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Abstract. We employ static analysis to examine monotonicity of func-
tions defined over lattices in a λ-calculus augmented with constants,
branching, meets, joins and recursive definitions. The need for such a
verification procedure has recently arisen in our work on a static ana-
lyzer generator called Zoo, in which the specification of static analysis
(input to Zoo) consists of finite-height lattice definitions and function
definitions over the lattices. Once monotonicity of the functions is ascer-
tained, the generated analyzer is guaranteed to terminate.

1 Motivation

We are currently involved in a project to build a program-analyzer generator
(called “Zoo” [Yi01a,Yi01b]). One of the program analysis frameworks that Zoo
supports is abstract interpretation [CC77,CC92]. Its user (analysis designer)
defines an abstract interpreter in a specification language named “Rabbit”. Zoo
then compiles the input Rabbit program into an executable analyzer which, given
an input program to analyze, derives a set of data-flow equations and solves them
by fixpoint iterations.

Zoo, as of now, is less discerning than desirable; it does not check whether
the user-specified abstract interpreter defines a correct and terminating analysis.
It blindly generates an executable program without verifying that the input
specification qualifies for static analysis. Assuring correctness and termination
of the specified abstract interpreter has been the responsibility of the designer
(Zoo’s user) so far.
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To overcome these shortcomings, we have designed a static analysis method
by which Zoo can check monotonicity of the input abstract interpreters. An
abstract interpreter consists of lattice definitions and definitions of functions over
the lattices. Once it is known that the functions are monotonic, the generated
analyzers are guaranteed to terminate (because Zoo allows only finite-height
lattices). By using the analysis, Zoo can statically estimate monotonicity of the
input functions and consequently reject analyzers whose specification is possibly
not monotonic.

Existing results [Vor00,DGL+99,GGLR98,Sch96] on monotonicity verifica-
tion in learning theory have turned out hardly adoptable in our case. They are
restricted to boolean lattices and concern functions {0, 1}n → {0, 1}. Though
finite distributive lattices can be embedded in a product of the boolean lat-
tices [Rut65], Zoo also supports non-distributive lattices which are prevalent in
static analysis. The above-mentioned algorithms are probabilistic, and as such
are allowed to err with some small probability. In our generalized case, finding a
tight bound on this probability of mistakes seems a formidable job. Besides, only
functions in extenso seem to have been studied thus far, whereas we also have
access to the definitions. This makes the problem amenable to static analysis.
Furthermore, what if conventional static analysis can reliably ensure monotonic-
ity with a reasonable accuracy? This is the approach we took and we present
the outcome in this paper.

2 Setting

Let L1 and L2 be lattices. A function f : L1 −→ L2 is monotonic (respectively
anti-monotonic) if and only if for all x ≤ y, we have f(x) ≤ f(y) (respectively
f(y) ≤ f(x)). If a function is both monotonic and anti-monotonic, it is constant.
Analogously, for functions of many arguments, we can define monotonicity and
anti-monotonicity with respect to the ith argument.

Our goal is to design a static procedure that can certify whether a function
between two lattices is monotonic or not. The source language is Rabbit [Yi01a],
the input specification language of the Zoo system. For brevity of presentation,
we only consider its core here:

e ::= c constant (lattice point)
| x variable
| λx.e function
| fix f e recursive definition
| e e application
| e t e join operation
| e u e meet operation
| if e v e then e else e branching

Values in this language are either lattice elements or functions over lattices. c is
a constant expression denoting a lattice element. The if expression branches, as
usual, depending on whether the conditional partial-order relation holds or not.



In the actual Rabbit language [Yi01a] one can also compute elements in lattices
of various kinds: product lattices, powerset lattices, function lattices, and lattices
with user-defined orders.

Throughout the paper we write e(x1, · · · , xn) if {x1, · · · , xn} are the free
variables of e. We also write e(c1, · · · , cn) when a constant ci is substituted for
each xi in e.

