book or a whole book in its own right. The latter seems more likely at the moment.

29.1 Basic Structures

Structures

Syntax

\[
\begin{align*}
 t &::= t \text{ as } T \\
 & \quad x \\
 & \quad \lambda x:T.t \\
 & \quad t \ t \\
 & \quad \{ \delta x=T::K,t \} \\
 & \quad \text{bodyof}(t) \\
 v &::= \lambda x:T.t \\
 & \quad \{ \delta x=T::K,v \} \\
 T &::= X \\
 & \quad T \to \Gamma \\
 & \quad \{ \delta x::K,T \} \\
 & \quad \text{typeof}(t) \\
 \Gamma &::= \\
\end{align*}
\]

\(\rightarrow x \ S \)

(terms...) coercion variable application structure creation term component of a structure

(values...) abstraction value structure value

(types...) type variable type of functions structure type type component of a structure

(contexts...)
\[\begin{align*}
\emptyset \\
\Gamma, x: T \\
\Gamma, x: \mathbb{K}
\end{align*}\]

\(K := \ast\)

空上下文
类型变量绑定

评价
\(t \rightarrow t'\)

\(t_1 \text{ as } T_2 \rightarrow t_1\)
\((\lambda x: T_{11}. t_{12}) \; v_2 \rightarrow (x \mapsto v_2)t_{12}\)

\[
\begin{align*}
& t_1 \rightarrow t_1' \\
& t_1 \; t_2 \rightarrow t_1' \; t_2 \\
& t_2 \rightarrow t_2' \\
& v_1 \; t_2 \rightarrow v_1 \; t_2'
\end{align*}\]

\(t_1 \rightarrow t_1'\)

\begin{align*}
\text{bodyof}(t_1) & \mapsto \text{bodyof}(t_1') \\
\text{bodyof}(\{S X = T_1, v_2\}) & \mapsto v_2
\end{align*}\]

\(x \notin \text{FV}(v_2)\)

\begin{align*}
\text{bodyof}(\{S X = T_1, v_2\}) & \mapsto \text{bodyof}(\{S X = T_1, (X \mapsto T_1)t_2\})
\end{align*}\]

\(x \not\in \text{FV}(t_2)\)

\[
\begin{align*}
\{S X = T_1, t_2\} & \mapsto \{S X = T_1, (X \mapsto T_1)t_2\}
\end{align*}\]

类型等价
\((\Gamma \vdash S \equiv T)\)

\[
\begin{align*}
\Gamma \vdash T : : K \\
\Gamma \vdash T \equiv T : : K \\
\Gamma \vdash T \equiv S : : K \\
\Gamma \vdash S \equiv T : : K \\
\Gamma \vdash S \equiv U : : K \\
\Gamma \vdash U \equiv T : : K \\
\Gamma \vdash S \equiv T : : K \\
\Gamma \vdash S_1 \equiv T_1 : : \ast \\
\Gamma \vdash S_2 \equiv T_2 : : \ast \\
\Gamma \vdash S_1 \rightarrow S_2 \equiv T_1 \rightarrow T_2 : : \ast \\
\Gamma \vdash (X \mapsto t_2) : T_2 \\
\Gamma \vdash \text{typeof}(\{S X = T_1, t_2\}) \equiv T_1 : : K_1
\end{align*}\]

\(\text{Q-REFL}\)
\(\text{Q-SYM}\)
\(\text{Q-TRANS}\)
\(\text{Q-ARROW}\)
\(\text{Q-STRUCTBETA}\)
Kinding \((\Gamma \vdash T :: \mathbb{K})\)

\[
\frac{\Gamma \vdash T_1 :: \mathbb{K} \quad \Gamma \vdash T_2 :: \mathbb{K}}{\Gamma \vdash T_1 \rightarrow T_2 :: \mathbb{K}} \quad \text{(K-Arrow)}
\]

\[
\frac{\Gamma, x : \mathbb{K} \vdash T_1 :: \mathbb{K}}{\Gamma \vdash \{\mathbb{S} x : \mathbb{K}, T_1\} :: \mathbb{K}} \quad \text{(K-Struct)}
\]

\[
\frac{\Gamma \vdash v_1 : \{\mathbb{S} x : \mathbb{K}, T_1\} \quad \Gamma \vdash \text{typeof}(v_1) :: \mathbb{K}}{\Gamma \vdash \text{typeof}(v_1) :: \mathbb{K}} \quad \text{(K-TypeOf)}
\]

Typing \((\Gamma \vdash t :: T)\)

\[
\frac{\Gamma \vdash T_1 :: \mathbb{K} \quad \Gamma \vdash t_1 : T_1}{\Gamma \vdash t_1 \text{ as } T_1 : T_1} \quad \text{(T-Coerce)}
\]

\[
\frac{x : T \in \Gamma \quad \Gamma \vdash x : T}{\Gamma \vdash x : T} \quad \text{(T-Var)}
\]

\[
\frac{\Gamma \vdash t : S \quad \Gamma \vdash S \equiv T :: \mathbb{K}}{\Gamma \vdash t : T} \quad \text{(T-Eq)}
\]

\[
\frac{\Gamma \vdash T_1 :: \mathbb{K} \quad \Gamma, x : T_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda x : T_1. t_2 : T_1 \rightarrow T_2} \quad \text{(T-Abs)}
\]

\[
\frac{\Gamma \vdash t_1 : T_{11} \rightarrow T_{12} \quad \Gamma \vdash t_2 : T_{11}}{\Gamma \vdash t_1 \ t_2 : T_{12}} \quad \text{(T-App)}
\]

\[
\frac{\Gamma \vdash T_1 :: \mathbb{K}_1 \quad \Gamma \vdash \{x \mapsto T_1\}t_2 : \{x \mapsto T_1\}T_2 \quad \Gamma, x : \mathbb{K}_1 \vdash T_2 :: \mathbb{K}}{\Gamma \vdash \{\mathbb{S} x : \mathbb{K}_1, T_2\} :: \mathbb{K}} \quad \text{(T-Struct)}
\]

\[
\frac{\Gamma \vdash v_0 : \{\mathbb{S} x : \mathbb{K}_1, T_2\}}{\Gamma \vdash \text{bodyof}(v_0) : \{x \mapsto \text{typeof}(v_0)\}T_2} \quad \text{(T-BodyOf)}
\]

Abbreviations

unannotated binder for \(X\) \(\overset{\text{def}}{=} X :: \mathbb{K}\)

Important points:

- The calculus relies on an evaluation relation to determine under what circumstances \(\text{typeof}(t)\) makes sense. In the presence of effects, it need not make sense.

- We omit a general “valuability” judgement at this point, in favor of a syntac-
tic definition of “open values”

- `typeof` always makes sense on values (or more generally, later, a valuable expression)

- `bodyof` is restricted to values because of the substitution of `typeof`. (We could go a little further and allow it for nonvalues in the non-dependent case, where the substitution doesn’t do anything.)

- With these restrictions, all of this should be encodable using existentials with the `open` elimination form.

- We don’t evaluate type expressions, since they play no role in computation. This would need to be revisited if we had any kind of type analysis (dynamic, etc.).

- Structure values are binders. Dependencies are eliminated during projection (this is easy in the binary case).

- On the face of it, there are two choices for type equivalence for `typeof`: (1) we can include the computation rule above for reducing a `typeof` applied to a structure, or (2) we can eliminate this rule and rely on reflexivity for comparing `typeof(structure)` expressions. We have chosen the first because it supports a “phase distinction,” in the sense that type equality never depends on any notion of equality for ordinary expressions — i.e. type equality can be computed by looking only at the types. Taking the second choice is a step on the road to structure sharing.

- We have omitted the congruence rule for type reduction for `typeof`, since the only possible arguments to `typeof` are already values (when we extend to paths later, this needs to be revisited — note that this may be tricky, since we do not have a “full beta-equivalence” notion of equality on terms: we may need to define a simplification relation separate from evaluation)

- Structure values do not have principal types, for the same reason as existential values did not. The fix is the same: if every structure intro form is immediately ascribed, then the term will have a principal type.
29.2 Record Kinds and Subkinding

Records of types $\rightarrow \Rightarrow \text{trcd}$

New syntactic forms

$T ::= \ldots \{1_i \equiv T_i \in \text{L}.n\} \ T \ \text{..}

K ::= \ldots \{1_i :: K_i \in \text{L}.n\}$

New type equivalence rules $\left(\Gamma \vdash S \equiv T \right)$

\[
\begin{align*}
\Gamma \vdash T_i \equiv K_i & \quad \text{(Q-TRCDBeta)} \\
\Gamma \vdash \{1_i \equiv T_i \in \text{L}.n\} \equiv \{1_i \equiv K_i \in \text{L}.n\} & \quad \text{(Q-TRCPERM)} \\
\Gamma \vdash T = T' & \quad \text{(Q-SUB)} \\
\end{align*}
\]

New kind formation rules

\[
\Gamma \vdash \{1_i : K_i \in \text{L}.n\} \ \text{ok} \\
\Gamma \vdash \{1_i :: K_i \in \text{L}.n\} \ \text{ok} \\
\]

New kind equivalence rules
\(\pi \) is a permutation of \(\{1..n\} \)
\[
\Gamma \vdash \{1_i :: K_i^{1..L_n} \} \quad \text{ok}
\]
\[
\Gamma \vdash \{1_m :: K_m^{1..L_n} \} \quad \text{ok}
\]
\[
\Gamma \vdash \{1_i :: K_i^{1..L_n} \} \equiv \{1_m :: K_m^{1..L_n} \} \quad \text{(KEqv-TRCD-Perm)}
\]

New kinding rules
\[
(\Gamma \vdash T :: K)
\]
\[
\Gamma \vdash 1_i :: K_i^{1..L_n}
\]
\[
\Gamma \vdash \{1_i :: K_i^{1..L_n} \} \quad \text{(K-TRCD)}
\]

\[
\Gamma \vdash T_0 :: \{1_i :: K_i^{1..L_n} \}
\]
\[
\Gamma \vdash T_0 \cdot 1_i :: K_j \quad \text{(K-TYProj)}
\]

New abbreviations
\[
\{\ldots K_i \ldots\} \overset{\text{def}}{=} \{\ldots i :: K_i \ldots\}
\]

New subkinding rules
\[
\Gamma \vdash K_1 :: K_2
\]
\[
\Gamma \vdash K_1 <:: K_2 \quad \text{(SK-EQV)}
\]

\[
\Gamma \vdash K_1 <:: K_2 \quad \Gamma \vdash K_2 <:: K_3
\]
\[
\Gamma \vdash K_1 <:: K_3 \quad \text{(SK-TRANS)}
\]

\[
\Gamma \vdash \{1_i :: K_i^{1..L_{n+k}} \} \quad \text{ok}
\]
\[
\Gamma \vdash \{1_i :: K_i^{1..L_{n+k}} \} :: \{1_i :: K_i^{1..L_n} \} \quad \text{(S-TRCD-WIDTH)}
\]

\[
\Gamma \vdash \{1_i :: J_i^{1..L_n} \} \quad \text{ok}
\]
\[
\Gamma \vdash \{1_i :: K_i^{1..L_n} \} \quad \text{ok}
\]
\[
\Gamma \vdash 1_i :: S_i <:: T_i \quad \text{(SK-TRCD-DEPTH)}
\]

Notes:
- We include an extensionality rule for several reasons:
 - It’s natural. (Programmers would expect it.)
 - It’s needed for selfification to work.
 - The present algorithm relies on it (weak argument, but there it is)
29.3 Singleton Kinds

Singleton kinds

→ Eq

New syntactic forms

K ::= ...

