CreLLvM: Verified Credible Compilation for LLVM

Jeehoon Kang® Yoonseung Kim* Youngju Song*
{jeehoon kang, yoonseung kim, youngju.song}@sf.snu.ac.kr

Seoul National University, Korea

Joonwon Choi
joonwonc@mit.edu
MIT CSAIL, USA

Sungkeun Cho
skcho@ropas.snu.ac.kr
Seoul National University, Korea

Abstract

Production compilers such as GCC and LLVM are large com-
plex software systems, for which achieving a high level of
reliability is hard. Although testing is an effective method
for finding bugs, it alone cannot guarantee a high level of
reliability. To provide a higher level of reliability, many ap-
proaches that examine compilers’ internal logics have been
proposed. However, none of them have been successfully
applied to major optimizations of production compilers.

This paper presents CRELLVM: a verified credible compila-
tion framework for LLVM, which can be used as a systematic
way of providing a high level of reliability for major optimiza-
tions in LLVM. Specifically, we augment an LLVM optimizer
to generate translation results together with their correct-
ness proofs, which can then be checked by a proof checker
formally verified in Coq. As case studies, we applied our
approach to two major optimizations of LLVM: register pro-
motion (mem2reg) and global value numbering (gvn), having
found four new miscompilation bugs (two in each).

CCS Concepts «Theory of computation — Hoare logic;
+ Software and its engineering — Compilers; Formal
software verification;

Keywords LLVM, Coq, credible compilation, translation
validation, compiler verification, relational Hoare logic

* The first three authors contributed equally to this work and are listed
alphabetically.
¥ Hur is the corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.

ACM ISBN 978-1-4503-5698-5/18/06...$15.00
https://doi.org/10.1145/3192366.3192377

631

Juneyoung Lee Sanghoon Park
Mark Dongyeon Shin ~ Yonghyun Kim

{juneyoung lee, sanghoon.park}@sf.snu.ac.kr
{dongyeon.shin, yonghyun kim}@sf.snu.ac.kr
Seoul National University, Korea

Chung-Kil Hur' Kwangkeun Yi
gilhur@sf.snu.ackr kwang@ropas.snu.ac.kr
Seoul National University, Korea

ACM Reference Format:

Jeehoon Kang, Yoonseung Kim, Youngju Song, Juneyoung Lee,
Sanghoon Park, Mark Dongyeon Shin, Yonghyun Kim, Sungkeun
Cho, Joonwon Choi, Chung-Kil Hur, and Kwangkeun Yi. 2018. CREL-
LvM: Verified Credible Compilation for LLVM. In Proceedings of 39th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI'18). ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3192366.3192377

1 Introduction

Production compilers such as GCC and LLVM are large com-
plex software systems, for which achieving a high level of re-
liability is hard. Their complexity comes in two fold. First, to
generate efficient target code, they perform various complex
optimizations. Second, to consume less time and memory
during compilation, they are usually written in C/C++ using
sophisticated data structures. Due to such complexity, it is
hard to make mainstream compilers very reliable.

Although testing is an effective method for finding bugs,
that alone hardly guarantees a high level of reliability. Recent
random testing tools such as CSmith [53] and EMI [24] have
shown their effectiveness by finding hundreds of bugs in
GCC and LLVM. However, they missed bugs in the gvn and
mem2reg passes of LLVM, which we discovered later (see
§1.2 for details), since they treat compilers as black boxes
without examining their internal logics.

In order to provide a higher level of reliability, many ap-
proaches that examine compilers’ internal logics have been
proposed, none of which, however, have been successfully
applied to major optimizations of production compilers. For
example, while compiler verification techniques have been
applied to compilers such as CompCert [26] to guarantee
their formal correctness, this approach is not readily appli-
cable to production compilers since it requires compilers
to be written in the language of a proof assistant such as
Coq. As another example, Alive [30] is a domain-specific lan-
guage (DSL) in which one can manually write a compiler’s
optimization logic and automatically verify its correctness
or else generate a counterexample. Though this approach
has been successfully applied to LLVM, its application is

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3192366.3192377
https://doi.org/10.1145/3192366.3192377

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

limited to peephole optimizations because it is hard to faith-
fully translate the implementation of complex optimizations
into Alive and, more importantly, Alive does not support
cyclic control flows such as loop. As the last example, the
credible compilation [16, 33, 34, 44] and verified translation
validation [14, 19, 43, 50-52] approaches augment compilers
to generate translation results together with their correct-
ness proofs, which can then be checked by a (verified) proof
checker. Since a correctness proof is generated and checked
at each compilation time, it provides a formal correctness
guarantee for the particular translation or else finds a bug
(either in the compiler code or in the proof-generation code).
However, there has been only a preliminary attempt to apply
these approaches to production compilers so far. (See §9 for
detailed comparison.)

This paper presents CRELLVM: a verified credible-compilation
framework for LLVM, which can be used as a systematic way
of providing a high level of reliability for major optimizations
in LLVM. Specifically:

1. We design and develop a logic and its proof checker for
reasoning about LLVM optimizations, called Extensible
Relational Hoare Logic (ERHL), in the proof assistant Coq.
This logic’s novelty lies in its representation of relational
predicates as mostly unary predicates (see §2.2 for details).

2. We fully verify a semantics-preservation result for our
proof checker in the style of CompCert using the Coq
formalization of LLVM IR (Intermediate Representation)
from the VELLVM project [55].

3. As case studies, we wrote proof-generation codes (213 and
440 SLOC' in C++) for two major optimizations: register
promotion in the mem2reg pass and global value num-
bering (GVN) with partial-redundancy elimination (PRE)
in the gvn pass. Then we performed validation of the
two optimizations for standard benchmarks, five large
open-source projects and test files randomly generated
by CSmith.

4. As a result, we found four new miscompilation bugs (two
in each optimization). It is notable that all the four bugs
had been hidden for 7-8 years until we found them.

1.1 Overview of CRELLVM

Framework The framework of CRELLVM works as follows.
First, as shown in Fig. 1, we separate the compilation and
validation phases. For compilation, as depicted in the left
side of Fig. 1, we use the original optimizer to translate the
source IR code src.11 to the target IR code tgt.11. After
the compilation, we can conduct validation, as depicted in
the right side of Fig. 1. For this, we first run the optimizer
extended with a proof-generation code that produces the tar-
get tgt'. 11 together with the proof Proof. Then the proof
checker validates Proof to see whether src.11 is correctly
translated to tgt'.11. If the validation fails, we can see a

1SLOC stands for significant lines of code i.e., ignoring spaces and comments.

632

Kang, Kim, Song, Lee, Park, Shin, Kim, Cho, Choi, Hur, Yi

Compilation Validation
srcl
i !
- Optimizer 5
[Optimizer } [with Proof Gen roof Checkej Yes / No
v v
tgt.ll tgt'll
+| v
Yes (same) / No (not same) - -» Validation succeeds if both are "Yes”

() Trusted Computing Base
Figure 1. The CRELLVM Framework

logical reason for the failure, with which we can find a bug
either in the compiler or in the proof-generation code. If the
validation succeeds, we finally compare tgt.11 and tgt'.11
using the LLVM IR comparison tool 11vm-diff.