3 Monotonicity Checking by an Effect Type System

Given an expression e of the core language, our monotonicity check will deter-
mine conservatively for each 1 ≤ i ≤ n whether the operation

(x1, · · · , xn) 7→ e(x1, · · · , xn)

is monotonic, anti-monotonic, or constant with respect to the ith argument. This
monotonicity behavior will be summarized in a table. For example, the expression
xt c defines {x 7→ monotonic, else 7→ constant}: monotonic for the free variable
x, constant for other variables. As another example take if x v c then > else ⊥.
Here the monotonicity is captured by {x 7→ anti-monotonic, else 7→ constant},
because the values change from > to ⊥ (decreasing) as x increases.

We present the verification procedure as an effect-type inference system with
typing judgments of the form

Γ ` e : τ,me.

The judgments should be read as “under type environment Γ , expression e has
type τ and monotonicity behavior me”. The monotonicity behavior is a finite
function

me ∈ ME = Var fin→ M

from the set of variables to the set M of monotonicity tokens:

M = {0, +,−,>}.
We normally write me in table form {· · · }. Monotonicity tokens have the follow-
ing meaning:

[[0]] = {f | x v y implies f(x) = f(y) if f(x), f(y) terminate}
[[+]] = {f | x v y implies f(x) v f(y) if f(x), f(y) terminate}
[[−]] = {f | x v y implies f(y) v f(x) if f(x), f(y) terminate}
[[>]] = all functions

and hence they form a diamond-shaped lattice:

0 v + v >, 0 v − v >.

The order on M can be extended to ME in a point-wise fashion:

me1 v me2 iff ∀x ∈ Var .me1(x) v me2(x).



The type environment Γ is a finite function from variables to effect types:

Γ ∈ Var fin→ EffectType.

Effect types t are types paired with monotonicity effects:

EffectType t ::= (τ,me)

Types τ are either ground types ι denoting lattices1 or function types (τ,me) →
(τ,me) with effects for both the argument and the result:

Type τ ::= ι | (τ,me) → (τ,me)

The monotonicity behavior me of a function will be described with the aid of
monotonicity expressions, which are generated as follows:

me ::= 0̄ | +̄ | −̄ | {x 7→ m}
| me[m/x] | @ me me me
| if me me me me φ | ifc me me φ

0̄, +̄ and −̄ denote respectively all-constant, all-monotonic, and all-antimono-
tonic behavior. m stands for any monotonicity token and {x 7→ +} means
monotonic in x and constant for others, i.e. the induced function is indepen-
dent of variables other than x. Similarly, for {x 7→ −} and {x 7→ >}. me[m/x]
denotes a table which is the same as me except that the entry for x is m. In what
follows we will define the operators @, if , and ifc as we introduce the typing
rules. φ denotes a parameter whose meaning will be explained later.

A constant expression remains constant for any variable, hence 0̄:

Γ ` c : ι, 0̄ (CON)

The identity function is monotonic, so a variable should be declared as mono-
tonic with respect to itself:

Γ (x) = (τ,me)
Γ ` x : τ,me[+/x]

(VAR)

The monotonicity of the join operation is compositional:

Γ ` e1 : τ,me1 Γ ` e2 : τ,me2

Γ ` e1 t e2 : τ,me1 tme2
(LUB)

Note that this means that the monotonicity of the two subexpressions is reflected
by the monotonicity of the whole term. For example, if e1 is monotonic and e2

is anti-monotonic, the result is unknown (>). The same applies to the meet
operation. The monotonicity of the expression e1 u e2 also corresponds to me1 t
me2.
1 Our results are independent of the choice of lattices denoted by ground types.



The rule for lambda expressions is similar to that of any standard effect-type
system. The monotonicity behaviors of the argument and the body (result) are
used to annotate the function type. Note that the potential effect of the result
can be weaker than that of the body (me ′ v me). This relaxation makes the
rule safely less restrictive; without it we would have to reject programs in which
two functions of varying monotonicity are called in the same application. Lastly,
the behavior of a lambda expression is identical to that of its body, except that
the new function is independent of the freshly bound parameter:

Γ + x : (τ1,me1) ` e : τ2,me ′2 me ′2 v me2

Γ ` λx.e : (τ1,me1) → (τ2,me2),me2[0/x]
(LAM)

The rule for recursion requires that the body and the name have the same
effect types:

Γ + f : (τ,me) ` e : τ,me
Γ ` fix f e : τ,me[0/f ]

(FIX)

For application we introduce a special operator @:

Γ ` e1 : (τ1,me1) → (τ2,me2),me3 Γ ` e2 : τ1,me1

Γ ` e1 e2 : τ2, @ me1 me2 me3
(APP)

Although @ could just be defined as taking joins, we can do better for an in-
creased accuracy. First, suppose the function to be called is fixed. When both its
body and the argument exhibit the same monotonicity (both increasing or both
decreasing), the result of the application will be monotonic (increasing). When
one is monotonic (increasing) and the other is anti-monotonic (decreasing), then
the application is anti-monotonic (decreasing). When one of the two (body or
argument) remains constant, the result is constant. Now, consider the situation
in which the function itself is changing, for example, monotonically. Then the
application is monotonic only when the argument and the body combined are
monotonic. The behavior is unpredictable if the argument and the body com-
bined are anti-monotonic. All these cases (and the remaining ones) are accounted
for by:

@ mearg mebody me ftn = (mearg ⊗ mebody) t me ftn

where me1⊗me2 is the pointwise (commutative and monotonic) “multiplication
of signs”: +⊗+ = +, −⊗− = +, +⊗− = − and 0⊗ any = 0.

The case of the conditional expression is quite involved because of the if
operator:

Γ ` e1 : τ ′,me1 Γ ` e2 : τ ′,me2 Γ ` e3 : τ,me3 Γ ` e4 : τ,me4

Γ ` if e1 v e2 then e3 else e4 : τ, if me1 me2 me3 me4 Φ
(IF)

Before we present a definition of if , let us note that it is wrong to join the
monotonicity behaviors of the two branches. For example, if x v c then > else ⊥
has constant branches but it decreases (switches from > to ⊥) as x increases.



Thus, we have to examine whether the monotonicity behavior is preserved at
the point of the switch and thereafter. We need to know two details: (1) in
which direction (from true to false or the reverse) the if -condition changes, and
(2) whether the consequent change of branches preserves the monotonicity. Our
point-wise definition of if :

if me1 me2 me3 me4 Φ = {x 7→ i̇f me1(x) me2(x) me3(x) me4(x) Φ | x ∈ Var}
is based on a conservative approximation of the two pieces of information. As-
suming, for simplicity, that there exists only one free variable that can occur in
each ei, the four representative cases in the definition of i̇f are as follows:

me1(x) me2(x) me3(x) me4(x) Φ i̇f me1(x) · · ·me4(x) Φ
− + + + e3(⊥) w e4(>) +
− + − − e3(⊥) v e4(>) −
+ − + + e3(>) v e4(⊥) +
+ − − − e3(>) w e4(⊥) −

For example, the first row captures the case when the boolean value of e1 v e2

switches from false to true (because e1 is decreasing and e2 is increasing). Thus, if
the maximal value in the ‘false’ branch (i.e. e4(>), because e4 is monotonic) does
not exceed the minimal value in the ‘true’ branch (e3(⊥)), we can conclude that
the whole if -expression is monotonic. In general, for expressions with several
variables, the extrema are calculated on the basis of the monotonicity table, e.g.
if e3(x1, x2, x3) defines {x1 7→ +, x2 7→ −, x3 7→ +}, the smallest value will be
e3(⊥,>,⊥).

The Φ parameter ensures that monotonicity will be preserved at the switching
point. The monotonicity tokens for e1 and e2 give a conservative estimate of
the direction of the switch. The four cases we have distinguished handle all
the posibilities in which monotonicity of the aggregate expression is predictable,
provided the participating functions are monotonic or anti-monotonic. There are
a few more cases taking constant functions into account. The required results
for those are easily derivable from the above table, e.g.

me1(x) me2(x) me3(x) me4(x) Φ i̇f me1(x) · · ·me4(x) Φ
− + 0 0 e3(⊥) w e4(>) +
+ − 0 0 e3(>) w e4(⊥) −
+ 0 0 0 e3(>) w e4(⊥) −
0 0 0 0 irrelevant 0