Eq(T)

singleton kind

New type equivalence rules (Γ ⊢ S ≡ T)

Γ ⊢ S :≡ T :: K₁ Γ ⊢ K₁ ≺: K₂

Γ ⊢ S :≡ T :: K₂

(Q-SUB)

Γ ⊢ S :≡ T :: Eq(T)

Γ ⊢ S :≡ T :: *

(Q-SINGLETON1)

Γ ⊢ S :≡ T :: *

Γ ⊢ S :≡ T :: Eq(S)

(Q-SINGLETON2)

New kind formation rules

Γ ⊢ S :: *

Γ ⊢ Eq(S) ok

(KF-SINGLETON)

New kind equivalence rules

Γ ⊢ S :≡ T :: *

Γ ⊢ Eq(S) ≡ Eq(T)

(KEQV-SINGLETON)

New subkinding rules

Γ ⊢ K₁ ≡ K₂

Γ ⊢ K₁ ≺: K₂

SK-EQUV

Γ ⊢ K₁ ≺: K₂ Γ ⊢ K₂ ≺: K₃

Γ ⊢ K₁ ≺: K₃

(SK-TRANS)

Γ ⊢ S :: *

Γ ⊢ Eq(S) ≺: *

(SK-SINGLETON)

New kinding rules (Γ ⊢ T :: K)

Γ ⊢ S :: *

Γ ⊢ S :: Eq(S)

(K-SINGLETON)
29.4 Dependent Function and Record Kinds

Dependent records of types → \(\text{trcd} \ \text{depkind} \)

New syntactic forms

\[
K ::= \ldots \ \\
\Pi X :: K.K \\
\{ \lambda l \cdot X_i :: K_i^{i \in \mathbb{N}} \}
\]

\(\text{kinds...} \)

dependent kind of operators

dependent kind of records of types

New kind formation rules

\[
\begin{align*}
\Gamma & \vdash \pi \Xi : \Pi X :: K_1.K_2 \\
\Gamma & \vdash \Pi X :: K_1.K_2 \\
\Gamma & \vdash \{ \lambda l \cdot X_i :: K_i^{i \in \mathbb{N}} \} \cup \{ l \mapsto K_{i_{n+1}} \} \\
\end{align*}
\]

\(\text{KF-TARR} \)

\(\text{KF-TRCD} \)

New kind equivalence rules

\[
\begin{align*}
\Gamma & \vdash K_i \equiv K' \quad \Gamma, X :: K_1 \vdash \Gamma, X :: K_2 \equiv K'
\end{align*}
\]

\(\text{KEQV-TARR} \)

\(\text{KEQV-TRCD-Perm} \)

New kinding rules

\[
\begin{align*}
\Gamma, X :: K_1 & \vdash T_2 :: K_2 \\
\Gamma & \vdash \lambda X :: K_1.K_2 \\
\Gamma & \vdash T_1 :: \Pi X :: K_{i_1}.K_{i_2} \\
\Gamma & \vdash T_1 \rightarrow T_2 :: K_{i_1} \\
\Gamma, X :: K_1 \rightarrow K_{i_1} & \vdash \Gamma, X :: K_i^{i \in \mathbb{N}} \\
\Gamma & \vdash \{ \lambda l \cdot X_i :: K_i^1 \} \rightarrow \Gamma, X :: K_i^{i \in \mathbb{N}} \\
\Gamma & \vdash T_1 :: \{ \lambda l \cdot X_i :: K_i^1 \}
\end{align*}
\]

\(\text{K-TABS} \)

\(\text{K-TAPP} \)

\(\text{K-TRCD} \)

\(\text{K-TYPROJ} \)

New subkinding rules

\[
\begin{align*}
\Gamma & \vdash \{ \lambda l \cdot X_i :: K_i^{i \in \mathbb{N}} \} \cup \{ l \mapsto \mathbb{N} \} \\
\Gamma & \vdash \{ \lambda l \cdot X_i :: K_i^{i \in \mathbb{N}} \} \cup \{ l \mapsto \mathbb{N} \}
\end{align*}
\]

\(\text{S-TRCD-WIDTH} \)
Notes:

- We introduced primitive labeled record kinds because Cardelli’s encoding doesn’t work in the presence of dependencies, because it presumes the ability to reorder labels arbitrarily to match the fixed global order; but this may break dependencies between fields.

29.5 Dependent Record Expressions and Records of Types

New syntactic forms

\[
\begin{align*}
t & ::= \ldots \quad \text{(terms...)} \\
\{1_i \triangleright x_i = v_i : \tau^L_n\} & \quad \text{dependent record} \\

v & ::= \ldots \quad \text{(values...)} \\
\{1_i \triangleright x_i = v_i : \tau^L_n\} & \quad \text{dependent record value}
\end{align*}
\]

New evaluation rules

For each \(i \in \{x_1 \ldots x_{i-1}\} \cap FV(v_i) = \emptyset\)

\[
1_i \triangleright x_i = v_i : \tau^L_n, 1_i \triangleright v_i \\
\tau_i \rightarrow \tau_i'
\]

(E-RCDBeta)

For each \(j < i, (x_1 \ldots x_{i-1}) \cap FV(v_j) = \emptyset\)

\[
\begin{align*}
& \{1_i \triangleright x_i = v_i : \tau^L_n, 1_i \triangleright x_i = t_j, 1_k \triangleright x_k = t_k \} \\
\rightarrow & \{1_i \triangleright x_i = v_i : \tau^L_n, 1_i \triangleright x_i = t'_j, 1_k \triangleright x_k = t_k \}
\end{align*}
\]

(E-RECORDSUBST)

New typing rules

For each \(i \quad \Gamma, x_1 : T_1, \ldots, x_{i-1} : T_{i-1} \vdash t_i : T_i\)

\[
\Gamma \vdash \{1_i \triangleright x_i = t_i : \tau^L_n\} : \{1_i \triangleright x_i : T_i : \tau^L_n\}
\]

(T-RCD)
New abbreviations

\[
\{ \ldots t_i \ldots \} \overset{\text{def}}{=} \{ \ldots i \triangleright x_i = t_i \ldots \} \text{ where } x_i \text{ is fresh}
\]

29.6 Higher-Kind Singletons

Higher-order singletons

New syntactic forms

\[
K := \ldots \quad \text{(kinds...)}
\]

\[
\text{EQ}(T::K)
\]

higher singleton kind

New kind formation rules

\[
\frac{\Gamma \vdash T :: K}{\Gamma \vdash \text{EQ}(T::K) \quad \text{ok}} \quad \text{(KF-HOS)}
\]

New kind equivalence rules

\[
\frac{\Gamma \vdash T \equiv T' :: K \quad \Gamma \vdash K \equiv K'}{\Gamma \vdash \text{EQ}(T::K) \equiv \text{EQ}(T'::K')} \quad \text{(KEQV-HOS)}
\]

\[
\frac{\Gamma \vdash T :: \ast}{\Gamma \vdash \text{EQ}(T::\ast) \equiv \text{Eq}(T)} \quad \text{(KEQV-HOS-TYPE)}
\]

\[
\frac{\Gamma \vdash T :: \text{Eq}(\emptyset)}{\Gamma \vdash \text{EQ}(T::\text{Eq}(\emptyset)) \equiv \text{Eq}(T)} \quad \text{(KEQV-HOS-SINGLETON)}
\]

\[
\frac{\Gamma \vdash T :: \Pi X::K_1.K_2}{\Gamma \vdash \text{EQ}(T::\Pi X::K_1.K_2) \equiv \Pi X::\text{Eq}(T::K_1).\text{Eq}(T::\Pi X::K_2)} \quad \text{(KEQV-HOS-TARR)}
\]

\[
\frac{\Gamma \vdash T :: \{ x_i : K_i \}_{i \in 1..n}}{\Gamma \vdash \text{EQ}(T::\{ x_i : K_i \}_{i \in 1..n}) \equiv \{ x_i : \text{Eq}(T::x_i::\text{Eq}(T::K_i)) \}_{i \in 1..n}} \quad \text{(KEQV-HOS-TRCD)}
\]

New kinding rules

\[
(\Gamma \vdash T :: K)
\]

\[
\frac{\Gamma \vdash T :: \Pi X::K_1.K_2 \quad \Gamma, X::K_1 \vdash T :: X :: K_2'}{\Gamma \vdash T :: \Pi X::K_1.K_2'} \quad \text{(K-TARR-SELF)}
\]
29.7 First-class Substructures and Functors

Dependent functions

New syntactic forms

\[T ::= \ldots \quad \Pi x : T . T \]
(type of dependent functions)

New type equivalence rules

\[\Gamma \vdash S \equiv T \]
\[\Gamma \vdash S \equiv U \equiv T \equiv K \]
\[\Gamma \vdash \Pi x : S_1 . S_2 \equiv \Pi x : T_1 , T_2 \equiv \ast \]
\[\Gamma \vdash \Pi x : T_1 . T_2 \equiv \ast \]
\[\Gamma \vdash \lambda x : T_1 . t_2 : T_2 \]
\[\Gamma \vdash t_1 : \Pi x : T_{11} . T_{12} \]
\[\Gamma \vdash t_2 : T_{11} \]
\[\Gamma \vdash t_1 , t_2 : T_{12} \]
\[t_1 \rightarrow t_2 \overset{\text{def}}{=} \Pi x : T_1 . T_2 \text{ where } x \not\in \text{FV}(T_2) \]
Dependent records

New syntactic forms

\[
T ::= \ldots \set_{i \in [1..n]}^1 \nu x_i : T_i \quad \text{(types...)}
\]

\[
\text{type of dependent records}
\]

