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Abstract
In this article we present a general method for achieving global
static analyzers that are precise, sound, yet also scalable. Our
method generalizes the sparse analysis techniques on top of the
abstract interpretation framework to support relational as well as
non-relational semantics properties for C-like languages. We first
use the abstract interpretation framework to have a global static
analyzer whose scalability is unattended. Upon this underlying
sound static analyzer, we add our generalized sparse analysis tech-
niques to improve its scalability while preserving the precision of
the underlying analysis. Our framework determines what to prove
to guarantee that the resulting sparse version should preserve the
precision of the underlying analyzer.

We formally present our framework; we present that existing
sparse analyses are all restricted instances of our framework; we
show more semantically elaborate design examples of sparse non-
relational and relational static analyses; we present their implemen-
tation results that scale to analyze up to one million lines of C pro-
grams. We also show a set of implementation techniques that turn
out to be critical to economically support the sparse analysis pro-
cess.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program Analysis

Keywords Static analysis, abstract interpretation, sparse analysis

1. Introduction
Precise, sound, scalable yet global static analyzers have been un-
achievable in general. Other than almost syntactic properties, once
the target property becomes slightly deep in semantics it’s been a
daunting challenge to achieve the four goals in a single static an-
alyzer. This situation explains why, for example, in the static er-
ror detection tools for full C, there exists a clear dichotomy: either
“bug-finders” that risk being unsound yet scalable or “verifiers”
that risk being unscalable yet sound. No such tools are scalable
to globally analyze million lines of C code while being sound and
precise enough for practical use.

In this article we present a general method for achieving global
static analyzers that are precise, sound, yet also scalable. Our ap-
proach generalizes the sparse analysis ideas on top of the abstract
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interpretation framework. Since the abstract interpretation frame-
work [9, 11] guides us to design sound yet arbitrarily precise static
analyzers for any target language, we first use the framework to
have a global static analyzer whose scalability is unattended. Upon
this underlying sound static analyzer, we add our generalized sparse
analysis techniques to improve its scalability while preserving the
precision of the underlying analysis. Our framework determines
what to prove to guarantee that the resulting sparse version should
preserve the precision of the underlying analyzer.

Our framework bridges the gap between the two existing tech-
nologies – abstract interpretation and sparse analysis – towards
the design of sound, yet scalable global static analyzers. Note that
while abstract interpretation framework provides a theoretical knob
to control the analysis precision without violating its correctness,
the framework does not provide a knob to control the resulting an-
alyzer’s scalability preserving its precision. On the other hand, ex-
isting sparse analysis techniques [6, 14, 15, 19, 20, 24, 40, 42, 44]
achieve scalability, but they are mostly algorithmic and tightly cou-
pled with particular analyses.1 The sparse techniques are not gen-
eral enough to be used for an arbitrarily complicated semantic anal-
ysis.

Contributions Our contributions are as follows.

• We propose a general framework for designing sparse static
analysis. Our framework is semantics-based and precision-
preserving. We prove that our framework yields a correct sparse
analysis that has the same precision as the original.
• We present a new notion of data dependency, which is a key to

the precision-preserving sparse analysis. Unlike conventional
def-use chains, sparse analysis with our data dependency is
fully precise.
• We design sparse non-relational and relational analysis which

are still general as themselves. We can instantiate these designs
with a particular non-relational and relational abstract domains,
respectively.
• We prove the practicality of our framework by experimentally

demonstrating the achieved speedup of an industrial-strength
static analyzer [23, 26, 28, 35–38]. The sparse analysis can
analyze programs up to 1 million lines of C code with interval
domain and up to 100K lines of C code with octagon domain.

Outline Section 2 explains our sparse analysis framework. Sec-
tion 3 and 4 design sparse non-relational and relational analyes,
respectively, based on our framework. Section 5 discusses several
issues involved in the implementations. Section 6 presents the ex-
perimental studies. Section 7 discusses related work.

1 A few techniques [7, 39] are in general settings but instead they take
coarse-grained approach to sparsity.



2. Sparse Analysis Framework
2.1 Notation
Given function f ∈ A → B, we write f |C for the restriction
of function f to the domain dom(f) ∩ C. We write f\C for the
restriction of f to the domain dom(f)− C. We abuse the notation
f |a and f\a for the domain restrictions on singleton set {a}. We
write f [a 7→ b] for the function got from function f by changing
the value for a to b. We write f [a1 7→ b1, · · · , an 7→ bn] for
f [a1 7→ b1] · · · [an 7→ bn]. We write f [{a1, · · · , an}

w7→ b] for
f [a1 7→ f(a1) t b, · · · , an 7→ f(an) t b] (weak update).

2.2 Program
A program is a tuple 〈C, ↪→〉 where C is a finite set of con-
trol points and ↪→⊆ C × C is a relation that denotes control
flows of the program; c′ ↪→ c indicates that c is a next control
point of c′. Each control point is associated with a command, de-
noted cmd(c). A path p = p0p1 . . . pn is a sequence of control
points such that p0 ↪→ p1 ↪→ · · · ↪→ pn. We write Paths =
lfpλP.{c0c1 | c0 ↪→ c1}∪{p0 . . . pnc | p ∈ P ∧ pn ↪→ c} for the
set of all paths in the program.

Collecting Semantics Collecting semantics of program P is an
invariant [[P ]] ∈ C → 2S that represents a set of reachable states
at each control point, where the concrete domain of states, S =
L → V, maps concrete locations (L) to concrete values (V).
The collecting semantics is characterized by the least fixpoint of
semantic function F ∈ (C→ 2S)→ (C→ 2S) such that,

F (X) = λc ∈ C.fc(
⋃
c′↪→c

X(c′)). (1)

where fc ∈ 2S → 2S is a semantic function at control point c.
Because our framework is independent from target languages, we
leave out the definition of the concrete semantic function fc.

2.3 Baseline Abstraction
We abstract the collecting semantics of program P by the following
Galois connection

C→ 2S −−→←−−α
γ

C→ Ŝ (2)

where α and γ are pointwise liftings of abstract and concretization
function αS and γS (such that 2S −−−→←−−−αS

γS Ŝ), respectively.
We consider a particular, yet general, family of abstract domains

where abstract state Ŝ is map L̂ → V̂ where L̂ is a finite set of
abstract locations, and V̂ is a (potentially infinite) set of abstract
values. All non-relational abstract domains, such as intervals [9],
are members of this family. Furthermore, the family covers some
numerical, relational domains. Practical relational analyses exploit
packed relationality [4, 13, 34, 43]; the abstract domain is of form
Packs → R̂ where Packs is a set of variable groups selected to be
related together. R̂ denotes numerical constraints among variables
in those groups. In such packed relational analysis, each variable
pack is treated as an abstract location (L̂) and numerical constraints
amount to abstract values (V̂). Examples of the numerical con-
straints are domain of octagons [34] and polyhedrons [12]. In prac-
tice, relational analyses are necessarily packed relational [4, 13]
because of otherwise unacceptable costs.

Abstract semantics is characterized as a least fixpoint of abstract
semantic function F̂ ∈ (C→ Ŝ)→ (C→ Ŝ) defined as,

F̂ (X̂) = λc ∈ C.f̂c(
⊔
c′↪→c

X̂(c′)). (3)

where f̂c ∈ Ŝ → Ŝ is a monotone abstract semantic function for
control point c. We assume that F̂ is sound with respect to F , i.e.,

α◦F v F̂ ◦α, then the soundness of abstract semantics is followed
by the fixpoint transfer theorem [11].