The complete definition can be found in Appendix A.
Note, for example, that the (IF) rule can be instantiated to:

x : t ` e1 : τ, {x 7→ −} x : t ` e2 : τ, {x 7→ +}
x : t ` if e1 v e2 then > else ⊥ : ι, {x 7→ +}

x : t ` e1 : τ, {x 7→ +} x : t ` e2 : τ, {x 7→ −}
x : t ` if e1 v e2 then > else ⊥ : ι, {x 7→ −}



and further to:

x : t ` x : τ, {x 7→ +} x : t ` ⊥ : τ, 0̄
x : t ` if x v ⊥ then > else ⊥ : ι, {x 7→ −}

We can sharpen the (IF) rule for the case in which the condition is of the
special shape x v c, which actually occurs quite frequently in program analysis
specifications. Here the true-false boundary is clearly known and we exploit that
in order to define ifc:

Γ ` e3 : τ,me3 Γ ` e4 : τ,me4

Γ ` if x v c then e3 else e4 : τ, ifc x me3 me4 Φ
(IFC)

When we increase x, the value switches from e3 to e4 at points directly above c
in the associated lattice. Let ĉ be the set of such elements:

ĉ = { x | x = c, ∀y.(x w y = c ⇒ x = y)} .

We can gain more precision if we use ĉ to determine whether switches preserve
monotonicity. For instance, suppose e3 and e4 have one free variable and both
are monotonic with respect to it. Then if e3(c) does not exceed e4(d) for every
d ∈ ĉ, then the whole if -expression is also monotonic. Hence, we can define ifc
to be

ifc x me3 me4 Φ = {y 7→
{ ˙ifc me3(y) me4(y) Φ, if y = x

me3(y) tme4(y), otherwise
| y ∈ Var}

where ˙ifc (assuming that e3 and e4 have one free variable) is defined by:

me3(x) me4(x) Φ ˙ifc me3(x) me4(x) Φ
+ + ∀d ∈ ĉ. e3(c) v e4(d) +
+ 0 ∀d ∈ ĉ. e3(c) v e4(d) +
0 + ∀d ∈ ĉ. e3(c) v e4(d) +
− − ∀d ∈ ĉ. e3(c) w e4(d) −
− 0 ∀d ∈ ĉ. e3(c) w e4(d) −
0 − ∀d ∈ ĉ. e3(c) w e4(d) −
0 0 irrelevant 0

If e3,e4 have occurrences of more variables, one should use c and d with a com-
bination of ⊥ and > depending on the monotonicity of e3 and e4 with respect to
the other variables. The Φ condition is statically computable when the set ĉ of
the associated lattice is finite and no recursive calls have to be made to evaluate
the relevant expressions.

4 Soundness

First we introduce some notation. For s, s′ ∈ ME we write s v s′|x iff s(x) v
s′(x) and s(y) = s′(y) for y 6= x. Given lattice elements v, v′, a monotonicity



behavior me ∈ ME , and a variable x we define v me(x) v′ by:

v me(x) v′ =





v = v′, me(x) = 0
v v v′, me(x) = +
v w v′, me(x) = −

Next let v : (τ,me) be a logical relation between lattice elements and types
satisfying:

c : (ι, 0̄) iff true
(λx.e, s) : (t1 → t2,me) iff

(1) v1 : t1 and s + x : v1 ` e ⇒ v2 implies v2 : t2
(2) s v s′|y, v1 : t1,

s + x : v1 ` e ⇒ v2, s′ + x : v1 ` e ⇒ v′2
implies v2 me(y) v′2

where s ` e ⇒ v means that v is the result of evaluating e in the value envi-
ronment s. We write s |= Γ when the value environment s respects the type
environment Γ :

∅ |= ∅
s |= Γ v : t

s + x : v |= Γ + x : t

Now we are ready to state the correctness result:

Theorem 1. If Γ ` e : τ,me then s |= Γ , s′ |= Γ , s v s′|x, s ` e ⇒ v, and
s′ ` e ⇒ v′ imply v me(x) v′.

Proof. By structural induction on e.
Case Γ ` λx.e : (τ1,me1) → (τ2,me2),me2[0/x].
Let s |= Γ , s′ |= Γ , s v s′|y, s ` λx.e ⇒ (λx.e, s), and s′ ` λx.e ⇒ (λx.e, s′).