New type equivalence rules

\[
\begin{align*}
\Gamma \vdash S \equiv T & \quad \text{(Q-REFL)} \\
\Gamma \vdash T :: K & \\
\Gamma \vdash \equiv T :: K & \\
\Gamma \vdash T :: S :: K & \\
\Gamma \vdash S :: T :: K & \quad \text{(Q-TYMM)} \\
\Gamma \vdash S_1 :: T_1 :: * & \\
\Gamma \vdash S_2 :: T_2 :: * & \quad \text{(Q-TRANS)} \\
\Gamma \vdash S_1 \rightarrow S_2 :: T_1 \rightarrow T_2 :: * & \\
\Gamma \vdash \{ \nu x_i : T_i \} :: * & \quad \text{(Q-ARROW)} \\
\Gamma \vdash \{ \nu x_i : T_i \} :: * & \\
\pi \text{ is a permutation of } \{1..n\} & \quad \text{(Q-RCD-PERM)} \\
\Gamma \vdash \{ \nu x_i : T_i \} :: * & \quad \text{(Q-RCD-PERM)} \\
\Gamma \vdash \{ \nu x_i : T_i \} :: * & \\
\Gamma \vdash \{ \nu x_i : T_i \} :: * & \\
\Gamma \vdash \nu x_i : T_i & \\
\Gamma \vdash t : S & \quad \text{(T-EQ)} \\
\Gamma \vdash t : T & \\
\text{for each } i \quad \Gamma \vdash T_i :: * & \quad \text{(T-RCD)} \\
\Gamma \vdash t : \{ \nu x_i : T_i \} : \{ \nu x_i : T_i \} & \\
\Gamma \vdash t : t_i : T_i & \quad \text{(T-PROJ)} \\
\text{New abbreviations} \\
\{ \ldots T_i \ldots \} \overset{\text{def}}{=} \{ \ldots i \nu x : T_i \ldots \} \text{ where } x \text{ is fresh}
\]

Notes:

- These types are only apparently dependent: the elim forms apply only in the non-dependent case, in the expectation that dependencies will first be eliminated by propagation of sharing
- This approach depends crucially on the presence of singleton kinds, since these provide the mechanism for propagating sharing
• We hold the type of earlier substructures abstract while checking the next one — i.e., we propagate forward only type information, not “identity”

• The “selfification” rules allow us to specialize signatures (types of modules) to propagate sharing. They are critical.

• Note that the T-RCD rule here does not do any substitution of earlier fields. It could, but this would constitute a violation of abstraction (besides raising the usual issues in combination with effects). This version of the rule, though, relies on the presence of singleton kinds to be very useful. For example, we want the expression

\{l=\{\text{Int}, \ldots\}, 1'=3\}

will not have the intended type

\{l'x: (\text{Int}, \ldots), 1'\cdot x': \text{type}(x)\}

by a direct application of this rule. Instead, we need to use singletons to give the term the type

\{l'x: (\text{Eq(Int)}, \ldots), 1'\cdot x': \text{type}(x)\}

(a subtype of the previous type), from which T-RCD does derive the intended type.

29.8 Second-Class Modules

phase-separation equations

29.9 Other points to make

• The old argument about whether modules are strong sums.
 – The argument that strong sums are “not abstract” doesn’t hold water. Our structures here are not either: the abstraction comes from the combination of structures with ascription (or let-binding, etc.)
 – A better reason is that strong sums propagate sharing information by substitution, which doesn’t scale to systems with effects (the Harper/Lillibridge calculus can be described as a variant of strong sums that does this right)

• Applicative vs. generative functors
Chapter 30

Planned Chapters

I’m not sure yet how much material will get added after this point—it depends mostly on how much time it takes to get the rest into a polished state—but here are my top priorities:

- Basic material on modularity. (Bob Harper and I are working together on a development that includes enough technicalities to understand module systems of the complexity of SML97’s (or OCaml’s), including both first- and second-class variants. It’s a huge task, and it’s not clear yet whether we’re going to be able to finish something, or whether, if we do, it will turn out to be just a long co-authored chapter here or a short book in its own right.)

- Basics of dependent types. (General sums are the point where this gets hard.)

- Maybe some elementary material on intersection types, linear types, or the Curry-Howard isomorphism.

- A chapter on Moggi’s computational lambda-calculus

- Something on curry-howard. (In any case, make sure these are in the bibliography: gallier notes on constructive logic)
Appendices
Appendix A

Solutions to Selected Exercises

Solution to 3.2.13:

\[
\begin{array}{c}
t \rightarrow t' \\
\hline
\text{Case: } t \rightarrow^{*} t' \\
\hline
\text{Case: } t \rightarrow^{*} t \\
\hline
\text{Case: } t \rightarrow^{*} t' \\
\hline
\text{Case: } t \rightarrow^{*} t''
\end{array}
\]

Solution to 3.3.2: By induction on the structure of \(t \).

Case: \(t \) is a value

By Proposition 3.3.1, this case cannot occur.

Case: \(t = \text{succ } t_1 \)

Looking at the evaluation rules, we find that only the rule E-Succ could possibly be used to derive \(t \rightarrow t' \) and \(t \rightarrow t'' \) (all the other rules have left-hand sides whose outermost constructor is something other than succ). So there must be two subderivations with conclusions of the form \(t_1 \rightarrow t_1' \) and \(t_1 \rightarrow t_1'' \). By the induction hypothesis (which applies because \(t_1 \) is a subterm of \(t \)), we obtain \(t_1' = t_1'' \). But then \(\text{succ } t_1' = \text{succ } t_1'' \), as required.

Case: \(t = \text{pred } t_1 \)

Here there are three evaluation rules (E-Pred, E-BetaNatIZ, and E-BetaNatIS) that might have been used to reduce \(t \) to \(t' \) and \(t'' \). Notice, however, that these rules do not overlap: if \(t \) matches the left-hand side of one rule, then it definitely does not match the left-hand side of the others. (For example, if \(t \) matches E-Pred, then \(t_1 \) is definitely not a value, in particular not 0 or succ \(\cdot \cdot \cdot \).) This tells us that the same rule must have been used to derive \(t \rightarrow t' \) and \(t \rightarrow t'' \). If that rule was E-Pred, then we use the induction hypothesis as in the previous case. If it was E-BetaNatIZ or E-BetaNatIS, then the result is immediate.
Case: Other cases
Similar.

Solution to 4.2.3: There are several possibilities:

\[
\begin{align*}
&\text{succ1} = \lambda n. \lambda s. \lambda z. s (n s z); \\
&\text{succ2} = \lambda n. \lambda s. \lambda z. n s (s z); \\
&\text{succ3} = \lambda n. \text{plus c1 n};
\end{align*}
\]

Solution to 4.2.6: Here’s a simple one:

\[
\begin{align*}
&\text{equal} = \lambda m. \lambda n. \\
&\quad \text{and (iszero (m prod n))} \\
&\quad \text{(iszero (n prod m))};
\end{align*}
\]

Solution to 4.2.7: This is the solution I had in mind:

\[
\begin{align*}
&\text{nil} = \lambda h. \lambda t. \text{tt}; \\
&\text{cons} = \lambda h. \lambda t. \lambda hh. \lambda tt. hh h (t \text{ tt tt}); \\
&\text{head} = \lambda l. 1 (\lambda h.\lambda t. h) \text{ fis}; \\
&\text{tail} = \lambda l. \\
&\quad \text{fst} (1 (\lambda x. \lambda p. \text{pair (snd p)} (\text{cons x (snd p)})) \\
&\quad \text{(pair nil nil)}); \\
&\text{isnull} = \lambda l. 1 (\lambda h.\lambda t. \text{fis}) \text{ tru};
\end{align*}
\]

Here is a rather different approach:

\[
\begin{align*}
&\text{nil} = \text{pair tru tru}; \\
&\text{cons} = \lambda h. \lambda t. \text{pair fis (pair h t)}; \\
&\text{head} = \lambda x. \text{fst (snd z)}; \\
&\text{tail} = \lambda x. \text{snd (snd z)}; \\
&\text{isnull} = \text{fst};
\end{align*}
\]

Solution to 4.2.8:

\[
\begin{align*}
&\text{ff} = \lambda f. \lambda l. \\
&\quad \text{test (isnull l)} \\
&\quad (\lambda x. c_0) (\lambda x. (\text{plus (head l) (f (tail l))})) c_0; \\
&\text{sumlist} = \text{fixpoint ff}; \\
&\text{l} = \text{cons c2 (cons c3 (cons c4 nil))}; \\
&\text{equal} (\text{sumlist l}) c_0; \\
&\quad (\lambda x. \lambda y. x)
\end{align*}
\]
Solution to 5.1.13: For convenience, let’s define a little notation first. If Γ is a naming context, write $\Gamma(x)$ for the index of x in Γ, counting from the right. Write $\Gamma \setminus x$ for the context that results when x is removed from Γ. For example, if $\Gamma = a, b, c, d$, then $\Gamma(c) = 1$ and $\Gamma \setminus c = a, b, d$.

Now, the property that we want is that, if $x \not\in \text{FV}(s)$, then

$$\text{removenames}_{\Gamma \setminus x}((x \mapsto s)t) = (\Gamma(x) \mapsto \text{removenames}_{\Gamma \setminus x}(s)) \{\text{removenames}_{\Gamma}(t)\}.$$

The proof proceeds by induction on t, using Definitions 4.4.5 and 5.1.9, some simple calculations, and some easy lemmas about removenames and the other basic operations on terms. Convention 4.4.4 plays a crucial role in the abstraction case.

Solution to 6.3.8: Here’s a counterexample: the term $\text{if} \; \text{false} \; \text{then} \; \text{true} \; \text{else} \; 0$ is ill-typed, but evaluates to the well-typed term 0.

Solution to 7.2.3: T-TRUE and T-FALSE are introduction rules. T-IF is an elimination rule.

Solution to 7.3.1: Because the set of type expressions is empty (there is no base case in the syntax of types).

Solution to 25.4.2: The proof proceeds by induction on a derivation of $\Gamma, x : S \vdash t : T$. There are cases for each of the typing rules (or, equivalently, each of the possible forms of t).

Case T-VAR: $t = z$
with $\Gamma(z) = T$

There are two sub-cases to consider, depending on whether z is the same as x or different. If $z = x$, then $(x \mapsto s)z = s$. The required result is then $\Gamma \vdash s : S$, which is among the assumptions of the lemma. Otherwise, $(x \mapsto s)z = z$, and the desired result is immediate.

Case T-ABS: $t = \lambda y : T_2.t_1$
$T = T_2 \rightarrow T_1$
\[\Gamma, x : S \vdash t_1 : T_1\]

First note that, by convention 4.4.4, we may assume $x \neq y$ and $y \not\in \text{FV}(s)$. Using weakening and permutation on the given subderivation, we obtain $\Gamma, y : T_2, x : S \vdash t_1 : T_1$. By the induction hypothesis, $\Gamma, y : T_2 \vdash (x \mapsto s)t_1 : T_1$. By T-ABS, $\Gamma \vdash \lambda y : T_2. \{x \mapsto s\}t_1 : T_2 \rightarrow T_1$. But this is the needed result, since, by the definition of substitution, $(x \mapsto s)t = \lambda y : T_1. \{x \mapsto s\}t_1$.