There are two points to note about the framework. First,
11vm-diff essentially performs alpha-equivalence checking,
which is necessary because while tgt . 11 may have unnamed
IR registers, tgt'. 11 has explicit names for all registers for
proof-generation purposes. Second, since we just add proof-
generation code without modifying existing compiler code
except for giving names to unnamed registers, the original
and proof-generating compilers are expected to generate
alpha-equivalent programs, which is always checked using
11vm-diff as described above. Therefore, programmers can
use the original compiler in regular usage and then run
the proof-generating one on occasion to check correctness
because the former is much faster than the latter. On the
other hand, compiler developers can use the latter for testing
on regular basis to find bugs.

ERHL and Proof Checker For validation in CRELLVM, we
develop ERHL, which is a variant of relational Hoare logic [16]
specialized for LLVM IR. The logic and its proof checker is
extensible because (i) the logic can be extended with any
custom inference rules and (ii) the proof checker can be ex-
tended with any custom automation functions that try to fill
in the gaps in incomplete proofs by automatically finding
appropriate inference rules, like the auto tactic in Coq.

Verification of Proof Checker Inthe CRELLVM framework,
the TCB (Trusted Computing Base) includes only the proof
checker, the equality checker (11vm-diff) and custom infer-
ence rules. In particular, the proof-generation code in the
compiler is not a part of the TCB because any incorrect proof
would be invalidated by the proof checker.

We further remove the proof checker and inference rules
from the TCB by implementing and verifying them in Coq.
Though we currently use the (unverified) standard 11vm-diff
tool for comparing IR programs, it would also be possible to
implement and verify it in Coq.

Note that verification of the proof checker and inference
rules matters in practice. First, we found various corner-case

CRELLVM: Verified Credible Compilation for LLVM PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

bugs in our proof checker during its verification. Second, Specifically, the following optimization shows the bug.
we .also found one of our two mem2reg bugs [9] during the p = alloca()

verification of inference rules. See the example below. loop { loop {

b= alloca(): ri= #p r:=x*p; foo(r); *p:=42 ~~ foo(undef)
foo(r) ~ foo(1 / ((int)G - (int)G)) } 3

xp:=1 / ((int)G - (int)G) This translation is incorrect because only in the first itera-

tion of the loop is r undef?; in the remaining iterations r is
42 according to the semantics of LLVM. The mem2reg pass
performs this due to faulty reasoning.

However, this faulty reasoning is often not visible in the
final compiled program. The reason is that, since the input
to foo is sometimes undefined, for foo to be well behaved
it often ignores its input r (e.g., by using an operation like
r & 0x0). Thus this transformation is actually correct in
such a program since the value of r is never used in the
program. Indeed, the SPEC benchmark that provoked this
faulty reasoning behaved this way, and so the faulty reason-
ing never led to a faulty program, which is why the bug had
been hidden for such a long time.

The fact that the faulty reasoning was inconsequential
in this case does not mean the bug is unimportant. As we
said before, the LLVM community cares about such an IR-
to-IR miscompilation and immediately fixed the bug after
we reported it. Moreover, visible miscompilations due to the
bug could happen in a realistic situation (see [1, §B] for a
concrete example).

Second, a potential flaw introduced by miscompilation
may not be exploited by the current compiler and silently
disappear during the compilation. Also in this case, CRELLVM
can detect the bug because it checks the underlying reason-
ing. For example, we found the two gvn bugs [6, 7] in this
situation, which had not been found for 8 years. Note that
the two bugs are caused by the same reason but we counted
them as two because they appear in two separate places.

Specifically, the following optimization shows the bug.

Here G is the constant address of a global variable.

To see why this translation is incorrect, suppose that the
function foo(r) ignores r and repeatedly prints out 0 with-
out returning to the caller. Then division-by-zero never hap-
pens in the source program, while it does in the target. The
problem here is that the mem2reg pass assumes that con-
stant expressions never raise any undefined behavior such
as division-by-zero, which is not true since 1 / ((int)G
- (int)G) forms a valid constant expression in LLVM. Fol-
lowing the logic of mem2reg, we also added such a custom
inference rule, which we found unsound during the verifica-
tion of the rule.

It is important to note that all the programs in this paper
represent LLVM IR programs and we just use C syntax to
help with understanding. For example, the source program
in the above transformation is undefined as a C program
but well-defined as an IR program. Thus, the transforma-
tion is only unsound as an IR-to-IR transformation. The
LLVM community considers such an IR-to-IR miscompila-
tion as a definite bug even when it does not cause any C-
to-Assembly miscompilation since it can potentially cause
an end-to-end miscompilation for other source languages
such as Swift and Rust.

Results We wrote proof-generation codes for register pro-
motion in the mem2reg pass and for GVN-PRE in the gvn
pass; and also partly for loop-invariant code motion in the
licm pass, and 139 micro-optimizations in the instcombine
pass in order to demonstrate the generality of ERHL. We

then conducted validation of the optimizations for the SPEC gl:=(p + 10) inbounds gl:=(p + 10) inbounds
CINT2006 C Benchmarks [15], LLVM nightly test suite, and g2:=(p + 10) s
five open-source projects: sendmail, emacs, python, gimp, bar(ql, q2) bar(ql, q1)

and ghostscript, in total 5.3 million LOC in C. As a result,
we found four new miscompilation bugs.

We present the details of mem2reg validation in §3 and
gvn validation in [1, §C].

In the source program, (p + 10) inbounds® is defined to
be undef? when the index 10 is out of the bounds of p, while
(p + 10) is always defined to be the computed address. Thus
replacing g2 with q1 introduces more undefinedness, which
is incorrect because it can be potentially exploited by subse-

12 Advantages of CRELLYM over Testing quent optimizations. However, so far the LLVM compiler has

CreLLVM checks whether optimizations are performed by not exploited such undefinedness, thereby causing no ob-

correct reasoning, while testing simply checks results of the servable misbehaviors. Indeed this miscompilation happened

test programs. This can make a difference as follows. many times during validation of the standard benchmarks
First, an optimization performed by incorrect reasoning but testing has failed to detect it.

may still be correct for most programs including all the test I

programs. In this case, testing cannot uncover the bug’ while ZSince *p is uninitialized, it contains undef, which is a special value repre-

CRELLVM can because it checks the underlying reasonin senting undefinedness
ying g 3This denotes the GetElementPtr (GEP) operation.

For example, we found our first mem2reg bug [5] in this 4Technically, it is defined to be poison but the difference does not matter
situation. here.

633

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

[MD(0) } |
10: x :=addal ~ x :=addal
{Xsre = add agre 1 Xigt = add argr 1 MD(0) }
‘ { Xsrc = add agrc 1 MD(0) } ‘
‘ { Xsrc = add agrc 1 MD(0) } ‘
20: y:=add x 2 ~ 'y :=add a 3
{ JoreZ 8l) v =add a3 MD({y},)}
U ‘ assoc_add(xm, Ysre» Asres 1, 2) ‘
Xsre = add agr 1
Ysre = add Xgrc 2 Yigr = add aggr 3 MD({y})
Ysre = add agr 3 ° ’
U‘ reduce_maydiff(y)‘
Xsre = add agre 1
Ysre = add Xgp 2 Yot = add Atgt 3 MD(0)
Ysre = add agre 3 ° ’
[MD(0) } |
21: foo(y) ~s» foo(y)
[MD(0) } |

Figure 2. Validation of an assoc-add translation in ERHL

2 Overview

In this section, we give a more detailed overview of how
CrerLvM works using the assoc-add optimization of the
instcombine pass as a motivating example.