We have to show: (λx.e, s) me[0/x](y) (λx.e, s′),
i.e. to show that for v1 : (τ1,me1), s + x : v1 ` e ⇒ v2 and s′ + x : v1 ` e ⇒ v′2
implies v2 me[0/x](y) v′2

– When y = x.
Then s + x : v1 = s′ + x : v1.
Thus s + x : v1 ` e ⇒ v2 and s′ + x : v1 ` e ⇒ v′2
imply v2 = v′2, thus v2 (me[0/x](y)) v′2.

– When y 6= x.
By definition, Γ + x : (τ1,me1) ` e : τ2,me ′2 and me ′2 v me2.
Observe that s + x : v1 v s′ + x : v1|y,
s + x : v1 |= Γ + x : (τ1,me1), and s′ + x : v1 |= Γ + x : (τ1,me1).
Let s + x : v1 ` e ⇒ v2 and s′ + x : v1 ` e ⇒ v′2.
Then by IH, v2 me ′(y) v′2, i.e. v2 me(y) v′2 because me ′ v me,
so v2 (me[0/x](y)) v′2.

The reasoning in other cases is pretty much similar and uses the arguments we
have outlined informally when introducing the system. ut



5 Algorithm

Our effect-type system is a little different from conventional effect systems.
In [TT94,TT93,TJ92,TJ91] effects are constant symbols and the only opera-
tion involved is set-union. In this paper effects (monotonicity tables) are subject
to other operations: ⊗, if and ifc. Hence, we cannot solely rely on the unification
procedure [Rob65] for type inference.

Our algorithm consists of two phases: we derive constraints for types and
monotonicity effects first, then we solve the constraints. There are two kinds of
constraints: for types (τ) and for monotonicity behaviors (me). The type con-
straints will be solved by unification [Rob65] and the monotonicity constraints
– by fixpoint iteration. Unification is applicable to the type constraints because
they are simply equality constraints with variables for the latent-effects. Its result
will provide us with some additional monotonicity constraints about the latent
effects of function types. Then conventional fixpoint iteration can be applied to
the monotonicity constraints since every operator (@, if , and ifc) on the con-
straints is monotonic. Because the least model for the constraints is equivalent
to the least fixed point of the corresponding equations [CC95], the algorithm will
give the best approximation of monotonicity that can be inferred in our type
system.

5.1 Extraction of Constraints

Each constraint ρ will be a monotonicity formula constructed according to the
following rules:

ρ ::= τ1=̇τ2 | me1 ⊇ me2

| ∃α.ρ | ∃β.ρ
| ρ1, ρ2

where variables are allowed to occur in types τ and monotonicity behaviors me:

τ ::= as before | α (type variable)
me ::= as before | β (monotonicity variable)

We write αi for type variables, and βi for monotonicity variables. The validity
` ρ of the formula ρ is defined as follows. {x/y}ρ denotes ρ in which x has been
substituted for y.

` τ=̇τ

me1 w me2

` me1 ⊇ me2

` {τ/α}ρ
` ∃α.ρ

` {me/β}ρ
` ∃β.ρ

` ρ1 ` ρ2

` ρ1, ρ2

We extract the associated monotonicity formula from an expression e using a
recursive procedure C(Γ, e, τ,me). It has linear time complexity (with respect



to the size of e). The size of the generated formula is also linear in e’s size:

C(Γ, c, τ,me) = τ=̇ι, me ⊇ 0̄
C(Γ, x, τ,me) = let (τ ′,me ′) = Γ (x) in

τ=̇τ, me ⊇ me ′[+/x]
C(Γ, λx.e, τ,me) = ∃α1α2β1β2.

τ=̇(α1, β1) → (α2, β2),
C(Γ + x : (α1, β1), e, α2, β2),
me ⊇ β2[0/x]

C(Γ, fix f e, τ,me) = ∃β.
C(Γ + f : (τ, β), e, τ, β)
me ⊇ β[0/f ]

C(Γ, e1 e2, τ,me) = ∃αβ1β2β3.
C(Γ, e1, (α, β1) → (τ, β2), β3),
C(Γ, e2, α, β1),
me ⊇ @ β1 β2 β3

C(Γ, e1 t e2 or e1 u e2, τ,me) = ∃β1β2.
C(Γ, e1, τ, β1), C(Γ, e2, τ, β2),
me ⊇ β1 t β2