Case T-APP: $t = t_1 t_2$
\[\Gamma, x : S \vdash t_1 : T_2 \rightarrow T_1\]
\[\Gamma, x : S \vdash t_2 : T_2\]
$T = T_2$

By the induction hypothesis, $\Gamma \vdash (x \mapsto s)t_1 : T_2 \rightarrow T_1$ and $\Gamma \vdash (x \mapsto s)t_2 : T_2$. By T-APP, $\Gamma \vdash (x \mapsto s)t_1 (x \mapsto s)t_2 : T$, i.e., $\Gamma \vdash (x \mapsto s)(t_1 t_2) : T$.

January 15, 2000
Case T-TRUE, T-FALSE: \(t = 0 \)
\[T = \text{Bool} \]
Then \((x \mapsto s)t = 0 \), and the desired result, \(\Gamma \vdash (x \mapsto s)t : T \), is immediate.

Case T-IF: \(t = \text{if } t_1 \text{ then } t_2 \text{ else } t_3 \)
\[\Gamma, x : S \vdash t_1 : \text{Bool} \]
\[\Gamma, x : S \vdash t_2 : T \]
\[\Gamma, x : S \vdash t_3 : T \]
The induction hypothesis yields
\[\Gamma \vdash (x \mapsto s)t_1 : \text{Bool} \]
\[\Gamma \vdash (x \mapsto s)t_2 : T \]
\[\Gamma \vdash (x \mapsto s)t_3 : T \]
from which the result follows by T-IF. \(\square \)

Solution to 8.4.1:
Typed record patterns
\[\rightarrow () \text{ let } \text{pat (typed)} \]

Pattern typing rules
\[\vdash x : T \Rightarrow x : T \] \hspace{1cm} (P-VAR)

for each \(i \)
\[\vdash p_i : T_i \Rightarrow \Delta_i \]
\[\vdash \{ p_i \} : \{ T_i \} \Rightarrow \Delta_1, \ldots, \Delta_n \] \hspace{1cm} (P-RCD)

New typing rules \((\Gamma \vdash t : T)\)
\[\Gamma \vdash t_1 : T_1 \quad \vdash p : T_1 \Rightarrow \Delta \quad \Gamma, \Delta \vdash t_2 : T_2 \]
\[\Gamma \vdash \text{let } p = t_1 \text{ in } t_2 : T_2 \] \hspace{1cm} (T-LET)

Solution to 17.3.9: Here are the algorithmic constraint generation rules:
\[\Gamma \vdash \text{let } p = t_1 \text{ in } t_2 : T \]
\[\begin{align*}
\Gamma \vdash x : T & \Rightarrow \Gamma \vdash x : T \\
\Gamma, x : S \vdash t_1 : T & \Rightarrow \Delta \quad \Gamma, \Delta \vdash t_2 : T \quad \Gamma, \Delta \vdash \text{let } p = t_1 \text{ in } t_2 : T \\
\Gamma \vdash \text{let } p = t_1 \text{ in } t_2 : T & \Rightarrow \Gamma \vdash x : T \\
\Gamma \vdash \text{let } p = t_1 \text{ in } t_2 : T & \Rightarrow \Gamma \vdash x : T \\
\Gamma, x : S \vdash t_1 : T & \Rightarrow \Delta \quad \Gamma, \Delta \vdash t_2 : T \\
\Gamma \vdash \text{let } p = t_1 \text{ in } t_2 : T & \Rightarrow \Gamma \vdash x : T \\
\end{align*} \]

(P-VAR)

(P-RCD)

(T-LET)

(C-T-VA R)

(C-T-ABS)

(C-T-APP)

(C-T-ZERO)

(C-T-SUC C)
The equivalence of the original rules and the algorithmic presentation can be stated as follows:

1. (Soundness) If $\Gamma \vdash t : T \mid F$, C and the variables mentioned in Γ and t do not appear in F, then $\Gamma \vdash t : T \mid F \setminus C$.

2. (Completeness) If $\Gamma \vdash t : T \mid X$, then there is some permutation F of the names in X such that $\Gamma \vdash t : T \mid F \setminus C$.

Both parts are proved by straightforward induction on derivations. For the application case in part 1, the following lemma is useful:

If the type variables mentioned in Γ and t do not appear in F and if $\Gamma \vdash t : T \mid F$, then the type variables mentioned in T and C do not appear in $F \setminus F$.

For the same case in part 2, the following lemma is used:

If $\Gamma \vdash t : T \mid F$, then $\Gamma \vdash t : T \mid F$, where G is any sequence of fresh variable names.

Solution to 17.3.10: Representing constraint sets as lists of pairs of types, the constraint generation algorithm is a direct transcription of the inference rules given above.

```ocaml
define solver(t : T, C) = define C' = C1 | C2 | C3 | {T1 = Nat, T2 = T3 -> T3} in if \Gamma \vdash \mu \Gamma t : T \mid \mu \Gamma \setminus \Gamma C' then define \Gamma \vdash \mu \Gamma t : T \mid \mu \Gamma \setminus \Gamma C' end
```

let rec recon ctx nextuvar t =
 match t with
 TmVar(f, i, _) ->
 let tyS = gettype f ctx i in
 (tyS, nextuvar, [])
 | TmAbs(f, x, tyS, t1) ->
 let ctx' = addbinding ctx x (VarBind(tyS)) in
 let (tyT1, nextuvar1, constr1) = recon ctx' nextuvar t1 in
 (TyArr(tyS, tyshift tyT1 (-1)), nextuvar1, constr1)
 | TmApp(f, t1, t2) ->
 let (tyT1, nextuvar1, constr1) = recon ctx nextuvar t1 in
 let (tyT2, nextuvar2, constr2) = recon ctx nextuvar t2 in
 let NextUVar(tyX, nextuvar') = nextuvar2() in
 let newconstr = [((tyT1, TyArr(tyT2, TyId(tyX)))] in
 ((TyId(tyX)), nextuvar', (newconstr constr1 constr2))
 | TmZero(f) -> (TyNat, nextuvar, [])
 | TmSucc(f, t1) ->
 let (tyT1, nextuvar1, constr1) = recon ctx nextuvar t1 in
 (TyNat, nextuvar1, [(tyT1, TyNat)])
| TmPred(fi,t1) →
| let (tyT1,nextuvar1,constri) = recon ctx nextuvar t1 in
| (TyNat, nextuvar1, [(tyT1,TyNat)])
| TmIsZero(fi,t1) →
| let (tyT1,nextuvar1,constri) = recon ctx nextuvar t1 in
| (TyBool, nextuvar1, [(tyT1,TyNat)])
| TmTrue(fi) → (TyBool, nextuvar, [])
| TmFalse(fi) → (TyBool, nextuvar, [])
| TmIf(fi,t1,t2,t3) →
| let (tyT1,nextuvar1,constri) = recon ctx nextuvar t1 in
| (tyT2,nextuvar2,constri2) = recon ctx nextuvar t2 in
| (tyT3,nextuvar3,constri3) = recon ctx nextuvar t3 in
| (newconstr = [(tyT1,TyBool); (tyT2,tyT3)] in
| (tyT3, nextuvar3, List.concat [newconstr; constr1; constr2; constr3])
| |

Solution to 17.4.4:

\[
\begin{aligned}
 & \{X = \text{Nat}, Y = X \rightarrow X\} & & \{X \rightarrow \text{Nat}, Y \rightarrow \text{Nat} \rightarrow \text{Nat}\} \\
 & \{\text{Nat} \rightarrow \text{Nat} = X \rightarrow Y\} & & \{X \rightarrow \text{Nat}, Y \rightarrow \text{Nat}\} \\
 & \{X \rightarrow Y = Y \rightarrow Z, Z = U \rightarrow W\} & & \{X \rightarrow U \rightarrow W, Y \rightarrow U \rightarrow W, Z \rightarrow U \rightarrow W\} \\
 & \{\text{Nat} = \text{Nat} \rightarrow Y\} & & \text{Not unifiable} \\
 & \{Y = \text{Nat} \rightarrow Y\} & & \text{Not unifiable}
\end{aligned}
\]

Solution to 17.4.7: One more variant of substitution is needed in the unification function—the application of a substitution to all the types in some constraint set:

\[
\begin{aligned}
 \text{let substinconstr tyX tyT constr} = \\
 \text{List.map} \\
 (\text{fun (tyS1,tyS2)} \rightarrow \\
 \text{substinty tyX tyT tyS1, substinty tyX tyT tyS2}) \\
 \text{constr}
\end{aligned}
\]

Also crucial is the “occur-check” that detects circular dependencies:

\[
\begin{aligned}
 \text{let ocursin tyX tyT} = \\
 \text{let rec o = function} \\
 \text{TyArr(tyT1,tyT2) → o tyT1 || o tyT2} \\
 | \text{TyNat} → \text{false} \\
 | \text{TyBool} → \text{false} \\
 | \text{TyId(s)} → (s=xtyX) \\
 \text{in o tyT}
\end{aligned}
\]

The unification function is now a direct transcription of the rules given on page 126. As usual, it takes a file position and string as extra arguments to be used in printing error messages when unification fails. (This pedagogical version of the unifier does not work very hard to print useful error messages. In practice, “explaining” type errors can be one of the hardest parts of engineering a production compiler for a language with type reconstruction.)
Solution to 17.5.6: Extending the type reconstruction algorithm to handle records is not straightforward, though it can be done. The main difficulty is that it is not clear what constraints should be generated for a record projection. A naive first attempt would be

\[
\Gamma \vdash t : T \mid_X C
\]

but this is not satisfactory, since this rule says, in effect, that the field \(l_1\) can only be projected from a record containing just the field \(l_1\) and no others.

An elegant solution was proposed by Wand [Wan87] and further developed by Wand [Wan88, Wan89], Remy [Rém89, Rém90], and others. We introduce a new kind of unification variable, called a row variable, ranging not over types but over “rows” of field labels and associated types. Using row variables, the constraint generation rule for field projection can be written

\[
\Gamma \vdash t : T \mid_X C
\]

\[
\Gamma \vdash t \cdot l_1 : X \mid_{\chi \cup \sigma, \rho} C \cup \{ T = \nu \mid
ho = \lambda \cdot X \oplus \sigma \}
\]

(CT-PROJ)
where \(\sigma \) and \(\rho \) are row variables and the operator \(\oplus \) combines two rows (assuming that their fields are disjoint). That is, the term \(t.1_i \) has type \(X \) if \(t \) has a record type with fields \(\rho \), where \(\rho \) contains the field \(1_i.X \) and some other fields \(\sigma \).