2.4 Sparse Analysis by Eliminating Unnecessary Propagation
The abstract semantic function given in (3) propagates some ab-
stract values unnecessarily. For example, suppose that we analyze
statement x := y using a non-relational domain, like interval do-
main [9]. We know for sure that the abstract semantic function for
the statement defines a new abstract value only at variable x and
uses only the abstract value of variable y. Thus, it is unnecessary to
propagate the whole abstract states. However, the function given in
(3) blindly propagates the whole abstract states of all predecessors
c′ to control point c.

To make the analysis sparse, we need to eliminate this un-
necessary propagation by making the semantic function propagate
abstract values along data dependency, not control flows; that is,
we make the semantic function propagate only the abstract values
newly computed at one control point to the other where they are
actually used. In the rest of this section, we explain how to make
abstract semantic function (3) sparse while preserving its precision
and soundness.

2.5 Definition and Use Set
We first need to precisely define what are “definitions” and “uses”.
They are defined in terms of abstract semantics, i.e., abstract se-
mantic function f̂c, not concrete semantics.

Definition 1 (Definition set). Let S be the least fixpoint lfpF̂ of the
original semantic function F̂ . Definition set D(c) at control point c
is a set of abstract locations that are assigned a new abstract value
by abstract semantic function f̂c, i.e.

D(c) , {l ∈ L̂ | ∃ŝ v
⊔
c′↪→c

S(c′).f̂c(ŝ)(l) 6= ŝ(l)}.

Definition 2 (Use set). Let S be the least fixpoint lfpF̂ of the
original semantic function F̂ . Use set U(c) at control point c is a
set of abstract locations that are used by abstract semantic function
f̂c, i.e.

U(c) , {l ∈ L̂ | ∃ŝ v
⊔
c′↪→c

S(c′).f̂c(ŝ)|D(c) 6= f̂c(ŝ\l)|D(c)}.

Example 1. Consider the following simple subset of C:

cmd → x := e | ∗x := e
e → x | &x | ∗x.

The meaning of each statement and each expression is fairly stan-
dard. We design a pointer analysis for this as follows:

ŝ ∈ Ŝ = Var → 2Var

f̂c(ŝ) =


ŝ[x 7→ Ê(e)(ŝ)] cmd(c) = x := e

ŝ[y 7→ Ê(e)(ŝ)] cmd(c) = ∗x := e
and ŝ(x) = {y}

ŝ[ŝ(x)
w7→ Ê(e)(ŝ)] cmd(c) = ∗x := e

Ê(e)(ŝ) =


ŝ(x) e = x
{x} e = &x⋃
y∈ŝ(x) ŝ(y) e = ∗x

Now suppose that we analyze program 10©x := &y; 11©∗p := &z;
12©y := x; (superscripts are control points). Suppose that points-
to set of pointer p is {x, y} at control point 11© according to the
fixpoint. Definition set and use set at each control point are as
follows.

D(10©) = {x} U(10©) = ∅
D(11©) = {x, y} U(11©) = {p, x, y}
D(12©) = {y} U(12©) = {x}



Note that U( 11©) contains D( 11©) because of the weak update ( w7→):
the semantics of weak update ŝ[l w7→ v] = ŝ[l 7→ ŝ(l) t v] is
defined to use the target location l. This implicit use information,
which does not explicitly appear in the program text, is naturally
captured by following the semantics.

2.6 Data Dependencies
Once identifying definition and use sets at each control point, we
can discover data dependencies of abstract semantic function F̂
between two control points. Intuitively, if the abstract value of
abstract location l defined at control point c0 is used at control
point cn, there is a data dependency between c0 and cn on l. Formal
definition of data dependency is given below:

Definition 3 (Data dependency). Data dependency is ternary rela-
tion ⊆ C× L̂× C defined as follows:

c0
l
 cn , ∃c0 . . . cn ∈ Paths, l ∈ L̂.

l ∈ D(c0) ∩ U(cn) ∧ ∀i ∈ (0, n).l 6∈ D(ci)

The definition means that if there exists a path from control point c0
to cn, a value of abstract location l can be defined at c0 and used at
cn, and there is no intermediate control point ci that may change the
value of l, then a data dependency exists between control points c0
and cn on location l. One might wonder why the data dependency
excludes not only a path that always kills the definition but also a
path that might, but not always, kill the definition. In the latter case,
the definition that might be killed is, by Definition 2, included in the
use set of the definition point.

Example 2. In the program presented in Example 1, we can find
two data dependencies, 10© x

 11© and 11© x
 12©.

Comparison with Def-use Chains Our notion of data depen-
dency is different from the conventional notion of def-use chains. If
we want to conservatively collect all the possible def-use chains, we
should exclude only the paths from definition points to use points
when there exists a point that always kills the definition. We can
slightly modify Definition 3 to express def-use chain relation du

as follows:

c0
l
 du cn , ∃c0 . . . cn ∈ Paths, l ∈ L̂.

l ∈ D(c0) ∩ U(cn) ∧ ∀i ∈ (0, n).l 6∈ Dalways(ci)

where Dalways(c) denotes the set of abstract locations that are al-
ways killed at control point c.

Example 3. We can find three def-use chains, 10© x
 du 11©, 10© x

 du

12©, and 11© x
 du 12© in Example 1.

The reason why we use our notion of data dependencies instead
of def-use chains is that our data dependencies preserve the preci-
sion of the analysis even when approximations are involved. On the
other hand, sparse analysis with approximated def-use chains may
lose precision, which becomes evident in Section 2.8.

2.7 Sparse Abstract Semantic Function
Using data dependency, we can make abstract semantic function
sparse, which propagates between control points only the abstract
values that participate in the fixpoint computation. Sparse abstract
function F̂s, whose definition is given below, is the same as the
original except that it propagates abstract values along to the data
dependency, not along to control flows:

F̂s(X̂) = λc ∈ C.f̂c(
⊔
cd

l
 c

X̂(cd)|l).

As this definition is only different in that it is defined over data
dependency ( ), we can reuse abstract semantic function f̂c, and
its soundness result, from the original analysis design.

The following lemma states that the analysis result with sparse
abstract semantic function is the same as the one of original analy-
sis.

Lemma 1 (Correctness). Let S and Ss be lfpF̂ and lfpF̂s. Then,

∀c ∈ C.∀l ∈ D(c).Ss(c)(l) = S(c)(l).

The lemma guarantees that the sparse analysis result is identical to
the original result only up to the entries that are defined in every
control point. This is fair since the sparse analysis result does not
contain the entries unnecessary for its computation.

2.8 Sparse Analysis with Approximated Data Dependency
Sparse analysis designed until Section 2.7 might not be practical
since we can decide definition set D and use set U only with the
original fixpoint lfpF̂ computed.

To design a practical sparse analysis, we can approximate data
dependency using approximated definition set D̂ and use set Û (D̂
and Û are arbitrary sets that respect some properties in Definition
5).