C(Γ, if e1 v e2 then e3 else e4, τ,me) = ∃αβ1β2β3β4.
C(Γ, e1, α, β1), C(Γ, e2, α, β2),
C(Γ, e3, τ, β3), C(Γ, e4, τ, β4),
me ⊇ if β1 β2 β3 β4 Φ

C(Γ, if x ≤ c then e3 else e4, τ,me) = ∃β3β4.
C(Γ, e3, τ, β3), C(Γ, e4, τ, β4),
me ⊇ ifc β3 β4 Φ

It is easy to see that the validity of the generated formula C(Γ, e, τ,me) is
equivalent to the typing judgment Γ ` e : τ,me. Below we give part of the proof
in the case of lambda expressions.

Theorem 2. ` C(Γ, e, τ,me) iff Γ ` e : τ,me ′ and me ′ v me.

Proof. By structural induction on e.
Case λx.e.

⇒ Suppose C(Γ, λx : e, τ, me) holds.
Then there exist τ1, τ2, b1, b2 such that
τ = (τ1, b1) → (τ2, b2), C(Γ + x : (τ1, b1), e, τ2, b2) and b2[0/x] v me.
By IH Γ + x : (τ1, b1) ` e : τ2, b

′
2 and b′2 v b2.

By (LAM) Γ ` λx.e : (τ1, b1) → (τ2, b2), b2[0/x],
i.e. Γ ` λx.e : τ,me ′ and me ′ v me.

⇐ Assume Γ ` λx.e : τ,me ′ and me ′ v me.
By (LAM), τ = (τ1, b1) → (τ2, b2), Γ + x : (τ1, b1) ` e : τ2, b

′
2 where b′2 v b2

and me ′ = b2[0/x].
By IH we get ` C(Γ + x : (τ1, b1), e, τ2, b2).
Since b2[0/x] v me, C(Γ, λx : e, τ,me) is true.

ut



5.2 Solving the Constraints

We observe two properties of the generated monotonicity formula C(Γ, e, α, β).
Firstly, in every occurrence of (τ,me), me is a variable βi. This is quite ob-
vious, because the property holds at the only two places where such a latent
type is formed (lambda abstraction and application). Secondly, every me1 in
me1 ⊇ me2 is a variable βi. This is because for every generated monotonicity
constraint me1 ⊇ me2 the left-hand-side me1 is the last parameter to C, which
is a monotonicity variable βi for every recursive call to C.

Thanks to the first property, the unification procedure can be applied to the
type constraints {τ=̇τ ′ ∈ C(Γ, e, α, β)}, and the resultant substitution involves
only monotonicity variables βi.

Each item β′/β in the substitution is equivalent to the monotonicity con-
traints β′ ⊇ β and β ⊇ β′. This set of unification-driven contraints, together
with the monotonicity contraints from C(Γ, e, α, β), constitute the equations
(e.g. “β ⊇ me1, · · · , β ⊇ mek” as “β = me1 t · · · t mek”) whose least solu-
tion corresponds to the the least model of the original contraints [CC95]. The
least solution is computed by iteration: starting from 0̄ for every mei we repeat-
edly apply the right-hand-sides of the equations to the intermediate result. This
procedure terminates with the least fixed point, because the operators involved
(@, if , ifc,t) are all monotonic.
Complexity. The constraint extraction procedure C takes linear time in the size
of the input program. The number of generated constraints (type equations and
monotonicity constraints) is also linear. Then unification takes linear time with
respect to the number of type equations. Because there are O(n) indeterminates
(mei) where n is the program size, the iteration will take O(n2) steps in the worst
case, since no chain in the lattice Var → {0, +,−,>} can be longer than 2×|Var |
(Var is here the finite set of free variables occurring in the input program). The
overall time complexity is therefore O(n3), because each equation computes a
new monotonicity behavior mei whose size is O(|Var |) and constant time is
needed for table look-up for each operator.