The constraints generated by this refined algorithm are more complicated than the simple sets of equations between types with unification variables of the original reconstruction algorithm, since the new constraint sets also involve the associative and commutative operator \(\oplus \). A simple form of **equational unification** is needed to find solutions to such constraint sets.

Solution to 9.5: There are well-typed terms in this system that are not strongly normalizing. For example, consider the following:

\[
\begin{align*}
 t_1 &= \lambda x:\text{Ref} \ (\text{Unit} \rightarrow \text{Unit}), \\
 \quad (x := (\lambda x:\text{Unit}. \ (\text{tr}) x)); \\
 \quad (\text{tr}) \ \text{unit}); \\
 t_2 &= \text{ref} \ (\lambda x:\text{Unit}. \ x);
\end{align*}
\]

Applying \(t_1 \) to \(t_2 \) yields a (well-typed) divergent term.

Solution to 15.3.1: Lists:

- **Hungry functions:**

 \[
 \begin{align*}
 f &= \text{fix} \\
 \quad (\lambda f: \text{Nat} \rightarrow \text{Hungry}. \\
 \quad \lambda n: \text{Nat}. \\
 \quad \text{fold} \ [\text{Hungry}] f)); \\
 ff &= \text{fold} \ [\text{Hungry}] f;
 \end{align*}
 \]

 - \(\text{Hungry} = \mu A. \ \text{Nat} \rightarrow A: * \)
 - \(f : \text{Nat} \rightarrow \text{Hungry} \)
 - \(ff : \text{Hungry} \)

 \[
 \begin{align*}
 ff1 &= (\text{unfold} \ [\text{Hungry}] ff) \ 0; \\
 \end{align*}
 \]

 - \(ff1 : \text{Hungry} \)

 \[
 \begin{align*}
 ff2 &= (\text{unfold} \ [\text{Hungry}] ff1) \ 2; \\
 \end{align*}
 \]

 - \(ff2 : \text{Hungry} \)

- **Fixed points:**

 \[
 \begin{align*}
 \text{fixpoint}_T &= \\
 \quad (\lambda f: T \rightarrow T. \\
 \quad (\lambda x:(\mu A . T). f ((\text{unfold} \ [\mu A . T] x) x)) \\
 \quad (\text{fold} \ [\mu A . T] (\lambda x:(\mu A . T). f ((\text{unfold} \ [\mu A . T] x) x)))); \\
 \text{diverge}_T &= (\lambda x. \text{fixpoint}_T (\lambda x: T. x));
 \end{align*}
 \]

Untyped lambda-calculus:
Untyped lambda-calculus with numbers and booleans:

Objects:

\[
\begin{align*}
D &= \mu X. \ x \mapsto X; \\
\text{lam} &= \lambda f: D \to D. \ \text{fold} [D] \ f; \\
ap &= \lambda a: D. \ \text{unfold} [D] \ f \ a;
\end{align*}
\]

Solution to 21.2.3: Just one additional rule is needed:

\[\text{TA-COND}\]

where the final premise says that \(C_2\) is a join of \(C_5\) and \(C_6\) in \(A_0\).

Solution to 21.4.2: We begin by giving a pair of algorithms that, when presented with \(\Gamma, S, \text{ and } T\), calculate a pair of types \(J\) and \(M\), which we will claim are a join and meet, respectively, of \(S\) and \(T\). (The second algorithm may also fail, in which case we claim that \(S\) and \(T\) have no meet in \(\Gamma\).)

We write \(\Gamma \vdash S \land T = M\) for "\(M\) is the meet of \(S\) and \(T\) in context \(\Gamma\)" and \(\Gamma \vdash S \lor T = J\) for "\(J\) is the join of \(S\) and \(T\) in \(\Gamma\)." The algorithms are defined simultaneously as follows. (Note that some of the cases of the definition overlap.
Since it is technically convenient to treat meet and join as functions rather than relations, we stipulate that the first clause that applies must be chosen.

\[
\Gamma \vdash S \land T = \begin{cases}
S & \text{if } \Gamma \vdash S \land T <: T \\
T & \text{if } \Gamma \vdash T \land T <: S \\
J \rightarrow M & \text{if } S = S_1 \rightarrow S_2 \\
T = T_1 \rightarrow T_2 \\
\Gamma \vdash S_1 \lor T_1 = J \\
\Gamma \vdash S_2 \land T_2 = M \\
\forall X <: U. M & \text{if } S = \forall X <: U. S_2 \\
T = \forall X <: U. T_2 \\
\Gamma, X <: U \vdash S_2 \land T_2 = M \\
\text{fail} & \text{otherwise}
\end{cases}
\]

\[
\Gamma \vdash S \lor T = \begin{cases}
T & \text{if } \Gamma \vdash S \lor T <: T \\
S & \text{if } \Gamma \vdash T \lor T <: S \\
J & \text{if } S = X \text{ with } X <: U \in \Gamma \text{ and } \Gamma \vdash U \lor T = J \\
J & \text{if } T = X \text{ with } X <: U \in \Gamma \text{ and } \Gamma \vdash S \lor U = J \\
M \rightarrow J & \text{if } S = S_1 \rightarrow S_2 \\
T = T_1 \rightarrow T_2 \\
\Gamma \vdash S_1 \lor T_1 = M \\
\Gamma \vdash S_2 \lor T_2 = J \\
\forall X <: U, J & \text{if } S = \forall X <: U. S_2 \\
T = \forall X <: U. T_2 \\
\Gamma, X <: U \vdash S_2 \lor T_2 = J \\
\text{Top} & \text{otherwise}
\end{cases}
\]

It is easy to check that \(\land \) and \(\lor \) are total functions: for every \(\Gamma, S, \) and \(T, \) there are unique types \(M \) and \(J \) such that \(\Gamma \vdash S \land T = M \) and \(\Gamma \vdash S \lor T = J \); just note that the total weight of \(S \) and \(T \) with respect to \(\Gamma \) is always reduced in recursive calls.

Now let us verify that these definitions do indeed calculate meets and joins in the subtype relation. The argument into two parts: Proposition A.1 shows that the calculated meet is a lower bound of \(S \) and \(T \) and the join is an upper bound; Proposition A.2 then shows that the calculated meet is greater than every common lower bound of \(S \) and \(T \) and the join is less than every common upper bound.

A.1 Proposition:

1. If \(\Gamma \vdash S \land T = M \), then \(\Gamma \vdash M <: S \) and \(\Gamma \vdash M <: T \).

2. If \(\Gamma \vdash S \lor T = J \), then \(\Gamma \vdash S <: J \) and \(\Gamma \vdash T <: J \). □

Proof: By a straightforward induction on the size of a “derivation” of \(\Gamma \vdash S \land T = M \) or \(\Gamma \vdash S \lor T = J \) (i.e., the number of recursive calls to the definitions of \(\land \) and \(\lor \) needed to calculate \(M \) or \(J \)). □
A.2 Proposition:

1. Suppose that $\Gamma \vdash S \land T = \emptyset$ and, for some L, that $\Gamma \vdash L <: S$ and $\Gamma \vdash L <: T$.
 Then $\Gamma \vdash L <: \emptyset$.

2. Suppose that $\Gamma \vdash S \lor T = J$ and, for some U, that $\Gamma \vdash S <: U$ and $\Gamma \vdash T <: U$.
 Then $\Gamma \vdash J <: U$.

Proof: Simultaneously, by induction on the total size of derivations of $\Gamma \vdash L <: S$ and $\Gamma \vdash L <: T$ (for part 1) or $\Gamma \vdash S <: U$ and $\Gamma \vdash T <: U$ (for part 2).

In both parts, let us deal first with the case where $\Gamma \vdash S <: T$ or $\Gamma \vdash T <: S$. If $\Gamma \vdash S <: T$, then $\Gamma \vdash S \land T = S$ and $\Gamma \vdash S \lor T = T$. But then $\Gamma \vdash L <: \emptyset$ and $\Gamma \vdash J <: U$ by assumption. Similarly when $\Gamma \vdash T <: S$.

To complete the proofs, assume that $\Gamma \vdash S \not< T$ and $\Gamma \vdash T \not< S$ and consider the two parts of the proposition in turn.

1. Consider the form of L.

 Case: $L = \text{Top}$
 Then $S = \text{Top}$ and $T = \text{Top}$, so $\Gamma \vdash S <: T$ and this case has already been dealt with.

 Case: $L = x$
 If either S or T is the variable x, then we have either $\Gamma \vdash S <: T$ or $\Gamma \vdash T <: S$; these cases have already been dealt with.

 Otherwise, by the inversion lemma, we have $\Gamma \vdash U <: S$ and $\Gamma \vdash U <: T$, where $x <: U \in \Gamma$. The induction hypothesis yields $\Gamma \vdash U <: \emptyset$, from which $\Gamma \vdash x <: \emptyset$ follows by S-TVAR and S-TRANS.

 Case: $L = A \rightarrow B$
 First note that, since $\Gamma \vdash S \not< T$ and $\Gamma \vdash T \not< S$, neither S nor T can be Top, so the only remaining case is where

 $S = V \rightarrow P$
 $T = W \rightarrow Q$

 with

 $\Gamma \vdash V <: A$
 $\Gamma \vdash B <: P$
 $\Gamma \vdash W <: A$
 $\Gamma \vdash B <: Q$.

 Also, by the definition of meets, $\emptyset = J \rightarrow \emptyset$ with

 $\Gamma \vdash V \lor W = J$
 $\Gamma \vdash P \land Q = \emptyset$.

Applying the induction hypothesis, we obtain

\[\Gamma \vdash J \ll : A \]
\[\Gamma \vdash B \ll : N, \]

from which \(\Gamma \vdash L \ll : M \) follows by S-\textit{Arrow}.

Case: \(L = \forall X \ll : U.B \)

Similar.

2. First, observe that, by the inversion lemma, there are two possibilities for \(S \)—
either it is a variable whose upper bound is a subtype of \(U \), or else its form depends on the form of \(U \)—and similarly for \(T \). Let us deal first with the first possibility for both \(S \) and \(T \), leaving the structural cases to be considered in detail.

If \(S = Y \) with \(\Gamma (Y) = R \) and \(\Gamma \vdash R \ll : U \), then, by the definition of \(\lor \), we have \(\Gamma \vdash R \lor T = J \). The induction hypothesis now yields \(\Gamma \vdash J \ll : U \), and we are finished. Similarly if \(T \) is a variable bounded by \(U \).

Now suppose that the forms of \(S \) and \(T \) depend on the form of \(U \).

Case: \(U = \text{Top} \)

Immediate.