Definition 4 (Approximated Data Dependency). Approximated
data dependency is ternary relation  a⊆ C × L̂ × C defined as
follows:

c0
l
 a cn , ∃c0 . . . cn ∈ Paths, l ∈ L̂.

l ∈ D̂(c0) ∩ Û(cn) ∧ ∀i ∈ (0, n).l 6∈ D̂(ci)

The definition is the same except that it is defined over D̂ and
Û. The derived sparse analysis is to compute the fixpoint of the
following abstract semantic function:

F̂a(X̂) = λc ∈ C.f̂c(
⊔

cd
l
 ac

X̂(cd)|l).

One thing to note is that not all D̂ and Û make the derived
sparse analysis compute the same result as the original. First,
both D̂(c) and Û(c) at each control point should be an over-
approximation of D(c) and U(c), respectively (we can easily show
that the analysis computes different result if one of them is an
under-approximation). Next, all spurious definitions that are in-
cluded in D̂ but not in D should be also included in Û. The follow-
ing example illustrates what happens when there exists an abstract
location which is a spurious definition but is not included in the
approximated use set.

Example 4. Consider the same program presented in Example 1.
except that we now suppose the points-to set of pointer p being {y}.
Then, definition set and use set at each control point are as follows:

D(10©) = {x} U(10©) = ∅
D(11©) = {y} U(11©) = {p}
D(12©) = {y} U(12©) = {x}.

Note that U(11) does not contain D(11) because of strong update.
The following is one example of unsafe approximation.

D̂(10©) = {x} Û(10©) = ∅
D̂(11©) = {x, y} Û(11©) = {p}
D̂(12©) = {y} Û(12©) = {x}.

This approximation is unsafe because spurious definition {x} at
control point 11© is not included in approximated use set Û( 11©).
With this approximation, abstract value of x at 10© is not propagated
to 12©, while it is propagated in the original analysis ( 10© x

 12©, but
10© 6 x a 12©). However, if {x} ⊆ Û( 11©), then the abstract value



will be propagated through two data dependencies, 10© x
 a 11© and

11© x
 a 12©. Note that x is not defined at 11©, thus the propagated

abstract value for x is not modified at 11©.

We can formally define safe approximations of definition set
and use set as follows:

Definition 5. Set D̂(c) and Û(c) are a safe approximation of
definition set D(c) and use set U(c), respectively, if and only if

(1) D̂(c) ⊇ D(c) ∧ Û(c) ⊇ U(c); and
(2) D̂(c)− D(c) ⊆ Û(c).

The remaining things is to prove that the safe approximation D̂
and Û yields the correct sparse analysis, which the following lemma
states:

Lemma 2 (Correctness of Safe Approximation). Suppose sparse
abstract semantic function F̂a is derived by the safe approximation
D̂ and Û. Let S and Sa be lfpF̂ and lfpF̂a. Then,

∀c ∈ C.∀l ∈ D̂(c).Sa(c)(l) = S(c)(l).

Precision Loss with Conservative Def-use Chains While ap-
proximated data dependency does not degrade the precision of an
analysis, conservative def-use chains from approximated definition
set and use set make the analysis less precise even if the approxi-
mation is safe. The following example illustrates the case of impre-
cision.

Example 5. Consider the program in Example 1, assuming the
points-to set of p being {x}. The following approximated definition
and use sets

D̂(10©) = {x} Û(10©) = ∅
D̂(11©) = {x, y} Û(11©) = {p, y}
D̂(12©) = {y} Û(12©) = {x}.

establish the following two def-use chains: 11© x
 du 12©, and 10© x

 du

12© (we assume here that relation  du is similarly modified as in
Definition 4). With these conservative def-use chains, the points-to
set of x propagated to control point 12© is {y}∪{z}, which is bigger
set than {z}, the one that appears in the original analysis.

2.9 Designing Sparse Analysis Steps in the Framework
In summary, the design of sparse analysis within our framework is
done in the following two steps:

(1) Design a static analysis based on abstract interpretation frame-
work [9]. Note that the abstract domain should be a member of
the family explained in Section 2.3.

(2) Design a method to find a safe approximation D̂ and Û of
definition set D and use set U (Definition 5).

3. Designing Sparse Non-Relational Analysis
As a concrete example, we show how to design sparse non-
relational analyses within our framework. Following Section 2.9,
we proceed in two steps: (1) We design a conventional non-
relational analysis based on abstract interpretation. Relying on the
abstract interpretation framework [9, 10], we can flexibly design a
static analysis of our interest with soundness guaranteed. (2) We
design a method to find D̂ and Û and prove that they are safe ap-
proximations (Definition 5). The sparse analysis designed in this
section is the core of our interval domain-based static analyzer,
Intervalsparse, which will be evaluated in Section 6.

For brevity, we restrict our presentation to the following simple
subset of C, where a variable has either an integer value or a pointer

(i.e. V = Z+ L):

cmd→ x := e | ∗x := e | {{x < n}}
where e→ n | x | &x | ∗x | e+e

Assignment x := e corresponds to assigning the value of expres-
sion e to variable x. Store ∗x := e performs indirect assignments;
the value of e is assigned to the location that x points to. An as-
sume command {{x < n}} makes the program continue only when
the condition evaluates to true.

3.1 Step 1: Designing Non-sparse Analysis
Abstract Domain From the baseline abstraction (in Section 2.3),
we consider a family of state abstractions 2S −−−→←−−−αS

γS Ŝ such that,
(Because it is standard, we omit the definition of αS.)

Ŝ = L̂→ V̂ L̂ = Var V̂ = Ẑ× P̂ P̂ = 2 L̂

An abstract location is a program variable. An abstract value is a
pair of an abstract integer Ẑ and an abstract pointer P̂. A set of
integers is abstracted to an abstract integer (2Z −−−→←−−−αZ

γZ Ẑ). Note
that the abstraction is generic so we can choose any non-relational
numeric domains of our interest, such as intervals ( Ẑ = {[l, u] |
l, u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u} ∪ {⊥}). For simplicity, we do
not abstract pointers (because they are finite): pointer values are
kept by a points-to set (P̂ = 2L̂). Other pointer abstractions are also
orthogonally applicable.

Abstract Semantics The abstract semantics is defined by the least
fixpoint of semantic function (3), F̂ , where the abstract semantic
function f̂c ∈ Ŝ→ Ŝ is defined as follows:

f̂c(ŝ) =
ŝ[x 7→ Ê(e)(ŝ)] cmd(c) = x := e

ŝ[ŝ(x).P̂ w7→ Ê(e)(ŝ)] cmd(c) = ∗x := e

ŝ[x 7→〈ŝ(x).ẐuẐαZ({z∈Z|z<n}), ŝ(x).P̂〉] cmd(c) = {{x < n}}

Auxiliary function Ê(e)(ŝ) computes abstract value of e under ŝ.
Assignment x := e updates the value of x. Store ∗x := e weakly2

updates the value of abstract locations that ∗x denotes. {{x < n}}
confines the interval value of x according to the condition. Ê ∈
e→ Ŝ→ V̂ is defined as follows:

Ê(n)(ŝ) = 〈αZ({n}),⊥〉
Ê(x)(ŝ) = ŝ(x)

Ê(&x)(ŝ) = 〈⊥, {x}〉
Ê(∗x)(ŝ) =

⊔
{ŝ(a) | a ∈ ŝ(x).P̂}

Ê(e1+e2)(ŝ) = 〈v1.Ẑ+̂Ẑv2.Ẑ, v1.P̂ ∪ v2.P̂〉
where v1 = Ê(e1)(ŝ), v2 = Ê(e2)(ŝ)

Note that the above analysis is parameterized by an abstract nu-
meric domain Ẑ and sound operators +̂Ẑ and uẐ.