6 Conclusion

We have introduced a method of monotonicity verification for λ-definable func-
tions over arbitrary finite-height lattices. Static monotonicity analysis seems an
interesting problem on its own and apparently not much work has been done
in that area. Our interest in this topic was motivated by Zoo [Yi01a,Yi01b],
which is a program-analyzer generator. Now that it can automatically check
whether the input specification is monotonic or not, termination of the speci-
fied analysis is guaranteed if the outcome of the test is positive. Thus we can
prevent Zoo from generating divergent analyzers, or from generating extra “join-
ing” operations [LCVH92,LCVH94] necessary to enforce the monotonicity of fix-
point iterations. Our work may also suggest a similar solution for other existing
program-analyzer generators like PAG [Mar98].



Our verification procedure is an effect-type system, which can be classified
as mono-variant flow-insensitive analysis. Its effectiveness remains to be investi-
gated and experiments are underway for existing program analyses (e.g. conven-
tional data flow analyses [ASU86,YH93] and exception analyses [YR01,YR97]).
We would also like to make the rules more liberal by employing other static
analysis tools to estimate the boundary region in the conditional expression. It
seems that there is not too much scope for improvement in the rest of cases.
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A Operator Definition

Full definition of i̇f , assuming only a single variable can occur freely in e3 and
e4. Note that the operation is monotonic. For missing cases, the results are equal
to >.



me1(x) me2(x) me3(x) me4(x) Φ i̇f me1(x) · · ·me4(x) Φ

− + + + e3(⊥) w e4(>) +
0 + + + e3(⊥) w e4(>) +
− 0 + + e3(⊥) w e4(>) +
− + 0 + e3(⊥) w e4(>) +
− + + 0 e3(⊥) w e4(>) +
0 0 + + irrelevant +
0 + 0 + e3(⊥) w e4(>) +
0 + + 0 e3(⊥) w e4(>) +
− 0 0 + e3(⊥) w e4(>) +
− 0 + 0 e3(⊥) w e4(>) +
− + 0 0 e3(⊥) w e4(>) +
− 0 0 0 e3(⊥) w e4(>) +
0 + 0 0 e3(⊥) w e4(>) +
0 0 + 0 irrelevant +
0 0 0 + irrelevant +

+ − + + e3(>) v e4(⊥) +
0 − + + e3(>) v e4(⊥) +
+ 0 + + e3(>) v e4(⊥) +
+ − 0 + e3(>) v e4(⊥) +
+ − + 0 e3(>) v e4(⊥) +
0 − 0 + e3(>) v e4(⊥) +
0 − + 0 e3(>) v e4(⊥) +
+ 0 0 + e3(>) v e4(⊥) +
+ 0 + 0 e3(>) v e4(⊥) +
+ − 0 0 e3(>) v e4(⊥) +
+ 0 0 0 e3(>) v e4(⊥) +
0 − 0 0 e3(>) v e4(⊥) +

− + − − e3(⊥) v e4(>) −
0 + − − e3(⊥) v e4(>) −
− 0 − − e3(⊥) v e4(>) −
− + 0 − e3(⊥) v e4(>) −
− + − 0 e3(⊥) v e4(>) −
0 0 − − irrelevant −
0 + 0 − e3(⊥) v e4(>) −
0 + − 0 e3(⊥) v e4(>) −
− 0 0 - e3(⊥) v e4(>) −
− 0 - 0 e3(⊥) v e4(>) −
- + 0 0 e3(⊥) v e4(>) −
− 0 0 0 e3(⊥) v e4(>) −
0 + 0 0 e3(⊥) v e4(>) −
0 0 − 0 irrelevant −
0 0 0 − irrelevant −



(continued)
me1(x) me2(x) me3(x) me4(x) Φ i̇f me1(x) · · ·me4(x) Φ

+ − − − e3(>) w e4(⊥) −
0 − − − e3(>) w e4(⊥) −
+ 0 − − e3(>) w e4(⊥) −
+ − 0 − e3(>) w e4(⊥) −
+ − − 0 e3(>) w e4(⊥) −
0 − 0 − e3(>) w e4(⊥) −
0 − − 0 e3(>) w e4(⊥) −
+ 0 0 − e3(>) w e4(⊥) −
+ 0 − 0 e3(>) w e4(⊥) −
+ - 0 0 e3(>) w e4(⊥) −
− 0 0 0 e3(>) w e4(⊥) −
0 − 0 0 e3(>) w e4(⊥) −

0 0 0 0 irrelevant 0