2.1 Translation Example

We first give an example translation of the assoc-add opti-
mization, which is shown in the shaded part of Fig. 2. Here

y := add x 2 isreplaced by y := add a 3 at line 20.
This translation can be beneficial because after it, the reg-
ister x may no longer be used and thus x := add a 1 at
line 10 may be eliminated later. This translation is also sound
because (i) the assertion “x = add a 1” holds throughout
lines 10-20, since the registers a and x are not redefined be-
tween line 10 and 20 thanks to the Static Single Assignment
(SSA) property [18]°; and (ii) from this, we can infer that
add x 2=add (add a 1) 2 =add a 3 holds at line 20.

2.2 Proof Validation

We now construct a proof for the assoc-add translation
example and validate it in ERHL.

ERHL Proof A formal proof of the translation is given in
the of Fig. 2. Specifically, the proof consists of a set

of assertions and a list of inference rules at each line. For
example, at line 20, the set of assertions is | { MD(0) } |and

5The SSA property says that for every used register x, there is statically
(i.e., syntactically) exactly one instruction that defines x (i.e., assigning a
value to x), which moreover comes before every use of x.

634

Kang, Kim, Song, Lee, Park, Shin, Kim, Cho, Choi, Hur, Yi

the list of inference rules is (’ assoc_add(Xgre, Ygres Asres 1, 2) ‘

‘ reduce_maydiff(y) ‘).

This ERHL proof captures the assertion and the inference
step of the intuitive reasoning above. First, the assertion
MD(0) at every line states that every register contains the
same value in the source and target program states. Second,
the additional assertion X, = add ag. 1 between line 10 and
line 20 states that in the source state, the value of the regis-
ter x is equal to the result of add a 1. Finally, the inference
rules assoc_add(Xsc, Yes sres 1, 2) and reduce_maydiff(y)
at line 20 are those that need to be applied for validation at
line 20. The details of the rules will be given later when we
discuss the validation process.

ERHL Assertions Before we proceed to the validation of
the proof, we discuss ERHL assertions in more details. An
ERHL assertion is a triple (S, T, M), where S is a set of asser-
tions that should hold for the source state; T is for the target
state; and M is an assertion relating the source and target
states.

First, the source and target assertions, S and T, can contain
various forms of predicates. For example, X, = add ag. 1 is
a source assertion and Xigt = add ayg 3 is a target assertion.
Here and henceforth, xg. and x represent the values of
the register x in the source and target states, respectively.
Though we only use the equality predicate for assoc-add,
we will introduce various other predicates later. It is impor-
tant to note that we do not allow arbitrary assertions relating
the source and target states such as xg. = ygr + 1.

Second, the relational assertion M is a set of registers,
called the maydiff set, that may contain different values in
the source and target states. In other words, all the registers
not in M should have the same value in the source and target
states, which we denote by MD(M):

MDM) & Vx & M. xgc = X1y .

Note that the maydiff set is the only form of relational asser-
tion relating the source and target states.

Finally, every ERHL assertion implicitly requires the pub-
lic parts of the source and target memories to be equiva-
lent. More precisely, we use the CompCert-style memory-
injection relation [28]. Later we introduce predicates that
allow private memory allocations that do not belong to the
public part of memory (see §3.2).

The main novelty of ERHL assertions is that we can use the
standard algorithm of (unary) Hoare logic to compute post
relational assertions, because ERHL assertions are mainly
unary (i.e., only for the source state, or for the target state,
not relating them) except for the maydiff set. This unary
nature greatly simplifies the ERHL proof checker and its
correctness proof. Though mainly unary, ERHL assertions
can indirectly encode general forms of relational assertions
(see §3.2 for details).

CRELLVM: Verified Credible Compilation for LLVM

Proof Validation The gray text in Fig. 2 shows the valida-
tion process performed by the ERHL proof checker, which
proceeds as follows.

First, the proof checker checks that the initial assertion
holds for all possible initial states. It accepts the initial asser-
tion { MD(0) } in Fig. 2 since the source and target states are
initially equivalent.

Second, the proof checker checks whether the Hoare triple
{P} Iy ~ Iigs {Q} at each line is valid. This means that the
assertion Q after the line holds for all program states resulted
by executing the source and target instructions Iy, and I, at
the line under any program states satisfying the assertion P
before the line. In Fig. 2, we only explain validations at lines
10 and 20 in detail because the others are trivial.

At line 10, the proof checker first computes a strong post-
assertion, { Xge = add ag, 1, Xy = add az 1, MD(0) }, us-
ing our post-assertion computation algorithm. Here, the
algorithm simply adds the equality predicates correspond-
ing to the executed instructions. Then, the assertion after
line 10, | { Xge = add ag. 1, MD(0) } ‘ follows from the com-
puted strong post-assertion by a simple inclusion check.

Atline 20, the checker also computes a strong post-assertion,
{Xsre = @dd agr 1, y g = add X 2, Yigt = add Atgt 3, MD(y) }.
Here, the post-assertion computation adds the equality pred-
icates corresponding to the executed instructions and also
adds the register y to the maydiff set because the executed
source and target instructions are not identical. Then, the
proof checker applies the inference rules given by the proof.
The rule assoc_add(Xge, Y ger @srer 1, 2) derives y,, = add ag. 3
from X, = add ay, 1 and y,,. = add xg. 2 by associativity:

(assoc_add(x, y, a, C1, C2))
x =adda C; y =add x C;

add{y=addaC}

C=C+GCy

The rule reduce_maydiff(y) removes the register y from
the maydiff set because y,,, = add ag. 3, y, = add ag 3
and a is not in the maydiff set:

(reduce_maydiff(y,e))

Ysre = €src Cigt = Yigt

no registers in e are in the maydiff set

remove y from the maydiff set

Then, the assertion after line 20, { MD(0) }, easily follows by
a simple inclusion check.

Finally, the proof checker checks whether the same ob-
servable events (i.e., the same sequence of system calls) are
produced at each line. It is the case in Fig. 2 because at line 20,
no observable events are produced; and at the other lines, the
source and target instructions are identical and the maydiff
sets are empty implying that the source and target states are
equivalent. In particular, at line 21, the proof checker explic-
itly checks that the same value is passed to the function foo
because the function may produce observable events.

635

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

Algorithm 1 AssocAdd(F: Function)

Al: for Ip: y := add (reg x) (const Cp) in F do

A2 if FindDef(F, x) is [;: x := add (reg a) (const C;) then
A3: C := Simplify(add C; C3)

Ad: ReplaceAt(F, Iz, y := add (reg a) (const C))

A5: ’ Assn(xge = add ag C1, Iy, I2) ‘

A6: ’ Inf(assoc_add(xsrc, Ysre, @sres C1, C2), I2) ‘

A7: endif
As: end for
A9: ‘ Auto(reduce_maydiff) ‘

2.3 Proof Generation

Now we explain how we generate proofs for assoc-add.

Algorithm Algorithm 1 shows the assoc-add optimiza-
tion algorithm implemented in LLVM’s instcombine pass,
which is presented in a rather functional style for presen-
tation purposes. Specifically, AssocAdd(F) optimizes each
function definition F as follows (ignore the for now,
which are the proof-generation code).