Case: \(U = X \)

By the inversion lemma, we have \(S = X \) and \(T = X \); we have dealt with this case already.

Case: \(U = A \rightarrow B \)

Then by the inversion lemma we have

\[S = V \rightarrow P \]
\[T = W \rightarrow Q \]

with

\[\Gamma \vdash A \ll : V \]
\[\Gamma \vdash P \ll : B \]
\[\Gamma \vdash A \ll : W \]
\[\Gamma \vdash Q \ll : B. \]

The rest of the argument proceeds as in the corresponding case in part 1.

Case: \(U = \forall X \ll : A.B \)

Similar. \(\square \)
Solution to 21.4.3:

1. Using the inversion lemma, I count 9 common subtypes of $/CB$ and $/CC$:

 $/BK$ $/CG/BO/BM/BT$
 $/BC$
 $/AX$
 $/BU/BA/BT$
 $/AX$
 $/BU$
 $/BC$
 $/BK$ $/CG/BO/BM/BT$
 $/BC$
 $/AX$
 $/BU/BA/CC/D3/D4$
 $/AX$
 $/BU$
 $/BC$
 $/BK$ $/CG/BO/BM/BT$
 $/BC$
 $/AX$
 $/BU/BA/CG$
 $/BK$ $/CG/BO/BM/BT$
 $/BC$
 $/AX$
 $/CC/D3/D4/BA/BT$
 $/AX$
 $/BU$
 $/BC$
 $/BK$ $/CG/BO/BM/BT$
 $/BC$
 $/AX$
 $/AX$
 $/BU$
 $/BC$
 $/AX$
 $/BU$
 $/BC$
 $/AX$
 $/BU$
 $/BC$
 $/BM$

2. Both

 $\forall X <: A' \rightarrow B. \ A \rightarrow B'$

 and

 $\forall X <: A' \rightarrow B. \ X$

 are lower bounds for S and T, but these two types have no common supertype that is also a subtype of S and T.

3. Consider $S \rightarrow \text{Top}$ and $T \rightarrow \text{Top}$. (Or, if you like, $\forall X <: A' \rightarrow B. \ A \rightarrow B'$ and $\forall X <: A' \rightarrow B. \ X$.)

Solution to ??: Note that the two kinds of quantifiers—bounded and unbounded—should not be allowed to mix: there should be a subtyping rule for comparing two bounded quantifiers and another for two unbounded quantifiers, but no rule for comparing a bounded to an unbounded quantifier. Otherwise we’d be right back where we started!

1. See [KS92] for details.

2. No. In any practical language with subtyping, we will want to allow width subtyping on record types. But the empty record type is a kind of maximal type (among record types), and it can be used to cause divergence in the subtype checker using a modified version of Ghelli’s example. If

 $T = \forall [X <: \text{Top}] \rightarrow \text{a}: \forall [Y <: \text{Top}] \rightarrow \text{y}$

 then the input

 $X <: \text{a}:\text{T} \vdash X <: \text{a}: \forall [X_1 <: X_0] \rightarrow X_1$

 will cause the subtype checker to diverge. [Martin Hofmann helped work out this example.]
Appendix B

Summary of Notation

B.1 Metavariable Conventions

<table>
<thead>
<tr>
<th>IN TEXT</th>
<th>IN ML CODE</th>
<th>USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>p, q, r, s, t, u</td>
<td>s, t</td>
<td>terms</td>
</tr>
<tr>
<td>x, y, z</td>
<td>x, y</td>
<td>term variables</td>
</tr>
<tr>
<td>v, w</td>
<td>v, w</td>
<td>values</td>
</tr>
<tr>
<td>M, N, P, Q, S, T, U, V</td>
<td>tyS, tyT</td>
<td>types</td>
</tr>
<tr>
<td>A, B, C</td>
<td>tyA, tyB</td>
<td>base types</td>
</tr>
<tr>
<td>α, β, γ, δ</td>
<td>alpha, beta</td>
<td>unification variables</td>
</tr>
<tr>
<td>X, Y, Z</td>
<td>tyX, tyY</td>
<td>type variables</td>
</tr>
<tr>
<td>K, L</td>
<td>kK, kL</td>
<td>kinds</td>
</tr>
<tr>
<td>Γ, Δ</td>
<td>ctx</td>
<td>contexts</td>
</tr>
<tr>
<td>J</td>
<td>fi</td>
<td>file position information</td>
</tr>
<tr>
<td></td>
<td></td>
<td>arbitrary typing statements</td>
</tr>
</tbody>
</table>

B.2 Rule Naming Conventions

<table>
<thead>
<tr>
<th>PREFIX</th>
<th>USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-</td>
<td>evaluation</td>
</tr>
<tr>
<td>XA-</td>
<td>exposure</td>
</tr>
<tr>
<td>K-</td>
<td>kinding</td>
</tr>
<tr>
<td>M-</td>
<td>matching</td>
</tr>
<tr>
<td>P-</td>
<td>pattern typing</td>
</tr>
<tr>
<td>Q-</td>
<td>type equivalence</td>
</tr>
<tr>
<td>QA-</td>
<td>algorithmic type equivalence</td>
</tr>
<tr>
<td>RA-</td>
<td>algorithmic type reduction</td>
</tr>
<tr>
<td>Prefix</td>
<td>Usage</td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
</tr>
<tr>
<td>S-</td>
<td>subtyping</td>
</tr>
<tr>
<td>SA-</td>
<td>algorithmic subtyping</td>
</tr>
<tr>
<td>T-</td>
<td>typing</td>
</tr>
<tr>
<td>TA-</td>
<td>algorithmic typing</td>
</tr>
</tbody>
</table>
Appendix C

Suggestions for Larger Projects

These need to be cleaned up, and I'd like to add several more.

This appendix collects some ideas for larger course projects based on the material in these notes and on the research literature on type systems. Most of the projects involve some additional reading and some implementation work.

The suggestions are roughly categorized into “T” [theoretical] projects, which are more open-ended and may require more reading, thinking, and design before getting started, and “I” [implementation] projects, which are somewhat more specific and involve getting down to implementation fairly early. This does not mean that the “T” projects are better – or even harder, ultimately – than “I” projects, but the “I” projects may be easier to get started on.

One note on the implementation-oriented projects. You should feel free to use any programming language you’re comfortable with for building projects in... but if your favorite language happens to be C or Pascal, I urge you to think seriously about learning and using some higher-level language with built-in garbage collection and facilities for high-level symbol manipulation—for example, ML, Haskell, Scheme, Modula 3, or even Java.¹ All of these projects can be done in Pascal, C, or C++, but you’ll spend more time than you can imagine chasing pointer bugs.

C.1 Objects

1. [I] In their book, A Theory of Objects [AC96] (and in a series of earlier articles [AC94b, AC94a, etc.]), Abadi and Cardelli have proposed a primitive calculus analogous to the lambda-calculus, but with objects (rather than functions) as the basic terms and message passing (rather than application) as the

¹An object-oriented language like Java will probably be somewhat less convenient than a language with support for datatypes and pattern matching; if you do choose an OO language, you may want to structure your code according to the “visitor pattern” [GHJV94, FF98, etc.].
basic mechanism for computation. They develop several type systems for their object-calculus (OC). Implement one or more of these.

2. [T] Bruce, Cardelli, and Pierce wrote a paper [BCP99] comparing four different lambda-calculus encodings of objects—the “existential encoding” presented in Chapters 28 and ??, the “recursive record” encoding mentioned in Chapter 15, and two other, hybrid, models with more refined properties. A number of different points of comparison are addressed in the paper, but different encodings of classes in the four object models are not considered.

 (a) Using the typechecker that we’ve used for exercises and for the examples in the notes, implement the examples in [BCP99].

 (b) Extend these examples to include encodings of classes and inheritance, following Chapter 28 in the case of the existential encoding and other papers (see the bibliography of [BCP99]) for the other encodings.

 (c) Compare and contrast.

 (d) If time remains, it is also interesting to compare and contrast the imperative variants of these four encodings—i.e., versions of the encodings where the instance variables of objects can be mutable Ref cells.

3. [I] Chapter ?? shows how to do some simple examples of object-oriented programming in F. Using the everything typechecker from the course web directory, develop a more significant object-oriented program following the same lines.

 (a) To get started, implement a group of collection classes (for example, using the collection classes of Smalltalk [GR83] as a model). Some hints for how to do this can be found in [PT94].

 (b) Use these classes as a library to implement a larger object-oriented program of your choice.

C.2 Encodings of Logics

 (a) Implement LF

 (b) Use your implementation to encode a simple propositional logic and prove some small theorems.

2. [T] A generalization of the LF logic has been used as the core of Frank Pfenning’s logic programming language ELF [Pfe89, Pfe91, Pfe94, Pfe96].
(a) Download and install the ELF system.
(b) Use it to encode the syntax and typing rules of the simply typed lambda-calculus with subtyping and prove some simple theorems about the system, along the lines of [MP91].

C.3 Type Inference

1. [T] Implement a type inference system for the simply typed lambda-calculus (or ML) with subtyping. (The literature on approaches to this problem is huge. See [Pot97, Pot98], for example.)

2. [I] Row variables, proposed by Mitch Wand [Wan87, Wan88, Wan89] and subsequently refined by Didier Remy [Rém89, Rém90, RV97], provide an alternative to subtyping as a foundation for object-oriented programming languages, and can coexist smoothly with ML-style type inference. Implement a type system with type inference and row variables.

C.4 Other Type Systems

1. [T] Implement a lambda-calculus with intersection types [Rey88, Pie97] (or, for a bit more challenge, with both intersection and union types [Pie91b, Pie90, BDCd95, Hay91]).

2. [T] Implement a linear type system for the lambda-calculus [Wad91, Wad90, TWM95].

3. [I] Implement a typed assembly language in the style of Morrisett and co-workers [MWCG98, MCGW98, MCG/B99].

4. [T] A great variety of type systems for extensible records, developed by various researchers, are summarized and unified in Cardelli and Mitchell’s encyclopedic article, Operations on Records [CM91]. Implement a simple variant of their system.

5. [I] Effect type systems [JG91, TJ92], which track the computational effects of functions (memory reads and writes, allocation, etc.) in addition to their input-output behavior, have been used for a variety of purposes. Perhaps most surprisingly, Tofte and his co-workers have used “region inference” techniques to build an ML compiler that runs without a garbage collector [TT97, TB98]. Implement a simple effect inference algorithm.

6. [T] Harper and Lillibridge [HL94] and Leroy [Ler96] have independently proposed similar accounts of modules (in the style of ML) using the type-theoretic tools of existential types and (a limited form of) dependent types.
These accounts place powerful module systems like those of Standard ML [MTH90] and Objective Caml [Ler95] on a well-understood and tractable theoretical foundation. Read and implement one of these papers.