3.2 Step 2: Finding Definitions and Uses
The second step is to find safe approximations of definitions and
uses. The framework provides a mathematical definitions regarding
correctness but does not provide how to find safe D̂ and Û. In the
rest part of this section, we present a semantics-based, systematic
way to find them.

We propose to find D̂ and Û from a conservative approximation
of F̂ . We call the approximated analysis by pre-analysis. Let D̂pre

and F̂pre be the domain and semantic function of such a pre-

2 For brevity, we consider only weak updates. Applying strong update is
orthogonal to our sparse analysis design.



analysis, which satisfies the following two conditions.

C→ Ŝ −−−−→←−−−−
αpre

γpre
D̂pre αpre ◦ F̂ v F̂pre ◦ αpre

By abstract interpretation framework [9, 10], such a pre-analysis is
guaranteed to be conservative, i.e., αpre(lfpF̂ ) v lfpF̂pre . As an
example, in experiments (Section 6), we use a simple abstraction
as follows:

C→ Ŝ −−−−→←−−−−
αpre

γpre
Ŝ αpre = λX̂.

⊔
{X̂(c) | c ∈ dom(X̂)}

F̂pre = λŝ.
⊔
c∈C f̂c(ŝ)

The abstraction ignores the control flows of programs and com-
putes a single global invariant (a.k.a., flow-insensitivity).

We now define D̂ and Û by using pre-analysis. Let T̂pre ∈
C → Ŝ be the pre-analysis result in terms of original analysis, i.e.,
T̂pre = γpre(lfpF̂pre). The definitions of D̂ and Û are naturally
derived from the semantic definition of f̂c.

D̂(c) =


{x} cmd(c) = x := e

T̂pre(c)(x).P̂ cmd(c) = ∗x := e
{x} cmd(c) = {{x < n}}

D̂ is defined to include locations whose values are potentially de-
fined (changed). In the definition of f̂c for x := e and {{x < n}},
we notice that abstract location x may be defined. In ∗x := e, we
see that f̂c may define locations ŝ(x).P̂ for a given input state ŝ at
program point c. Here, we use the pre-analysis: because we can-
not have the input state ŝ prior to the analysis, we instead use its
conservative abstraction T̂pre(c). Such D̂ satisfies the safe approx-
imation condition (Definition 5), because we collect all potentially
defined locations, pre-analysis is conservative, and f̂ is monotone.

Before defining Û, we define an auxiliary function U ∈ e →
Ŝ → 2L̂. Given expression e and state ŝ, U(e)(ŝ) finds the set
of abstract locations that are referenced during the evaluation of
Ê(e)(ŝ). Thus, U is naturally derived from the definition of Ê .

U(n)(ŝ) = ∅
U(x)(ŝ) = {x}
U(&x)(ŝ) = ∅
U(∗x)(ŝ) = {x} ∪ ŝ(x).P̂

U(e1+e2)(ŝ) = U(e1)(ŝ) ∪ U(e2)(ŝ)

When e is either n or &x, Ê does not refer any abstract location.
Because Ê(x)(ŝ) references abstract location x, U(x)(ŝ) is defined
by {x}. Ê(∗x)(ŝ) references location x and each location a ∈
ŝ(x), thus the set of referenced locations is {x} ∪ ŝ(x).P̂. Û is
defined as follows: (For brevity, let ŝc = T̂pre(c))

Û(c) =


U(e)(ŝc) cmd(c) = x := e

{x} ∪ ŝc(x).P̂ ∪ U(e)(ŝc) cmd(c) = ∗x := e
{x} cmd(c) = {{x < n}}

Using T̂pre and U , we collect abstract locations that are potentially
used during the evaluation of e. Because f̂c is defined to refer to
abstract location x in ∗x := e and {{x < n}}, U additionally
includes x. Note that, in ∗x := e, Û(c) includes ŝc(x).P̂ because
f̂c performs weak updates.

Lemma 3. D̂ and Û are safe approximations.

Sparse Pointer Analysis as Instances We can instantiate this de-
sign of non-relational analysis to the recent two successful scalable
sparse analysis presented in [19, 20].

Semi-sparse analysis [19] applies sparse analysis only for top-
level variables whose addresses are never taken. We do the same
thing by designing pre-analysis which computes a fixpoint T̂pre

such that T̂pre(c)(x).P̂ = L̂ for all xs that are not top-level vari-
ables.

Staged Flow-Sensitive Analysis [20] uses auxiliary flow-
insensitive pointer analysis to get an over-approximation of def-
use information on pointer variables. By coincidence, our sparse
non-relational analysis already does the same analysis for pointer
variables except it also tracks numeric constraints of variables. We
can design pre-analysis whose precision is incomparable to the
original one, as in [20], although the framework cannot guarantee
the correctness anymore.

4. Designing Sparse Relational Analysis
As another example, we show how to design sparse relational
analyses. In Section 4.1, we define the family of relational analyses
that our framework considers. In Section 4.2, we define safe D̂ and
Û for the analysis.

We consider packed relational analysis [4, 34]. A pack is a
semantically related set of variables. In the rest of this section, we
assume a set of variable packs, Packs ⊆ 2Var such that

⋃
Packs =

Var , are given by users or a pre-analysis [13, 34]. In a packed
relational analysis, abstract states (Ŝ) map variable packs (Packs)
to a relational domain (R̂), i.e., Ŝ = Packs→ R̂.

The distinguishing feature of sparse relational analysis is that
definition sets and use sets are defined in terms of variable packs.
For example, at a simple statement x := 1, all the variable packs
that contain xmay be defined and used at the same time, while only
variable x may be defined and not used in non-relational analysis.
As a result, data dependencies are also defined in terms of variable
packs, i.e.,  ⊆ C × Packs × C. We denote a pack of variables
x1, · · · , xn as 〈〈x1, · · · , xn〉〉.

4.1 Step 1: Designing Non-sparse Analysis
For brevity, we consider the following pointer-free language: (S =
Var → Z).

cmd→ x := e | {{x < n}} where e→ n | x | e+e

Including pointers in the language does not require novelty but
verbosity. We focus only on the key differences between non-
relational and relational sparse analysis designs.

Abstract Domain From the baseline abstraction (in Section 2.3),
we consider a family of state abstractions 2S −−−→←−−−αS

γS Ŝ such that, (αS

is defined using αR̂ such that 2S −−−→←−−−αR̂

γR̂ R̂.)