[Line A1] Find an instruction of the form l;: y := add x C,
with C, constant. In Fig. 2, 20: y := add x 2 can be picked.
[Line A2] Check if x is defined by an instruction of the form
l;: x := add a C; with Cy constant. Here, FindDef(F, x) finds
the instruction that defines the register x.° In Fig. 2, 10: x
:= add a 1 is picked. [Lines A3-A4] If it is the case, com-
pute the constant C = C; + C, and replace the instruction
at I, with y := add a C. In Fig. 2, the instruction at line 20 is
replaced by y := add a 3.

Proof Generation Once we understand the assoc-add op-
timization algorithm, it is quite straightforward to write the
proof-generation code given in the of Algorithm 1.
[Line A5] Add the assertion x5, = add ag, C; at every
line between [; and I,. In Fig. 2, the assertion X, = add ag, 1
is added at every line between 10 and 20. [Line A6] Add
the inference rule assoc_add(xsy, Ysres dsres C1, C2) at line L.
In Fig. 2, the rule assoc_add(Xge, Y Asres 1, 2) is added at
line 20. [Line A9] Enable the custom automation function
named reduce_maydiff, which tries to find and insert ap-
propriate reduce_maydiff rules when necessary. In Fig. 2,
it figures out that reduce_maydiff(y) is needed at line 20.

Automation An automation function works as follows.
When it remains to prove Q implies Q’, the designated au-
tomation function examines the assertions Q and Q’ and tries
to find a sequence of inference rules that derives Q" from Q.
For example, at line 20 in Fig. 2, after applying the assoc_add
rule it remains to prove Q = {Xg. = add ag, 1,Yg, =
add Xgc 2,Yge = add age 3,Y; = add agg 3, MD(y) } im-
plies Q" = { MD(0) }, from which the automation function
finds the inference rule { reduce_maydiff(y) }.

The instruction that defines x is unique thanks to the SSA property.

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

Automation functions can greatly simplify proof genera-
tion in certain cases. A good example is transitivity reasoning
because it is much harder at proof generation time than at
validation time. For instance, given a goal x = y, to prove it
by transitivity, we have to figure out intermediate equations
(e.g., x = a, a=Db, b =y). For this, at proof generation time,
we have to write a code that (sometimes recursively) search
through the compiler internal states, which is tightly coupled
with the compiler code; while at validation time, since a con-
crete pre-assertion is given, we just need to search through
the equations given in the pre-assertion, which is completely
generic and can be easily automated.

It is important to note that automation functions do not
need to be verified (i.e.,, not a part of TCB) because all they
do is to insert inference rules, which is a part of proof con-
struction, not that of proof checking.

3 Register Promotion

Register-promotion optimization, the mem2reg pass of LLVM,
transforms memory accesses to locally allocated memory
locations into register accesses, provided that the memory
location is only used for loads and stores (i.e., never copied
or escaped). This translation is important because register
accesses are cheaper than memory accesses, and are subject
to further optimizations.

The optimization also performs the SSA transformation so
that the target program has the SSA property. This transfor-
mation is necessary because there can be statically multiple
stores to a single location, and just transforming them to
writes to a single register would break the SSA property.

In this section, we show how we generate and validate
proofs for the mem2reg optimization.

3.1 Translation Example

The shaded part of Fig. 3 shows an example translation of
the mem2reg optimization, where all memory accesses via p
is promoted to register accesses to p1 and uses of 42 and x.
Note that c, x, and q are the function parameters.

More specifically, the allocation, load and store instruc-
tions to p are removed (ignore 1nop for now), and every use
of the result of a load from p is replaced by the value stored in
*p at the time of the load. For example, in Fig. 3, the compiler
figures out that *p contains 42 at line 20 (and so does the
register a) due to the store of 42 in *p at line 11, and thus
replaces the use of a with 42 at line 21. This translation is
sound because (i) the assertion *p,. = 42 holds from line 11
to 20; and (ii) ag. = 42 holds from line 20 to 21. Note that we
use the blue color for assertions about *p and the red color
about the registers containing the value loaded from *p.

In a case where the value stored in *p depends on the
control flow, the compiler inserts a ¢-node, which is a unique
construct in the SSA form and assigns different values to
a register depending on the control flow. For example, at

636

Kang, Kim, Song, Lee, Park, Shin, Kim, Cho, Choi, Hur, Yi

Bentry
{ Unig(ps) MD(p,p1,a,b) }
10: p := alloca() ~ lnop
{ Uniq(ps) MD(p,p1,a,b) }
11: *p := 42 ~+ lnop
Uniq(pyc)
¢ o MD! 1
{ *Psre = Psre Pigr = 42 (p,p1,3,b) }
br c ~ br c
Bieft false / Bright \true
Uniq(pyc) MD(p,pW { . MD(p,p1}
< N U .
{*pm =Py Pig =42 ,a,b) niq(Pore) ,a,b)
20: a := *p ~» lnop 30: *p := X ~ lnop
I*Jniq(Esrf) .4 MD(,pT {qu(gsrf) . MD(p,E}
Psre = Psre Pigt = a,b) Psre = Psre Pigt = Xigt ,a,b)
asre = Agrc A = 42 o 31: %q := 37 ~» *q := 37
21: foo(a) ~~» foo(42) {Uniq(pm) MD(p,p1}
{Uniq(pm)) MD(p,p1} *Psre = Psre Prgt = Xugt ,a,b)
*Psre = Pore Pigt = 42 ,a,b)

N

Bexit
~ pl:= PH(42,x)
Uniq(pgre)
{ *Pre = Psre ‘Slgl =Pligt MD(p,p1,a,b) }
40: b = *p ~» lnop
Uniq(pgre)
{ bsre = bsre bt = p1 tgt MD(D,N ,a’b) }
41: *q :=b ~ *q := pl
{ Uniq(pgre) MD(p, p1,a, b) }

Figure 3. A register-promotion example

line 40, *p contains 42 if the control comes from B1eft, and x
if it comes from Byign¢. In this case, the compiler inserts a ¢-
nodepl := ¢(42,x) at the beginning of Beyi t, which defines
p1 to be 42 when coming from Biert and x when coming
from Bright. Then, the use of the register b containing the
loaded value from *p can be replaced by p1 at line 41.

3.2 ERHL Proof

We show how to turn the intuition for soundness into a for-
mal ERHL proof, which is given in the unshaded part of Fig. 3
including 1nop. Here we omit the inference rules for sim-
plicity, which will be shown later. We introduce interesting
features of ERHL by explaining each part of the proof.

Logical No-Ops for Instruction Alignment Logical no-
ops, denoted 1nop, can be inserted as part of a proof in order
to align source and target instructions when their alignment
is broken by a translation. For example, in Fig. 3, Lnop is
inserted at lines 10, 11, 20, 30, 40 because the instructions
there are removed by mem2reg.

Note that 1nop is logical because it is absent from the
real IR code and used only for validation purposes. During
validation, it is interpreted as doing nothing (i.e., no-op).

Ghost Registers for Relational Assertions For complex
optimizations, we often need to state relational properties
(i.e., relating the source and target states) in a proof. For
example, in Fig. 3, we need to state xpy,, = p1,y before line
40, which relates a value in the source (*p,,.) with that in the

target (p1,g,)-

CRELLVM: Verified Credible Compilation for LLVM

Though not directly supported in ERHL, such relational
properties can be encoded using ghost registers. Specifically,
we can encode e, = e;g[using a fresh ghost register g:

{ €src gsrc’ étgt = e;gt’ MD(M) } WIth g ¢ M

Since the ghost register g is not in the maydiff set, we have
8sc = g Which, by transitivity, implies e, = €y For
example, in Fig. 3, the assertion {*pg. = Py Prgt = Plygrs
MD(p, p1, a,b)} before line 40 effectively states *pg,. = p1g;.
Note that the ghost register p has nothing to do with the
physical register p and we use (;) for ghost registers to
distinguish them from the physical ones.