7. [I] A series of papers [ACPP91, LM91, ACPR95] have proposed adding a type \texttt{Dynamic} to statically typed languages, in order to provide a smooth interface between statically typed and dynamically typed data.

(a) Add \texttt{Dynamic} to the implementation of the simply typed lambda-calculus, following [ACPP91].

(b) Extend this implementation to System F (or even Fomega), using ideas in [ACPR95] and your own creativity.

C.5 Sources for Additional Ideas

The research literature is full of descriptions of interesting type systems and applications of type systems. The premier conference in the area is Principles of Programming Languages (POPL). Other conferences with a high density of papers on type systems include International Conference on Functional Programming (ICFP), Typed Lambda Calculi and Applications (TLCA), Theoretical Aspects of Computer Software (TACS), Logic in Computer Science (LICS), (among many others). Leafing through a recent proceedings of any of these conferences should yield several papers involving type systems. Pick one, read it carefully, and build a simple implementation of the system it describes.
Appendix D

Bluffers Guide to OCaml

The systems discussed in the text have all been implemented in the Objective CAML dialect of ML. An excellent compiler for this language is freely available from INRIA.

Students who want to undertake the implementation exercises suggested in many chapters will need to pick up the basics of OCaml programming, if they are not already familiar with it. For programmers already familiar with another dialect of ML (e.g. Standard ML), the brief, but excellent, tutorial in the OCaml reference manual will do fine for this. Readers with no prior familiarity with any ML may wish to read some of Cousineau and Mauny’s textbook [CM98].

For the convenience of readers who just want to understand enough of the programming examples presented here to translate them into another programming language, this appendix summarizes the key features used.

To be written. I have in mind something along the lines of the “Bluffers Guide to ML” in Baader and Nipkow’s recent book, Term Rewriting and All That. In fact, it might be possible to reprint that appendix entirely from this book, crediting the original authors and just translating, mutatis mutandi, SML to OCaml. (I have not talked to Baader and Nipkow about this.)
Appendix E

Running the Checkers

The systems discussed in the text have all been implemented in Objective CAML. You'll find the programming exercises and experiments throughout the notes much more enjoyable if you use the implementations to check and execute your solutions.

E.1 Preparing Your Input

An input file for a checker consists of a sequence of clauses terminated by semicolons. Input clauses can have the following forms:

- \texttt{t;} \quad \text{typecheck (if appropriate) and evaluate term } t
- \texttt{x = t;} \quad \text{typecheck } t \text{ (if appropriate) and bind it to } x
- \texttt{import "filename";} \quad \text{include } \texttt{filename} \text{ at this point}

E.2 Ascii Equivalents

Programs in the text are typeset using some non-ascii symbols. When preparing input to the typechecker, you should use the following equivalents:

<table>
<thead>
<tr>
<th>TYPESET</th>
<th>ASCII</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{\lambda}</td>
<td>\texttt{lambda}</td>
</tr>
<tr>
<td>\texttt{\rightarrow}</td>
<td>\texttt{-}</td>
</tr>
<tr>
<td>\texttt{\textasciitilde}a</td>
<td>\texttt{\textasciitilde}a</td>
</tr>
<tr>
<td>\texttt{\textasciitilde}b</td>
<td>\texttt{\textasciitilde}b</td>
</tr>
<tr>
<td>\texttt{\textasciitilde}c</td>
<td>\texttt{\textasciitilde}c</td>
</tr>
<tr>
<td>\texttt{\textasciitilde}d</td>
<td>\texttt{\textasciitilde}d</td>
</tr>
</tbody>
</table>
E.3 Running the Checker

Precompiled binaries for Solaris can be found in the course web directory. From CIS machines, you should be able to run the checkers directly out of the web directory:

```
/mnt/saul/extra/bcpierce/pub/courses/700/checkers/<checkernname>/f <test.f>
```

(where <checkernname> is the name of the checker that you want—untyped, fulluntyped, simple, etc.—and <test.f> is the name of your input file).

E.4 Compiling the Checkers

To modify the checker itself, you’ll need to make a local copy:

```
 cp -r /mnt/saul/extra/bcpierce/pub/courses/700/checkers/<checkernname> <mydir>
```

To recompile it from scratch, first install the Objective CAML compiler if necessary (see the following section). Do

```
 make clean
```

to throw away all the existing object-code files, and then

```
 make
```

to rebuild the executable file (called f) for the checker.

E.5 Objective Caml

On CIS machines, you should be able to use the Objective CAML compiler simply by adding

```
/mnt/saul/extra/bcpierce/bin/sun4
```

to your search path.

On other machines (including most varieties of Unix workstations, Macs, and Windows 95/98/NT PCs) you’ll need to install Objective Caml yourself. It can be obtained from `ftp://ftp.inria.fr/langu`. It’s quite easy to install.
Bibliography

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. *Design Patterns: Elements of Reusable Object-Oriented Software*. Addison Wesley, Massachusetts, 1994.

[JG91] Pierre Jouvelot and David Gifford. Algebraic reconstruction of types and effects. In *Conference Record of the Eighteenth Annual ACM Symposium on Principles*
of Programming Languages, Orlando, Florida, pages 303–310. ACM Press, January 1991. This paper presents the first algorithm for reconstructing the types and effects of expressions in the presence of first-class procedures in a polymorphically typed language. The algorithm involves a new technique called algebraic reconstruction, whose soundness and completeness properties are proved.

Index

\(F^\omega\) ("Full" bounded quantification), 162
\(F^\nu\) (Bounded quantification), 160
\(F^\omega\) (Higher-order bounded quantification), 224
\(F^\omega\) (Higher-order polymorphic lambda-calculus), 214
\(\lambda\mu\) (Iso-recursive types), 115
\(\rightarrow^\nu\) (multi-step evaluation), 26
\(\rightarrow^\lambda\) (one-step evaluation), 25, 43
System F (Polymorphic lambda-calculus), 133
\(\lambda^\rightarrow\) (Simply typed lambda-calculus), 61
\(\lambda^\nu\) (Simply typed lambda-calculus with subtyping), 89
\(F^\omega\) (Summary), 216
\(\lambda\) (Untyped lambda-calculus), 43
abstract grammar, 21
abstract syntax tree, 24
Ad-hoc polymorphism, 131
algorithmic subtyping, 91
beta-reduction, 34
bound variable, 33
capture-avoiding substitution, 41
Church numerals, 36
Church-style, 59
closed term, 33
combinator, 33
Curry-style, 59
Currying, 54
de Bruijn indices, 46
de Bruijn terms, 46
DeMillo, Richard, 13
depth of a term, 24
derivable, 53
Dill, David, 13
elimination rule, 60
explicitly typed, 59
expression, see term
fixed-point combinator, 38
free variable, 33
free variables, 40
generation lemma, see inversion lemmas
higher-order functions, 34
identity function, 33
implicitly typed, 59
inductive definition, 22
introduction rule, 60
inversion lemmas
typing, 54, 62
lambda-calculus, 31, 32
lambda-term, see term
lexicographic induction, 19
Lipton, Richard, 13
metalinguage, 33
metavariable, 33
nameless term, 46
naming context, 46
natural-number induction, 18
normal form, 26, 38
object, 100
object calculus, 31
object language, 33
Overloading, 131
Parametric polymorphism, 131
Perlis, Alan, 13
pi-calculus, 31
preservation theorem, 54, 64, 218
principal typings, 125
progress theorem, 55, 64, 219
pure lambda-calculus, 32

rules
CT-ABS, 121, 256
CT-APP, 121, 256
CT-ITER, 121, 256
CT-PROJ, 259
CT-SUCC, 121, 256
CT-VAR, 121, 256
CT-ZERO, 121, 256
E-APP1, 43, 61, 77, 89, 134, 160, 210, 216, 225, 239
E-APP2, 43, 61, 77, 89, 134, 160, 210, 216, 225, 239
E-ASSIGN, 77
E-ASSIGN1, 77
E-ASSIGN2, 77
E-BETA, 34, 43, 49, 61, 77, 89, 134, 160, 210, 216, 225, 239
E-BETA2, 134, 161, 214, 216, 225
E-BETANATIS, 26, 30
E-BETANATIZ, 25, 30
E-BETANATP, 25, 30
E-BETANATPZ, 25, 29
E-BODYOF, 239
E-BOOLBETA, 25, 29
E-BOOLBETAT, 25, 29
E-CASE, 72
E-CASEBETA, 72
E-COERCE1, 239
E-CONS1, 73
E-CONS2, 74
E-DEREF, 77
E-DEREF1, 77
E-FOLD, 116
E-FOLDBETA, 115
E-HEAD, 74
E-HEADBETA, 74
E-IF, 25, 29
E-ISZERO, 26, 30
E-LET, 68, 71