Ŝ = L̂→ V̂ L̂ = Packs V̂ = R̂

Abstract Semantics In packed relational analysis, we sometimes
need to know actual values (such as ranges) of variables. For ex-
ample, suppose we analyze a := b with Packs = {〈〈a, c〉〉, 〈〈b, c〉〉}.
Analyzing the statement amounts to updating the abstract value for
pack 〈〈a, c〉〉. However, because variable b is not contained in the
pack, we need to obtain the value of b from the abstract value as-
sociated with 〈〈b, c〉〉. Here, the value for b is obtained by project-
ing the relational domain elements for 〈〈b, c〉〉 into a non-relational
value, such as intervals. To this end, we transform the original pro-
gram into an internal form that replaces such variables with their
actual values: suppose the actual value of b in terms of intervals is
〈1, 2〉 then a := b is transformed into a := 〈1, 2〉. Formally, we
assume abstract semantic function R̂ ∈ cmdrel → R̂ → R̂ for re-
lational domain R̂ is defined over the following internal language:

cmdrel → x := erel | {{x < Ẑ}} where erel → Ẑ | x | erel+erel



where Ẑ is a (non-relational) abstract integer (2Z −−−→←−−−αZ

γZ Ẑ). Note
that this language is not for program codes, but for our semantics
definition.

We now define the semantics of the packed relational analysis.
The abstract semantics is defined by the least fixpoint of semantic
function (3), where the abstract semantic function f̂c is defined as
follows:

f̂c(ŝ) = ŝ[p1 7→ R̂(cmd1)(ŝ(p1)), . . . , pk 7→ R̂(cmdk)(ŝ(pk))]
where

{p1, . . . , pk} = pack(x)
cmdi = T (pi)(ŝ)(cmd(c))

For variable x, pack(x) returns the set of packs that contains x, i.e.,
pack(x) = {p ∈ Packs | x ∈ p}. For both x := e and {{x < n}},
we update only the packs that include x. T is the function that
transforms cmd into cmdrel . Given a variable pack p, state ŝ, and
command cmd, T (p)(ŝ) ∈ cmd → cmdrel returns transformed
command for a given command.

T (p)(ŝ)(x := e) = x := Te(p)(ŝ)(e)
T (p)(ŝ)({{x < n}}) = {{x < Te(p)(ŝ)(n)}}

where Te(p)(ŝ) ∈ e→ erel transforms expressions:

Te(p)(ŝ)(n) = αZ({n})

Te(p)(ŝ)(x) =

{
x if x ∈ p
πx(ŝ) otherwise

Te(p)(ŝ)(e1+e2) = Te(p)(ŝ)(e1)+Te(p)(ŝ)(e2)

where πx ∈ Ŝ → Ẑ is a function that projects a relational domain
element onto variable x to obtain its abstract integer value. To be
safe, πx should satisfies the following condition:

∀ŝ ∈ Ŝ.πx(ŝ) w αẐ({s(x)|s ∈ γR̂(up∈pack(x)ŝ(p))})

4.2 Step 2: Finding Definitions and Uses

We now approximate D̂ and Û. In the previous section, we already
presented a general, semantics-based method to safely approximate
D̂ and Û for a given abstract semantics. Because our language in
this section is pointer-free, simple syntactic method is enough for
our purpose.

The distinguishing feature of sparse relational analysis is that
the entities that are defined and used are variable packs, not each
variable. From the definition of f̂c, we notice that packs pack(x)
are potentially defined both in assignment and assume:

D̂(c) =

{
pack(x) cmd(c) = x := e
pack(x) cmd(c) = {{x < n}}

Û is defined depending on the definition of πx. On the assumption
that Packs contains singleton packs of all program variables, we
may define πx as follows:

πx(ŝ) = πrelx (ŝ({x}))

where πrelx ∈ R̂ → Ẑ which project a relational domain element
onto variable x to obtain its abstract integer value, which is supplied
by each relational domain, e.g., see [34].

Now, we define Û as follows:

Û(c) =

{
pack(x) ∪ {〈〈l〉〉 | l ∈ V } cmd(c) = x := e
pack(x) cmd(c) = {{x < n}}

where V = V(e) −
⋃

pack(x), and V(e) denotes the set of
variables that appear inside an expression e.

Lemma 4. D̂ and Û are safe approximations.

5. Implementation Techniques
Implementing sparse analysis presents unique challenges regarding
construction and management of data dependencies. Because data
dependencies for realistic programs are very complex, it is a key to
practical sparse analyzers to generate data dependencies efficiently
in space and time. We describe the basic algorithm we used for
data dependency generation, and discuss two issues that we expe-
rienced significant performance variations depending on different
implementation choices.

Generation of Data Dependencies We use the standard SSA al-
gorithm to generate data dependencies. Because our notion of data
dependencies equals to def-use chains with D̂ and Û being treated
as must-definitions and must-uses, any def-use chain generation
algorithms (e.g., reaching definition analysis, SSA algorithm, etc)
can be used. We use SSA generation because it is fast and reduces
the size of def-use chains [44].

Interprocedural Extension With semantics-based approach in
mind, interprocedural sparse analysis is no more difficult than its
intraprocedural counterpart. Designing a method to find safe def-
initions and uses for semantic functions regarding procedure calls
is all that we need for interprocedural extension.

However, during the implementation, we noticed that this nat-
ural extension may not be scalable in practice. The main problem
was due to unexpected spurious dependencies among procedures.
Consider the following code and suppose we compute data depen-
dencies for global variable x.

int f() { x=0;1 h(); a=x;2}
int h() { ... } // does not use variable x
int g() { x=1;3 h(); b=x;4}

Data dependencies for x not only include 1 x
 2 and 3 x

 4 but also
include spurious dependencies 1 x

 4 and 3 x
 2, because there are

control flow paths from 1 to 4 (as well as 3 to 2) via the common
procedure calls to h. In real C programs, thousands of global vari-
ables exist and procedures are called from many different call-sites,
which generates overwhelming number of spurious dependencies.
In our experiments, such spurious dependencies made the analysis
hardly scalable. Staged pointer analysis algorithm [20] takes this
approach but no performance problem was reported; we guess this
is because pointer analysis typically ignores non-pointer statements
(by sparse evaluation techniques [7, 39]) and number of pointer
variables are just small subset of the entire variables. However, our
analyzers trace all semantics of C, i.e., value flows of all types in-
cluding pointers and numbers.

Thus, we generate data dependencies separately for each proce-
dure. In this approach, we need to specially handle procedure calls:
we treat a procedure call as a definition (resp., use) of all abstract
locations defined (resp., used) by the callee. In addition, we treat
the entry point of each procedure as definitions of all the abstract
locations that are used in the body of the procedure. With these in-
formation, can we generate data dependencies of each procedure
independently from other procedures. After generating dependen-
cies of procedures, we connect inter-dependences from call state-
ments to the entry of callee with abstract locations that are used
by the callee. The advantage of this approach is that the number of
spurious dependencies are reduced: variable x is not propagated to
procedure h because h does not use x. However, the disadvantage
of this approach is that data dependencies are not fully sparse. For
example, consider a call chain f→ g→ h and suppose x is defined
in procedure f and used in procedure h. Even when x is not used in-
side g, value of x is propagated to h only after it is first propagated
to g. In our experiments, this incomplete sparseness of the analy-
sis could not make the resulting sparse analysis scalable enough.



We solved the problem by applying the following optimization to
the generated data dependencies ( ) until convergence: suppose
a

l
 b, b l

 c, and that l is not defined nor used in b, then we
remove those two dependencies and add a l

 c. This optimization
makes the analysis more sparse, leading to a significant speed up.

For the interprocedural extension, we use the flow-insensitive
analysis (defined in Section 3.2) to prior resolve function pointers.
Because the pre-analysis is fairly precise3, the precision loss caused
by this approximation of the callgraph would be reasonably small
in practice [33].