Ghost registers are logical ones that do not exist in physi-
cal program states. Instead, they are existentially quantified
in the semantics of ERHL assertions. More specifically, a
pair of source and target states (o, 04) satisfies an ERHL
assertion P, if there exists a pair of source and target ghost
register files (¥sgy, ¥s15:) such that the pair of oy extended
with s, and o, extended with 75, satisfies P.

Taking ghost registers into account, the proof in Fig. 3
has five relational assertions: *pg,. = 42,,; between line 11
and the end of Biert, agc = 42,5 between line 20 and line 21,
*Pgre = Xigr between line 30 and the end of Brignt, *pyre = P15
between the beginning of Beyi+ and line 41, and by, = p1 it
between line 40 and line 41. It is easy to see that these asser-
tions correctly capture the relational properties caused by
executing different instructions in the source and target.

Uniqueness Predicate for Isolation We can use the pred-
icate Uniq in order to state that an address is completely
isolated. For example, in Fig. 3, we have Uniq(p;,.) at every
line. It means that in the source, if p contains an address ¢, (i)
¢ is not aliased with any address stored in the other registers
or in memory (i.e, they point to disjoint memory blocks);
and (ii) € is private (i.e., it is not in the public part of the
memory injection) meaning that it has no corresponding
equivalent address in the target. In other words, the address
contained in p should point to a completely isolated block.

Note that ERHL also supports memory predicates weaker
than Uniq(p): (i) the privateness predicate, Priv(p), which
states that the address in p is private; and (ii) the noalias
predicate, p L g, which states that the addresses in p and g
point to disjoint memory blocks.

Maydiff Sets Finally, we have MD({ p, p1, a,b }) at every
line because these registers are removed or introduced so
that they have different values in the source and target.

3.3 Proof Validation
We show how our proof checker validates the ERHL proof.
Entry The proof checker checks that the entry assertion,

{ Uniq(pg.) MD({ p, p1, a,b }) }, holds for initial states. It ac-
cepts the assertion Uniq(py,.) since p is a local register and

637

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

thus contains the undef value initially, which is not an ad-
dress. It also accepts every maydiff set since the source and
target registers initially contain equivalent values.

Allocation of the Promoted Location Atline 10, the proof
checker allows an allocation, p := alloca(), in the source

and lnop in the target. In this case, it computes a post-
assertion from the pre-assertion by (i) removing all asser-
tions containing pg,. because p,, is updated, (ii) adding

{Uniq(py,.), *ps. = undef } because p contains a newly allo-
cated address, and then (iii) adding p to the maydiff set. Thus,

we have { Uniq(p.), *Ps. = undef, MD({ p, p1,a,b }) }, from
which the assertion after line 10 trivially follows.

Stores to the Promoted Location At line 30 (and similarly
at line 11), the proof checker allows a store, *p := X, in the
source and lnop in the target because *p,, is private (i.e.,
has no corresponding target address) due to Uniq(ps,.) in
the pre-assertion. In this case, it computes a post-assertion
by (i) removing all and only the assertions containing *p,,,
because *py,. is updated and py,, has no alias with any other
address due to Uniq(py,.), and then (ii) adding { *p,. = Xsc }-
Thus, we have { Uniq(py.), *Psre = Xsre MD({ p, p1,2,b }) }.

At this point, the proof gives the rule intro_ghost(p, x),
which first makes p fresh by removing all assertions about p
and removing p from the maydiff set and then adds {Xsc = Pgre,
Pigt = Xt} When x is not in the maydiff set. Thus, we have
{UniQ(Psrc)’ *Pgre = Xsres Xsre = Pres f)tgt = Xigts MD({p,p1,a,b})}.
Then, the proof gives the rule transitivity(*pg.e, Xsres Psre)s
which derives *pg,, = Py from *xpg,. = Xge and Xge = Py
Then the assertion after line 30 trivially follows. (See [1, §I]
for the definitions of intro_ghost and transitivity.)

¢-nodes At the ¢-node of Beyit, the proof checker vali-
dates the assertion separately for each incoming block. For
the incoming block Bieft, the proof checker computes a post-
assertion by (i) removing all assertions containing p1,,; be-
cause p1,,; is updated, (ii) adding 42 = p1,y, because p1 := 42
is executed in the target when control comes from B1ert, and
then (iii) adding p1 to the maydiff set. Then the proof gives
the inference rule transitivity(pyy, 42, p14y), Which de-
rives Py = p14g, from which the assertion after the ¢-node
follows trivially. For the incoming block Brignt, validation
succeeds similarly, where the proof gives the inference rule
transitivity (P Xigr, P1ygr)-

Note that for presentation purposes here we simplified the
post-assertion computation for ¢-nodes. ERHL performs a
more general version to handle cyclic control flows (see §4).

Loads from the Promoted Location At line 40 (and sim-
ilarly at line 20), the proof checker allows a load, b := *p,
in the source and lnop in the target. In this case, it com-
putes a post-assertion by (i) removing all assertions con-
taining by, because by, is updated, (ii) adding b, = *pg.
and then (iii) adding b to the maydiff set. Thus, we have
{Uniq(psre), *Psrc =Psres f’tgt: Pligts bsre =*psre MD({p, p1, 3, b})}.

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

At this point, the proof gives the rule intro_ghost(B,),
which adds {pg, = [Btgt = Py } because p is not in
the maydiff set. Then the proof gives appropriate transitivity
rules, which derives bye = *p e = Pyre = bgre and Btg, =Pror=P1 g1
from which the assertion after line 40 trivially follows.

Equivalence Checking At lines 21, 31 and 41, the proof
checker checks that the behaviors of the source and target
instructions are equivalent. Specifically, it checks that equiv-
alent values are passed to the same function (at line 21) and
stored at equivalent public locations (at lines 31,41) because
these can be observed by other functions. These checks suc-
ceed thanks to the relational assertions ({ asc = &gy, d1gt = 42 }

at line 21, { bye = By, brgr = P14 } at line 41).

Alias Checking At lines 21, 31, and 41, the proof checker
computes post-assertions using memory-alias information.
In general, for a function call or store instruction, since it
updates the public part of the memory, the proof checker
removes all assertions about values stored in memory loca-
tions p (i.e., those including *p) unless (i) p is in the private
part of the memory (i.e., Priv(p) or Uniq(p)), or (ii) p is not
aliased with g (i.e, p L q) in case *q is updated by the store
instruction. At lines 21, 31 and 41, thanks to Uniq(py,.), the
assertions about *pg,. are preserved.

Note that in the example of Fig. 3, it suffices to use Priv(p;,.)
instead of Uniq(p,,.). However, in general when more than
one location is promoted, we need to know that those pro-
moted locations are not aliased with each other, which fol-
lows from Uniq(ps) for each promoted location p. Also for
the sake of performance, we use Uniq instead of introducing
1 between each pair of promoted locations.

3.4 Proof Generation

LLVM’s mem2reg pass consists of three algorithms: the gen-
eral register-promotion algorithm and two specialized ones
optimized for efficiency: one for the case that the promotable
location is stored at most once and the other for the case that
the location is used only within a single block. In this section
we explain the general algorithm and its proof-generation
code. Note that we also validate the two specialized algo-
rithms in the same way since they are just degenerate cases.