E-LETBETA, 68, 71
E-LLETBETA, 75
E-LRCDBETA, 75
E-NULL, 74
E-NULLBETA, 74
E-NULLBETAT, 74
E-PACK, 148
E-PACKBETA, 148
E-PRED, 25, 29
E-PROJ, 69
E-RCDBETA, 69, 204, 246
E-RECORD, 69, 204, 246
E-RECORDSUBST, 246
E-REF, 77
E-REF1, 77
E-STRUCT, 239
E-STRUCTBETA, 239
E-STRUCTSUBST, 239
E-SUCC, 25, 29
E-TAG, 72
E-TAIL, 74
E-TAILBETA, 74
E-TAPP, 134, 161, 216, 225
E-UNFOLD, 116
E-UNPACK, 148
E-UPDATEBETA, 204
K-ALL, 214, 217, 226
K-ARROW, 211, 217, 226, 240, 248
K-SINGLETON, 244
K-STRUCT, 240
K-TABS, 211, 217, 226, 245
K-TAPP, 211, 217, 226, 245
K-TARR-SELF, 247
K-TRCD, 243, 245
K-TRCD-SELF, 247
K-TVAR, 211, 217, 226, 240
K-TYPEOF, 240
K-TYPEOF, 240
K-TRCDPERM, 242, 245
KF-HOS, 247
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>KF-SINGLETON, 244</td>
<td>S-ALL, 161, 162, 179, 226</td>
</tr>
<tr>
<td>KF-TARR, 245</td>
<td>S-APP, 226</td>
</tr>
<tr>
<td>KF-TRCD, 242, 245</td>
<td>S-ARROW, 87, 90, 161, 226</td>
</tr>
<tr>
<td>M-RCD, 71</td>
<td>S-EQV, 90, 226</td>
</tr>
<tr>
<td>M-VAR, 71</td>
<td>S-RCD, 91</td>
</tr>
<tr>
<td>P-RCD, 256</td>
<td>S-RCD-DEPTH, 87, 90, 164, 205</td>
</tr>
<tr>
<td>P-VAR, 256</td>
<td>S-RCD-VARIANCE, 205</td>
</tr>
<tr>
<td>Q-ALL, 214, 217, 225</td>
<td>S-RCD-WIDTH, 87, 90, 164, 205</td>
</tr>
<tr>
<td>Q-APP, 211, 217, 225</td>
<td>S-REFL, 89, 161</td>
</tr>
<tr>
<td>Q-ARROW, 81, 83, 90, 211, 217, 225, 239, 248, 249</td>
<td>S-SOME, 171</td>
</tr>
<tr>
<td>Q-BETA, 210, 217, 225</td>
<td>S-TOP, 88, 89, 161, 226</td>
</tr>
<tr>
<td>Q-DEF, 84</td>
<td>S-TRANS, 87, 89, 161, 226</td>
</tr>
<tr>
<td>Q-EXT, 211, 217, 225</td>
<td>S-TRCD-WIDTH, 243, 245</td>
</tr>
<tr>
<td>Q-RCD-PERM, 81, 90, 205, 249</td>
<td>S-TVAR, 159–161, 226</td>
</tr>
<tr>
<td>Q-REFL, 81, 83, 90, 210, 216, 225, 239, 248, 249</td>
<td>SA-ALL, 178, 179</td>
</tr>
<tr>
<td>Q-SINGLETON1, 244</td>
<td>SA-ARROW, 92, 178</td>
</tr>
<tr>
<td>Q-SINGLETON2, 244</td>
<td>SA-RCD, 92</td>
</tr>
<tr>
<td>Q-STRUCTBETA, 239</td>
<td>SA-REFL-TVAR, 177</td>
</tr>
<tr>
<td>Q-SUB, 242, 244</td>
<td>SA-TOP, 92, 177</td>
</tr>
<tr>
<td>Q-SYMM, 81, 83, 90, 210, 217, 225, 239, 248, 249</td>
<td>SA-TRANS-TVAR, 177</td>
</tr>
<tr>
<td>Q-TABS, 211, 217, 225</td>
<td>SK-EQV, 243, 244</td>
</tr>
<tr>
<td>Q-TRANS, 81, 83, 90, 210, 217, 225, 239, 248, 249</td>
<td>SK-SINGLETON, 244</td>
</tr>
<tr>
<td>Q-TRCD, 242</td>
<td>SK-TRANS, 243, 244</td>
</tr>
<tr>
<td>Q-TRCD-PERM, 242</td>
<td>SK-TRCD-DEPTH, 243, 245</td>
</tr>
<tr>
<td>Q-TRCD-BETA, 242</td>
<td>T-Abs, 59, 61, 77, 90, 134, 161, 211, 217, 226, 240, 248</td>
</tr>
<tr>
<td>Q-TRCD-EXT, 242</td>
<td>T-App, 60, 61, 77, 86, 90, 134, 161, 211, 218, 226, 240, 248</td>
</tr>
<tr>
<td>Q-TYPROJ, 242</td>
<td>T-Assign, 78</td>
</tr>
<tr>
<td>QA-ALL, 221</td>
<td>T-BODYOF, 240</td>
</tr>
<tr>
<td>QA-ARROW, 82, 84, 113, 221</td>
<td>T-Case, 72</td>
</tr>
<tr>
<td>QA-BASE, 84, 113</td>
<td>T-Coerce, 240</td>
</tr>
<tr>
<td>QA-LOOP, 113</td>
<td>T-Cons, 74</td>
</tr>
<tr>
<td>QA-RCD, 82</td>
<td>T-Deref, 78</td>
</tr>
<tr>
<td>QA-ReCl, 113</td>
<td>T-Eq, 81, 84, 211, 218, 240, 248, 249</td>
</tr>
<tr>
<td>QA-REC R, 113</td>
<td>T-False, 53, 56</td>
</tr>
<tr>
<td>QA-REDUCEL, 84, 221</td>
<td>T-Fix, 73</td>
</tr>
<tr>
<td>QA-REDUCER, 84, 221</td>
<td>T-Fold, 116</td>
</tr>
<tr>
<td>QA-TABS, 221</td>
<td>T-Head, 74</td>
</tr>
<tr>
<td>QA-TAPP, 221</td>
<td>T-If, 53, 56</td>
</tr>
<tr>
<td>QA-TVAR, 221</td>
<td>T-ISZERO, 53, 57</td>
</tr>
<tr>
<td>RA-APP, 221</td>
<td>T-Let, 68, 256</td>
</tr>
<tr>
<td>RA-BETA, 221</td>
<td>T-LLet, 75</td>
</tr>
<tr>
<td>RA-DEF, 84</td>
<td>T-Loc, 78</td>
</tr>
<tr>
<td>S-ABS, 226</td>
<td>T-LRcd, 75</td>
</tr>
<tr>
<td>S-ALL, 161, 162, 179, 226</td>
<td>T-nil, 74</td>
</tr>
<tr>
<td>S-APP, 226</td>
<td>T-Null, 74</td>
</tr>
</tbody>
</table>
T-PACK, 146, 148, 171, 215
T-PRED, 53, 57
T-PROJ, 69, 205, 249
T-RCD, 69, 205, 246, 249
T-REF, 78
T-STRUCT, 240
T-SUB, 86, 90, 161, 227
T-SUC, 52, 57
T-TABS, 133, 134, 214, 218, 227
T-TAIL, 74
T-TAPP, 133, 134, 214, 218, 227
T-TRUE, 53, 56
T-UNFOLD, 116
T-UNIT, 68, 78
T-UNPACK, 146, 148, 215
T-UPDATE, 205
T-VAR, 60, 61, 77, 90, 134, 161, 211, 217, 226, 240
T-VARIANT, 72
T-ZERO, 52, 56
TA-ABS, 82, 84, 94, 113, 174, 222
TA-APP, 82, 84, 94, 114, 174, 222
TA-COND, 261
TA-PROJ, 82, 95
TA-RCD, 82, 94
TA-TABS, 174, 222
TA-TAPP, 175, 222
TA-VAR, 82, 84, 94, 113, 174, 222
XA-OTHER, 84, 113, 174, 222
XA-PROMOTE, 174
XA-REC, 113
XA-REDUCE, 84, 222

simple types, 58
simply typed lambda-terms, 58
size of a term, 24
Smith, Brian Cantwell, 45
soundness, 54
stuck term, 26
subject expansion, 55
subject reduction, see preservation
substitution lemma, 218
subtype polymorphism, 131

term, 21
Type systems and components
Type systems and components

\(F_\kappa \): “Full” bounded quantification
\[\rightarrow \forall \kappa \leq \text{by} \ full \], 162
Algorithmic rules for equi-recursive
types \[\rightarrow B \mu \], 113
Algorithmic rules for records with permuta-
tion \[\rightarrow \| \equiv \], 82
Algorithmic rules for simply typed
lambda-calculus \[\rightarrow B \], 82
Algorithmic rules for type definitions
\[\rightarrow B \rightarrow \], 84
Algorithmic rules for \(F^w \) \[\rightarrow \], 221
Algorithmic subtyping \[\rightarrow \| \leq \], 92
Algorithmic subtyping \[\rightarrow \| \], 177
Algorithmic typing \[\rightarrow \| \leq \], 94
Algorithmic typing \[\rightarrow \| \], 174
Arithmetic expressions \[B \mathbb{N} \text{ (untyped)} \], 29
Base types \[\rightarrow B \], 67
Booleans \[\mathbb{B} \text{ (untyped)} \], 29
Bounded existential quantification \[F_\kappa + \mathbb{B} \], 171
Type systems and components
\(F_\kappa \): Bounded quantification
\[\rightarrow \forall \kappa \leq \text{by} \| \], 160
Dependent functions \[??? \], 248
Dependent record terms \[??? \], 246
Dependent records \[??? \], 249
Dependent records of types \[\rightarrow \rightarrow \text{trcd depkind} \], 245
Existential types \[\rightarrow \forall \exists \], 148
Exposure \[\| \], 174
General recursion \[\rightarrow \mathbf{fix} \], 73
Type systems and components
\(F_\kappa^w \): Higher-order bounded quan-
tification \[F_\kappa + F^w \], 224
Higher-order existential types \[F_\kappa^w + \exists \], 215
Type systems and components
\(F^w \): Higher-order polymorphic lambda-
calculus \[\text{System F}^w \rightarrow \], 214
Higher-order singletons \[??? \], 247
Type systems and components
\(\lambda \mu \): Iso-recursive types \[\rightarrow B \mu \], 115
Lazy let bindings \[\rightarrow \mathbf{let \ lazy} \], 75
Lazy records \[\rightarrow \| \mathbf{lazy} \], 75
Let binding \([\to \text{let}]\), 68
Lists \([\to \text{List}]\), 73
Type systems and components
 System F: Polymorphic lambda-calculus
 \([\to \forall]\), 133
Polymorphic update \([F_C +]\ update\), 204
Record patterns \([\to \text{let} \ \text{pat} \ (\text{un}-\text{typed})]\), 71
Records and tuples \([\to \text{[]}]\), 69
Records of types \([\to \Rightarrow \text{trad}]\), 242
Records with permutation of fields
 \([\to \text{[]} \equiv]\), 81
References \([\to \text{Unit :-}]\), 76
Type systems and components
 \(\lambda^{\sim}\): Simply typed lambda-calculus
 \([\to \text{(typed)}]\), 61
Type systems and components
 \(\lambda_C\): Simply typed lambda-calculus
 with subtyping \([\to \text{<:}]\), 89
Singleton kinds \([\to \text{Eq}]\), 244
Structures \([\to \text{X S}]\), 238
Subtyping rules for records \([\to \text{<:[]}]\), 90
Type systems and components
 \(F^{\sim}\): Summary \([\text{System F+ \Rightarrow}]\), 216
Type definitions \([\to \text{B +}]\), 83
Type operators and kinding \([\to \equiv \Rightarrow]\), 210
Typed record patterns \([\to \text{let} \ \text{pat} \text{(typed)}]\), 256
Typing rules for booleans \([\text{B (typed)}]\), 56
Typing rules for numbers \([\text{B N (typed)}]\), 56
Unit type \([\to \text{Unit}]\), 67
Type systems and components
 \(\lambda\): Untyped lambda-calculus \([\to \text{(untyped)}]\), 43
Variants \([\to \text{<>}]\), 72
type variables, 118
types, 52
typing assertions, 53
typing context, 59
typing derivation, 53
typing judgements, 53
typing relation, 53

unification, 125
unification algorithm, 126
unifier, 126
unify, 126
untyped lambda-calculus, 32

value, 25
variable capture, 41

well-founded induction, 18
well-founded set, 18

Y combinator, 38