Using BDDs in Representing Data Dependencies The second
practical issue is memory consumption of data dependencies. An-
alyzing real C programs must deal with hundreds of thousands of
statements and abstract locations. Thus, naive representations for
the data dependencies immediately makes memory problems. For
example, in analyzing ghostscript-9.00 (the largest benchmark in
Table 1), the data dependencies consist of 201 K abstract loca-
tions spanning over 2.8 M statements. Storing such dependency
relation in a naive set-based implementation, which keeps a map
(∈ C × C → 2L̂), did not work for such large programs (It only
worked for programs of moderate sizes less than 150 KLOC). For-
tunately, the dependency relation is highly redundant, making it
a good application of BDDs. For example, 〈c1, c3, l〉 ∈ ( ) and
〈c2, c3, l〉 are different but share the common suffix, and 〈c1, c2, l1〉
and 〈c1, c2, l2〉 are different but share the common prefix. BDDs
can effectively share such common suffixes and prefixes. We treat
each relation 〈c1, c2, l〉, by bit-encoding each control point and ab-
stract location, as a boolean function that is naturally represented
by BDDs. This way of using BDDs greatly reduced memory costs.
For example, for vim60 (227 KLOC), set-based representation of
data dependencies required more than 24 GB of memory but BDD-
implementation just required 1 GB. No particular dynamic variable
ordering was necessary in our case.

6. Experiments
In this section, we evaluate sparse non-relational and relational
static analyses designed in Section 3 and Section 4, respectively.
The evaluation was performed on top of SPARROW [23, 25, 26, 28,
35–38], an industrial-strength static analyzer for C programs.

For the non-relational analysis, we use the interval domain [9],
a representative non-relational domain that is widely used in prac-
tice [1, 2, 4, 13, 26]. For the relational analysis, we use the octagon
domain [34], a representative relational domain whose effective-
ness is well-known in practice [4, 13, 28, 43].

We have analyzed 16 software packages. Table 1 shows charac-
teristics of our benchmark programs. The benchmarks are various
open-source applications, and most of them are from GNU open-
source projects. Standard library calls are summarized using hand-
crafted function stubs. For other unknown procedure calls to exter-
nal code, we assume that the procedure returns arbitrary values and
has no side-effect. Procedures that are unreachable from the main
procedure, such as callbacks, are made to be explicitly called from
the main procedure. All experiments were done on a Linux 2.6 sys-
tem running on a single core of Intel 3.07 GHz box with 24 GB of
main memory.

6.1 Interval Domain-based Sparse Analysis

3 The pointer abstraction of our pre-analysis is basically the same with
inclusion-based pointer analysis, which is the most precise form of flow-
insensitive pointer analysis [18]. In addition, our pre-analysis combines
numeric analysis and pointer analysis, which further enhances the precision
of the pointer analysis [2, 13].

Setting The baseline analyzer, Intervalbase, is the global abstract
interpretation engine of SPARROW. The abstract domain of the
analysis is an extension of the one defined in Section 3 to support
additional C features such as arrays and structures. The analysis ab-
stracts an array by a set of tuples of base address, offset, and size.
Abstraction of dynamically allocated array is similarly handled ex-
cept that base addresses are abstracted by their allocation-sites. A
structure is abstracted by a tuple of base address and set of field lo-
cations (the analysis is field-sensitive). The fixpoint is computed
by a worklist algorithm using the conventional widening opera-
tor [9] for interval domain. Details of the analysis can be found
in [23, 26, 28, 35–38].

The baseline analyzer is not a straw-man but much engineering
effort has been put to its implementation. In particular, the analysis
exploits the technique of localization [38, 41, 45], which localizes
the analysis so that each code block is analyzed with only the
to-be-accessed parts of the input state. We use the access-based
technique [38], which was shown to be faster by up to 50x than
the conventional, reachability-based localization technique [38].

From the baseline, we made Intervalvanilla and Intervalsparse.
Intervalvanilla is identical to Intervalbase except that Intervalvanilla
does not perform the access-based localization. We compare the
performance between Intervalvanilla and Intervalbase just to check
that our baseline analyzer is not a straw-man. Intervalsparse is the
sparse version derived from the baseline. The sparse analysis con-
sists of three steps: pre-analysis (to approximate def-use sets), data
dependency generation, and actual fixpoint computation. As de-
scribed in Section 3, we use a flow-insensitive pre-analysis. The
fixpoint of sparse abstract semantic function is computed by a
worklist-based fixpoint algorithm. The analyzers are written in
OCaml. We use the BuDDy library [30] for BDD implementation.

Results Table 2 gives the analysis time and peak memory con-
sumption of the three analyzers. Because three analyzers share a
common frontend, we report only the analysis time. For Intervalbase,
the time includes the pre-analysis [38]. For Intervalsparse, Dep in-
cludes times for pre-analysis and data dependency generation. Fix
represent the time for fixpoint computation.

The results show that Intervalbase already has a competitive
performance: it is faster than Intervalvanilla by 8–55x, saving
peak memory consumption by 54–85%. Intervalvanilla scales to
35 KLOC before running out of time limit (24 hours). In contrast,
Intervalbase scales to 111 KLOC.

Intervalsparse is faster than Intervalbase by 5–110x and saves
memory by 3–92%. In particular, the analysis’ scalability has been
remarkably improved: Intervalsparse scales to 1.4M LOC, which is
an order of magnitude larger than that of Intervalbase.

There are some counterintuitive results. First, the analysis time
for Intervalsparse does not strictly depend on program sizes. For ex-
ample, analyzing emacs-22.1 (399 KLOC) requires 10 hours, tak-
ing six times more than analyzing ghostscript-9.00 (1,363 KLOC).
This is mainly because some real C programs have unexpectedly
large recursive call cycles [27, 37, 46]. Column maxSCC in Ta-
ble 1 reports the sizes of the largest strongly connected component
in the callgraph. Note that some programs (such as nethack-3.3.0,
vim60, and emacs-22.1) have a large cycle that contains hundreds
or even thousands of procedures. Such non-trivial SCCs markedly
increase analysis cost because the large cyclic dependencies among
procedures make data dependencies much more complex.

Second, data dependency generation takes longer time than ac-
tual fixpoint computation. For example, data dependency gener-
ation for ghostscript-9.00 takes 14,116 s but the fixpoint is com-
puted in 698 s. The seemingly unbalanced timing results are partly
because of the uses of BDDs in dependency construction. While
BDD dramatically saves memory costs, set operations for BDDs



Program LOC Functions Statements Blocks maxSCC AbsLocs
gzip-1.2.4a 7K 132 6,446 4,152 2 1,784
bc-1.06 13K 132 10,368 4,731 1 1,619
tar-1.13 20K 221 12,199 8,586 13 3,245
less-382 23K 382 23,367 9,207 46 3,658
make-3.76.1 27K 190 14,010 9,094 57 4,527
wget-1.9 35K 433 28,958 14,537 13 6,675
screen-4.0.2 45K 588 39,693 29,498 65 12,566
a2ps-4.14 64K 980 86,867 27,565 6 17,684
sendmail-8.13.6 130K 756 76,630 52,505 60 19,135
nethack-3.3.0 211K 2,207 237,427 157,645 997 54,989
vim60 227K 2,770 150,950 107,629 1,668 40,979
emacs-22.1 399K 3,388 204,865 161,118 1,554 66,413
python-2.5.1 435K 2,996 241,511 99,014 723 51,859
linux-3.0 710K 13,856 345,407 300,203 493 139,667
gimp-2.6 959K 11,728 1,482,230 286,588 2 190,806
ghostscript-9.00 1,363K 12,993 2,891,500 342,293 39 201,161

Table 1. Benchmarks: lines of code (LOC) is obtained by running wc on the source before preprocessing and macro expansion. Functions
reports the number of functions in source code. Statements and Blocks report the number of statements and basic blocks in our intermediate
representation of programs (after preprocessing). maxSCC reports the size of the largest strongly connected component in the callgraph.
AbsLocs reports the number of abstract locations that are generated during the interval domain-based analysis .