Algorithm 2 shows the general algorithm implemented in
LLVM’s mem2reg pass and the proof-generation code, given
in the box, that we inserted. Note that we do not modify
the existing compiler code at all and only add the proof-
generation code. In detail, the overall algorithm including
proof generation works as follows.

Promotable Allocation [Line A1] We find a promotable
allocation p at line [,. [Line A2] Then we insert empty
$-nodes wherever needed’, and add them to the maydiff
set globally (i.e., at every line). [Line A3] We also remove

"The optimization uses the “dominance frontier” algorithm [18] in order to
list up the blocks that require a ¢-node. We omit the details for brevity.

638

Kang, Kim, Song, Lee, Park, Shin, Kim, Cho, Choi, Hur, Yi

Algorithm 2 RegisterPromotion(F:Function)

At: for lz: p:=alloca() in F if p’s uses are loads/stores only do
A2 InsertEmptyPhinodesFor(F, p)

1/ ‘ Add the ¢-nodes to the maydiff set globally ‘
Nop(latgt)Assn({Uniq(psre) MD(p)}.global) |
Ad: ‘Inf(intro_ghost(ﬁ,undef),la)

A5 WL:= [(Entry(F), undef, | L,)], MarkVisited(Entry(F))
A6: while NonEmpty(WL) do
AT: (B, v,) = WL := WL

A3: Remove(ly),

AS8: for ([; : i) in Instr(B) do

A9: if i is a store instruction (*p := w) then
Al0: Remove(l;), \ Nop(l;, tgt)Inf(intro_ghost(p,w).l;)
Al2: else if i is a load instruction (x := *p) then
Al3: ‘ Assn({*psrc = ﬁsrc,ﬁtgt = Utgt}a L L) ‘
Al4: ‘ Inf(intro_ghost(%,p),l;)
Al5: for (I; : j) in Use(x) do
Al6: Replace(F,lj,x, v),‘ Assn({xgre = Xgres Xigt = Vtgr }. i 1) ‘
A17: end for
A18: Remove(l;), ‘ Nop(l;, tgt),Assn({MD(x)}, global) ‘
A19: end if
A20: end for
A21: for B’ in Successor(B) do
A22: if B’ has a ¢-node (z:=¢(-) inserted at line A2 then
A23: z[B]:= Ua‘ Assn({*psrc = ﬁsrmﬁtgt = Utgt}, [, End(B)) ‘
A24: if not IsVisited(B’) then WL:=(B’,z,Begin(B’)|):: WL
A25: else
A26: if not IsVisited(B’) then WL := (B’, v,) = WL
A27: end if
A28: MarkVisited(B’)
A29: end for

A30: end while
A31: end for
A32: ‘Auto(transitivity) ‘

the allocation, insert 1nop at that line, and add Uniq(ps.)
and MD(p) globally. [Line A4] In addition, we add the rule
intro_ghost(p,undef) because the initial value undef in
*p may be used by some load from *p (though it does not
happen in Fig. 3). In that case, the code at line A13 would
introduce { *pgc = Pyre, Prgr = undef } at line I, which will
be inferred with the help of intro_ghost(p,undef).

For example, in Fig. 3, the empty ¢-node p1 := ¢(—, —) is
inserted in Beyi+ and p1 is added to the maydiff set globally;
then the allocation at line 10 is removed, 1nop is inserted,
Uniq(p,y.) is added and p is added to the maydiff set globally;
and finally intro_ghost(p, undef) is added at line 10.

Block Traversal [Lines A5-A7] We traverse the blocks
in DFS order starting from the entry block using the worklist
WL. An element of WL consists of triple (B,v,l), where B is

CRELLVM: Verified Credible Compilation for LLVM

the block to visit, v is the value in *p at the beginning of B,
and [is the line number where the value v is stored in *p.
[Line A5] Initially, we put (Entry(F), undef, line [;) in WL
and mark the entry block Entry(F) as visited. [Lines A6-A7]
Then we process the blocks in WL one by one. For example,
in Fig. 3, Bentry, Bieft, Bexit, and Brjgn¢ are visited in order.

Instruction Traversal [Line A8] Given a work (B, v,1),
we traverse each instruction (I; : i) in the block B as follows.

Store Instructions [Lines A9-A11] If i is a store instruc-
tion *p := w (line A9), then we remove the instruction (line A10)
and update v with the stored value w (line A11). The proof-

generation code inserts 1nop, adds intro_ghost(p, w) (line A10)

and updates [with the store location /; (line A11).

For example, in Fig. 3, when i is 11: *p := 42, the store i
is replaced by 1nop; intro_ghost(p,42) is added at line 11;
and v and [are updated to be 42 and line 11.

Load Instructions [Lines A12-A18] If i is a load instruc-
tion x := *p (line A12), then we replace all the uses of x with
the current value v (lines A15-A17), and remove the load
instruction (line A18). The proof-generation code adds the
relational assertion *pg. = vsg from the store site [to the
load site /; (line A13) and the rule intro_ghost(x,p) at [;
(line A14). Then it adds x. = vy from the load site [; to
every use site [; (line A16). It also inserts 1nop at /; in the
target and adds x to the maydiff set globally (line A18).

For example, in Fig. 3, when i is 20: a := *p, the load
i is replaced by 1lnop; the use of a is replaced by the cur-
rent value 42 at line 21; *py,, = 42,4 is added from 11 to 20;
intro_ghost(&,p) is added at line 20; a5, = 42 is added
from 20 to 21; and a is added to the maydiff set globally.

Successors [Lines A21-A28] Now we handle the succes-
sor (i.e., outgoing) blocks of the current block B. [Line A21]
We traverse each successor block B’ as follows.

e If B’ has a ¢-node (z := @(---)) that is inserted by the
code at line A2 (line A22), then we update the ¢-node z’s
component for the incoming block B with the value v of
*p at the end of B (line A23). In addition, if B” has not been
visited yet, we add (B’, z, Begin(B’)) to the worklist WL
(line A24). Since the value v is used at the ¢-node z, we add
*Pgrc = Uggr from store location [to the end of B (line A23).
For example, in Fig. 3, when (B, B) is (Bieft, Bexit), the
¢-node p1 := ¢(—,—) is updated to p1 := ¢(42,—) and
(Bexit, P1, Begin(Beyit)) is added to the worklist WL. Also
*Pgre = 4214 is added from line 11 to the end of Biert.

e If B’ has no such ¢-node (line A25), then we simply add
(B’,v,1) to the worklist WL if B’ has not been visited yet
(line A26). For example, when (B, B’) is (Bentry, Bright),
the triple (Bright, 42, line 11) is added to the worklist.

[Line A28] Finally the successor B’ is marked as visited.

Inference Rules As shown in §3.3, the complete proof for
mem2reg contains two inference rules, intro_ghost and

639

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

transitivity. The intro_ghost rules are explicitly added
by the proof-generation code shown in Algorithm 2, while
the transitivity rules are automatically added by the au-
tomation function transitivity (line A32).

4 Reasoning about Cyclic Control Flows

In this section, using an example of fold-¢ optimization, we
discuss a challenge in ERHL validation arising from cyclic
control flows and show how to address it.

Fold-¢ Optimization Consider the translation below per-
formed by the fold-¢ optimization of instcombine, and its
ERHL proof. This translation basically replaces z := ¢(x, y)
with z := ¢(a, z)+1 using the temporary variable t := ¢(a, z).
This removes the dependence of z on x and y, thereby allow-
ing x and y to be eliminated away by a subsequent optimiza-
tion unless they are used elsewhere. This translation is cor-
rect because we have zg = ¢(Xgres Ygre) = P(@sre+ 1, Zspe+1) =
Pagt + 1,24 + 1) = Pargr, Zig) + 1=ty + 1 = 2.

B[| MD(t) }
10: x:=a+1 ~ x:=a+1
{ xsre = agre +1 MD(t) }

v
t:=¢(a, 2)

B, z:= ¢(x,)

N>
w:= (42, z) w:= (42, 2)
{ zsre = Zgre itgt =t + 1 MD(t,z) }
20: lnop ~ zi=t+1

{ MD(t) }

21: y:==z+1 ~ yi=z+1

{Yore = zsre + 1 MD(t) }

Note that a set of ¢-nodes can appear at the beginning of
a block and are executed simultaneously. For example, in the
source program above, when control flows from B; to itself,
the ¢-nodes z and w are set to the old values of y and z just
before executing the ¢-nodes, respectively. In particular, w
is set to the old value of z, not the new value stored in z at
the first ¢-node, and thus w contains the same value in the
source and target programs.

Challenge The challenge here is that we should be able
to express and reason about both old and new values of z.
This is because z is used and defined at the same time in the
¢-nodes, which is only possible due to cyclic control flows in
the SSA form. Specifically, the proof checker should derive
something like zg, =y, and Wy, = old(z.) as part of the
strong post-condition after the ¢-nodes when control flows
from B,.

We address this challenge by expressing the old value
of register old(zy.) using a ghost variable. Specifically, we
reserve a set of ghost registers, denoted 7 and called old reg-
isters, for all registers r to represent the old value of r. Note,
however, that old registers are just normal ghost registers

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

and technically have nothing to do with physical old values
of the corresponding registers.

Proof Validation We show how the ERHL proof checker
systematically uses the old registers by validating the above
proof in the most interesting case: the ¢-nodes of B, when
control comes from itself.

First, it computes a post-assertion from the pre-assertion
{Yse = Zgre + 1, MD(t) } as follows.

1. It removes all assertions about old registers from the pre-
assertion and copies all assertions about current registers
into those about old ones.

{ysrc =Zget L, Voo = Zoe + 1, MD(t, 'E) }

2. It computes a post-condition from this new assertion as
if the assignments z := y,w := Z are executed in the
sourceand t := Z,w := Zin the target. Specifically, it (i)
removes source assertions about z, w and target ones about
t,w because those registers are updated; (ii) adds t, z to
the maydiff set because they are updated differently in the
source and target (note that wis updated equivalently since
Z is not in the maydiff set); and (iii) adds the equalities
corresponding to the executed assignments. Thus we have

{ysrc =Zge+ 1, Zge = Yoo Wsre = Zsre
tigt = Zign Wigt = Z4g1, MD(, £, 2) }.

Then the proof gives the rule intro_ghost(z, z + 1), which
adds { Zge + 1 = Zg, 249t = Zgr + 1 } because Z is not in the
maydiff set. Then the automation function derives { zg, =
Zre, Zigt = tigr+ 1} by transitivity: zge = ¥, = Zget1= Zsre
and 25t = Ztg; + 1 = 4 + 1. Then it eliminates t from the
maydiff set after eliminating all assertions about t, which is
sound because t is just a ghost variable that has nothing to
do with a physical value of the register t. Finally, the asser-
tion after the ¢-nodes { zge = Zge, 215t = tyr + 1, MD(t, 2) }
trivially follows by a simple inclusion check.

5 ERHL Proof Checker and Logic

In this section, we explain the proof checker in terms of the
ERHL logic, and describe the soundness of the proof checker
using the semantic interpretation of the logic. All our results
are formally verified in Coq (see [1, §H] for details).

Proof Rules The checker is based on the proof rules pre-
sented in Fig. 4. The checker is given the source and target
programs Prgg., Prg;s: and a translation proof ¥, and tries to
deduce Prggc ~ Prgig: using the (Sim) rule. Here, Entry(F) de-
notes the entry block of the function F; Prg[F].{[B, i] the i-th
instruction of the block B in F; and Prg[F].4[B, B] the assign-
ment instructions of the ¢-nodes of B’ when control comes
from B (e.g., in the source program in §4, Prg[F].¢[B1,B2] =
{z := x,w := 42}). Also, ¥Y[F].a[B, i] denotes the asser-
tion in the proof ¥ just before the i-th instruction of B in F
(it denotes the last assertion when i = —1).

ChECkCFG(Prgsr::s Prgtgt)

Kang, Kim, Song, Lee, Park, Shin, Kim, Cho, Choi, Hur, Yi

Prgsre ~ Prgtgt

(S1m)
VF € Prgge. CheckInit(¥[F].a[Entry(F), 0])
VEB,i. {¥[F].a[B.il} Prgsrc[F].{[B.i] ~ Prgsgi[F1.L[B,i] {¥[F].a[B,i+1]}

VEB.B'. {¥[F|.a[B.~11} Prgsrc|F].¢|B.B'] ~ Prgigi(F1. [B.B'] {¥[F].a[B"0]}

Prgsrc ~ P’gtgt
‘ {P} Isre ~ Itgt {Q} ‘ (POSTASSN)

(CONSEQUENCE)
CheckEquivBeh(P, Isc, Igt) {P} Isre ~ It {O}
Q = CalcPostAssn(P, I, Itgt) 0=0
{P} Isre ~ Itgt {Q} {P} Igre ~ Itgt {Q/}
(TraNS) (APPLYINF) (Incr)
0= rule € CustomRules

Q'=Q” Q' = Applylnf(rule, Q)
0=0" 0=¢
Figure 4. Proof Rules of ERHL

CheckIncl(Q, Q")
0=0

The checker first checks if Prg,, and Prg;,; have the same
CFG (CheckCFG), the assertion in the entry is satisfied by
the initial states for each function (ChecklInit), and the Hoare
triple {P} I ~ Iigr {Q} is valid for all matching intra-block
commands Iy and Iy, and their pre- and post-assertions P
and Q given by ¥. For example, in Fig. 2, it checks at line 20
if {Xge = age+1,MD(0)}y:=x+2 ~y:=a+3 {MD(0)}
is valid. It also checks for each inter-block edge from B to B
that {P} Prgs..¢[B, B'] ~ Prgg:.4[B, B'] {Q} is valid, where
P is the last assertion in B and Q is the first assertion in B’.

To validate a Hoare triple {P} Iy ~ ;g {Q}, the checker
first computes a post-assertion Qy with {P} Iy ~ Ity {Qo}
using the rule PosTAssN (see [1, §H] for the definition of
CheckEquivBeh and CalcPostAssn). Then it suffices to vali-
date Qp = Q by the rule CONSEQUENCE.

For this, using the rules AppLYINF and TRANs, the checker
iteratively applies a sequence of inference rules ruley, . . ., rule,
(either given by ¥ or generated by an automation function)
and deduces Qy = Q,, where Q; = ApplyInf(rule;, Q;_1).

Finally, the checker validates Q,, = Q using the rule Inct,
where ChecklIncl performs a simple inclusion check.