Programs Intervalvanilla Intervalbase Spd↑1 Mem↓1 Intervalsparse Spd↑2 Mem↓2
Time Mem Time Mem Dep Fix Total Mem D̂(c) Û(c)

gzip-1.2.4a 772 240 14 65 55 x 73 % 2 1 3 63 2.4 2.5 5 x 3 %
bc-1.06 1,270 276 96 126 13 x 54 % 4 3 7 75 4.6 4.9 14 x 40 %
tar-1.13 12,947 881 338 177 38 x 80 % 6 2 8 93 2.9 2.9 42 x 47 %
less-382 9,561 1,113 1,211 378 8 x 66 % 27 6 33 127 11.9 11.9 37 x 66 %
make-3.76.1 24,240 1,391 1,893 443 13 x 68 % 16 5 21 114 5.8 5.8 90 x 74 %
wget-1.9 44,092 2,546 1,214 378 36 x 85 % 8 3 11 85 2.4 2.4 110 x 78 %
screen-4.0.2 ∞ N/A 31,324 3,996 N/A N/A 724 43 767 303 53.0 54.0 41 x 92 %
a2ps-4.14 ∞ N/A 3,200 1,392 N/A N/A 31 9 40 353 2.6 2.8 80 x 75 %
sendmail-8.13.6 ∞ N/A ∞ N/A N/A N/A 517 227 744 678 20.7 20.7 N/A N/A
nethack-3.3.0 ∞ N/A ∞ N/A N/A N/A 14,126 2,247 16,373 5,298 72.4 72.4 N/A N/A
vim60 ∞ N/A ∞ N/A N/A N/A 17,518 6,280 23,798 5,190 180.2 180.3 N/A N/A
emacs-22.1 ∞ N/A ∞ N/A N/A N/A 29,552 8,278 37,830 7,795 285.3 285.5 N/A N/A
python-2.5.1 ∞ N/A ∞ N/A N/A N/A 9,677 1,362 11,039 5,535 108.1 108.1 N/A N/A
linux-3.0 ∞ N/A ∞ N/A N/A N/A 26,669 6,949 33,618 20,529 76.2 74.8 N/A N/A
gimp-2.6 ∞ N/A ∞ N/A N/A N/A 3,751 123 3,874 3,602 4.1 3.9 N/A N/A
ghostscript-9.00 ∞ N/A ∞ N/A N/A N/A 14,116 698 14,814 6,384 9.7 9.7 N/A N/A

Table 2. Performance of interval analysis: time (in seconds) and peak memory consumption (in megabytes) of the various versions of
analyses.∞ means the analysis ran out of time (exceeded 24 hour time limit). Dep and Fix reports the time spent during data dependency
analysis and actual analysis steps, respectively, of the sparse analysis. Spd↑1 is the speed-up of Intervalbase over Intervalvanilla. Mem↓1 shows
the memory savings of Intervalbase over Intervalvanilla. Spd↑2 is the speed-up of Intervalsparse over Intervalbase. Mem↓2 shows the memory
savings of Intervalsparse over Intervalbase. D̂(c) and Û(c) show the average size of D̂(c) and Û(c), respectively.

such as addition and removal are noticeably slower than usual set
operations.

6.2 Octagon Domain-based Sparse Analysis
Setting We implemented octagon domain-based static analyz-
ers Octagonvanilla, Octagonbase, and Octagonsparse by replac-
ing interval domains of SPARROW with octagon domains. Non-
numerical values (such as pointers, array, and structures) are han-
dled in the same way as the interval analysis. Octagonbase per-
forms the access-based localization [38] in terms of variable packs.
Octagonvanilla is the same except for the localization. Octagonsparse
is the sparse version of Octagonbase. To represent octagon domain,
we used Apron library [22].

In all experiments, we used a syntax-directed packing strategy.
Our packing heuristic is similar to Miné’s approach [13, 34], which
groups abstract locations that have syntactic locality. For examples,
abstract locations involved in the linear expressions or loops are
grouped together. Scope of the locality is limited within each of
syntactic C blocks. We also group abstract locations involved in
actual and formal parameters, which is necessary to capture rela-
tions across procedure boundaries. Large packs whose sizes exceed
a threshold (10) were split down into smaller ones.

Results While Octagonvanilla requires extremely large amount of
time and memory space but Octagonbase makes the analysis re-
alistic by leveraging the access-based localization. Octagonbase is
able to analyze 35 KLOC within 5 hours and 10GB of memory.
With the localization, analysis speed of Octagonbase increases by
8x–9x and memory consumption decreases by 54%–62%. Though
Octagonbase saves a lot of memory, the analysis is still not scalable
at all. For example, tar-1.13 requires 6 times more memory than
gzip-1.2.4a. This memory consumption is not reasonable consider-
ing program size and interval analysis result.

Thanks to sparse analysis technique, Octagonsparse becomes
more practical and scales to 130 KLOC within 18 hours and 29 GB
of memory consumption. Octagonsparse is 13–56x faster than
Octagonbase and saves memory consumption by 75%–95%.

6.3 Discussion
Sparsity We discuss the relation between performance and spar-
sity. Column D̂(c) and Û(c) in Table 2 and Table 3 show how many
abstract locations are defined and used for each basic block on av-
erage. It clearly shows the key observation in sparse analysis for
real programs; only a few abstract locations are defined and used in
each program point. For example, the interval domain-based analy-



Programs Octagonvanilla Octagonbase Spd↑1 Mem↓1 Octagonsparse Spd↑2 Mem↓2
Time Mem Time Mem Dep Fix Total Mem D̂(c) Û(c)

gzip-1.2.4a 2,078 2,832 273 1,072 8 x 62 % 7 14 21 269 13.8 14.5 13 x 75 %
bc-1.06 9,536 6,987 1,065 3,230 9 x 54 % 20 35 55 358 25.2 31.7 19 x 89 %
tar-1.13 ∞ N/A 9,566 5,963 N/A N/A 55 133 188 526 38.3 39.3 51 x 91 %
less-382 ∞ N/A 16,121 8,410 N/A N/A 92 340 432 458 42.6 45.4 37 x 95 %
make-3.76.1 ∞ N/A 17,724 12,771 N/A N/A 91 240 331 666 51.4 55.7 53 x 95 %
wget-1.9 ∞ N/A 15,998 9,363 N/A N/A 107 181 288 646 31.9 32.9 56 x 93 %
screen-4.0.2 ∞ N/A ∞ N/A N/A N/A 2,452 13,981 16,433 9,199 372.4 376.1 N/A N/A
a2ps-4.14 ∞ N/A ∞ N/A N/A N/A 296 8,271 8,566 1,996 97.7 99.0 N/A N/A
sendmail-8.13.6 ∞ N/A ∞ N/A N/A N/A 7,256 57,552 64,808 29,658 467.6 492.3 N/A N/A

Table 3. Performance of octagon analysis: all columns are the same as those in Table 2

sis of a2ps-4.14 defines and uses only 0.1% of all abstract locations
in one program point.

One interesting observation from the experiment results is that
the analysis performance is more dependent on the sparsity than
the program size. For instance, even though ghostscript-9.00 is 3.5
times bigger than emacs-22.1 in terms of LOC, ghostscript-9.00
takes 2.6 times less time to analyze. Behind this phenomenon, there
is a large difference on sparsity; average D̂(c) size (and Û(c) size)
of emacs-22.1 is 30 times bigger than the one of ghostscript-9.00.

Variable Packing For maximal precision, packing strategy should
be more carefully devised for each target program. However, note
that our purpose of experiments is to show relative performance
of Octagonsparse over Octagonbase, and we applied the same pack-
ing strategy for all analyzers. Though our general-purpose packing
strategy is not specialized to each program, the packing strategy
reasonably groups logically related variables. The average size of
packs is 5–7 for our benchmarks. Domain-specific packing strate-
gies, such as ones used in Astrée [34] or CGS [43], reports the
similar results: 3–4 [34] or 5 [43].

7. Related Work
Existing sparse analysis techniques are divided into two groups:

• fined-grained sparse analyses in particular settings, e.g., [15, 19,
20, 40, 44], and
• coarse-grained sparse analyses in general settings, e.g., [7, 14,

21, 39].

In this paper, we present a method to obtain fine-grained sparse
analyses in a general setting.

Sparse Pointer Analysis Sparse pointer analysis techniques [19,
20, 29] are not general enough to be used for arbitrarily com-
plicated semantic analysis. Recently, scalability of flow-sensitive
pointer analysis has been greatly improved using sparse analysis;
in 2009, Hardekopf et al. [19] presented a pointer analysis algo-
rithm that scales to large code bases (up to 474 KLOC) for the
first time, and after that, flow-sensitive pointer analysis becomes
scalable even to millions of lines of code via sparse analysis tech-
niques [20, 29]. We already showed that our framework subsumes
two scalable sparse pointer analyses presented in [19, 20]. In addi-
tion, the techniques are tightly coupled with pointer analysis and it
is not obvious how to generalize them and prove their correctness.
We provide a general framework that enables a family of abstract
interpretation to be automatically turned into sparse analysis ver-
sions.

One noteworthy point is that designing a correct sparse analyses
in general was easy in our case because our method is semantics-
based (by abstract interpretation). For example, sparse pointer anal-
ysis [20] relies on χ and µ functions [8] to correctly model point-
ers, which is essentially independent of the analysis semantics. In
our case, these extra techniques are unnecessary because we derive

sparse analyses faithfully from the abstract semantics of the origi-
nal analysis.

Sparse Dataflow Analysis Traditional sparse analysis techniques
are in a simpler setting than the one postulated in our frame-
work. Sparse analysis techniques were first pioneered for optimiz-
ing dataflow analysis [15, 40, 44]. Reif and Lewis [40] developed a
sparse analysis algorithm for constant propagation and Wegman et
al. [44] extended it to conditional constant propagation. Dhamdhere
et al. [15] showed how to perform sparse partial redundancy elim-
ination. These algorithms are fully sparse in that precise def-use
chains are syntactically identifiable and values are always propa-
gated along to def-use chains (in an SSA form). However, these
techniques only consider the programs without pointers.

Sparse Evaluation Sparse evaluation techniques [7, 14, 21, 39]
are generally applicable but have limitations in sparseness. The
goal of sparse evaluation [7, 14, 21, 39] is to remove statements
whose abstract semantic functions are identity function. For exam-
ple, in typical pointer analyses, statements for numerical compu-
tation are considered as identity and we can remove those state-
ments before analysis begins. Sparse evaluation techniques are not
effective when the underlying analysis does not have many identity
functions, which is the case for static analyses that consider “full”
semantics, including numbers and pointers (our case).

Localization Localization [32, 38, 41, 45] is used in general set-
tings but not powerful enough. When analyzing code blocks such as
procedure bodies, localization attempts to remove irrelevant parts
of abstract states that will not be used during the analysis. It is
widely used as a key cost-reduction technique in many semantics-
based static analysis, such as shape analysis [41, 45], higher-order
flow analysis [32], and numeric abstract interpretation [38]. How-
ever, localization cannot avoid unnecessary propagation of abstract
values along control flows.

Scalable Global Analyzers Our interval and octagon domain-
based analyzers achieve higher scalability (up to 1 MLOC and
130 KLOC, respectively) than the previous general-purpose global
analyzers. Zitser et al. [47] report that PolySpace C Verifier [31],
a commercial tool for detection of runtime errors, cannot analyze
sendmail because of scalability problem. Both our interval and oc-
tagon domain-based analyzers can analyze sendmail. Airac [26,
35], a general-purpose interval domain-based global static analyzer,
scales only to 30 KLOC in global analysis. Recently, a significant
progress has been reported by Oh et al. [38], but it still does not
scale over 120 KLOC. Other similar (interval domain-based) ana-
lyzers are also not scalable to large code bases [1, 2]. Neverthe-
less, there have been scalable domain-specific static analyzers, like
Astrée [4, 13] and CGS [43], which scale to hundreds of thou-
sands lines of code. However, Astrée targets on programs that do
not have recursion and backward gotos, which enables a very effi-
cient interpretation-based analysis [13], and CGS is not fully flow-
sensitive [43]. There are other summary-based approaches [16, 17]



for scalable global analysis, which are independent of our abstract
interpretation-based approach.

BDDs We propose a new usage of Binary Decision Diagram
(BDD) [5] in program analysis. We represent data dependency
relation in BDDs. Most of the previous uses are limited to compact
representations of points-to sets in pointer analysis [3, 19, 20].

Acknowledgments
We thank Lucas Brutschy and Yoonseok Ko for their contributions
to the implementation. We thank Deokhwan Kim, Daejun Park,
and all members of Programming Research Laboratory in Seoul
National University for their useful comments and suggestions. We
would also like to thank the anonymous PLDI reviewers for their
constructive feedback on this paper. This work was supported by
the Engineering Research Center of Excellence Program of Korea
Ministry of Education, Science and Technology(MEST) / National
Research Foundation of Korea(NRF) (Grant 2012-0000468) and
the Brain Korea 21 Project, School of Electrical Engineering and
Computer Science, Seoul National University in 2011.

References
[1] X. Allamigeon, W. Godard, and C. Hymans. Static analysis of string

manipulations in critical embedded C programs. In SAS, 2006.

[2] G. Balakrishnan and T. Reps. Analyzing memory accesses in x86
binary executables. In CC, 2004.

[3] M. Berndl, O. Lhoták, F. Qian, L. Hendren, and N. Umanee. Points-to
analysis using bdds. In PLDI, 2003.

[4] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
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