Semantic Interpretation For the soundness of the proof
checker, we give the semantic interpretation of the top-level
judgment as semantics preservation, or behavior refinement:

def
[[Prgsrc ~ Prgtgtﬂ = Beh(Prgsrc) 2 Beh(Prgtgt) .

The soundness of (Sim) is proved using a local simulation
in the style of [22], which is a simplification of parametric
bisimulation [21]. First, we show that CheckInit(P) implies:

Yo, Oigt, . FInit(om) A FInit(atgt) - [[Pﬂa(o'src’ Utgt) .

Here, FInit(c) means o is a possible initial state of a function
call, [P] is the semantic interpretation of the assertion P
(see [1, §G] for details), and « is a CompCert-style memory
injection [28], which basically maps a memory block in the
source to an equivalent one in the target.

640

CRELLVM: Verified Credible Compilation for LLVM

Second, we give the semantic interpretation of the Hoare
triple for non-call instructions Iy, I as a simulation step:

def
[[{P} L ~ Itgt {Q}]] = Vose. Instr(oge) = Ige =
Vougr. Instr(og) = Ly =

£
Va, at’gt, e. [Pla(osre, o1gt) A o1t — thgt =

£
3O.s’rc’ 0(/. [[Q]]Ol'(o'slrc’ O.t’gt) A Osre — O-s/rc AN ak 0{,

where, Instr(o) is the next instruction to execute in the pro-

gram state o, and o % o’ means the state ¢ steps to o’
emitting an observable event ¢. Also, C is the extension rela-
tion of memory injection.

For call instructions I, Ig, [{P} Lsre ~ Iigt {Q}] basically
states that Q is satisfied by all possible equivalent returns
states when an arbitrary function is called from states satisfy-
ing P (see [1, §H] for details). We followed the basic approach
of parametric bisimulation [21].

The semantic interpretation of = is as follows:

7 def
[[Q = Q H = VO—SI‘C’ Utgt’ a. [[Qﬂa(o-src, Gtgt) -
Ja’. [[Q,H(x'(o-src, O'tgt) AaCa .

For the soundness of (APPLYINF), every custom rule should
satisfy that [Q = ApplyInf(rule, Q)] holds for all Q.

6 Implementation
We developed the CRELLVM framework for LLVM 3.7.1.

Coverage We wrote proof-generation code for register pro-
motion in the mem2reg pass and GVN-PRE in the gvn pass
implemented in the following files respectively:

e lib/Transforms/Utils/PromoteMemoryToRegister.cpp
e lib/Transforms/Scalar/GVN.cpp

For mem2reg, we covered the entire file, and for gvn, we
covered all functions except for the following functions:
SimplifyInstruction, processlLoad, splitCriticalEdges and
MergeBlockIntoPredecessor. These functions are not part of
the main GVN-PRE algorithm because they are not techni-
cally related to value numbering (i.e., neither using nor con-
structing value numbering). Other reasons why we omitted
them are because SimplifyInstruction is a common func-
tion that just consists of many peephole optimizations and
the others use features that are not currently supported by
CRELLVM: processlLoad uses the alias analysis module and
splitCriticalEdges and MergeBlockIntoPredecessor change
control-flow graphs. Note that the reason why those func-
tions are used by the gvn pass is because they transform
programs in such a way that opportunities for GVN-PRE
optimizations are increased.

To demonstrate the generality of ERHL logic and the proof
checker, we also covered a part of the loop-invariant code mo-
tion (1icm) pass that can be currently supported by CRELLVM
and 139 micro-optimizations of the instruction combining
(instcombine) pass (see [1, §D] for details).

641

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

mem2reg gvn | licm | instcombine
Compiler (Covered) 568 | 1,092 706 702
Proof Generation 213 440 286 1,357

Figure 5. SLOC of Proof-Generation Code

Proof-Generation Code We explicitly mark as “not sup-
ported” for translations using operations not supported by
VELLVM, or relying on deep analyses such as division-by-zero
and alias analyses.

Fig. 5 shows the SLOC in C++ of the compiler and proof-
generation code for each pass. The SLOC ratio of the proof-
generation code to that of the corresponding compiler code
is 37.5% for mem2reg, 40.3% for gvn, 40.5% for licm, and
193.3% for instcombine. The CRELLVM infrastructure for
proof-generation consists of 1,708 lines for common library
and 15,980 lines for JSON serialization library, of which 72.2%
is automatically generated from 2,079 SLOC in a simple DSL.

Inference Rules In the proof checker we installed 221 cus-
tom inference rules, of which 202 are arithmetic rules like
assoc_add. All 9 non-arithmetic rules used for mem2reg, gvn,
and licm, including transitivity and intro_ghost, are
formally verified in Coq (see [1, §I] for details).

Verification of Proof Checker In order to reduce TCB, we
formally verified the soundness of the proof checker in Coq
(see §5). It is worth noting that we achieved the same kind of
guarantee as CompCert for the translations that are validated
by the proof checker using only verified inference rules.

We used the formal semantics of LLVM IR from the VEL-
LVM project [55], but significantly upgraded the semantics in
various ways. In particular, VELLvM used the CompCert mem-
ory model [28] version 1.9 and we upgraded it to version 2.4
in order to use the notion of permission in the LLVM seman-
tics; and added the switch instruction to the formalization
of LLVM IR. Note that VELLVM has a simpler memory model
than the LLVM’s informal official one (e.g., pointer-equality
tests and pointer-integer casts are more undefined).

In total, our Coq development consists of 25,970 SLOC.
The proof checker is 2,987 SLOC, and its verification is
18,934 SLOC. The 221 inference rules are 2,193 SLOC, and
the verification of 9 rules took 1,856 SLOC. Note that the
underlying semantics of VELLVM consists of 39,307 SLOC.

Experience Writing proof-generation code was an iterative
process: we had to repeat bug-fix processes many times.
When proof checking fails, it tells us a logical reason for
the failure so that we could easily identify the bug in proof-
generation code (or else in the compiler). We believe the
iteration could be shortened if we collaborated with LLVM
developers.

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

Results Time (sec.)
#V | #F #NS Orig | PCal 1/0 | PCheck
mem2reg 76.79K 10 10.58K 8.59 | 322.18 13.16K 21.26K
gvn 365.99K | 453 7.92K 41.81 | 249.85 41.96K 37.89K
licm 168.20K 0 24.93K 22.42 | 895.93 56.44K 11.36K
instcombine || 1593.84K 0 | 528.75K || 184.49 | 442.85 | 152.51K | 105.40K

Figure 6. Experimental Results

Custom functions for automatically finding inference rules
are greatly helpful for developing proof-generation algo-
rithms. Using such automation, we could develop much sim-
pler proof-generation algorithms for mem2reg and gvn, com-
pared to our initial development, by making the code size
less than half and speeding up more than twice.

CRELLVM is less cost-effective for peephole optimizations
in instcombine. We had to write 1.9 lines of proof-generation
code for each line of the corresponding compiler code, and we
did not verify arithmetic inference rules. Even though CreL-
LvM achieves higher level of reliability, we think more auto-
mated approaches using an SMT solver such as Alive [30]
would be more cost-effective for peephole optimizations.

7 Experiment

Benchmarks Using CRELLVM, we validated the compila-
tion of the SPEC CINT2006 C Benchmarks [15], LLVM nightly
test suite, and five open-source projects written in C (the
biggest benchmarks used in [37]%), totaling 5.3 million LOC
in C. We omitted 3 files from the benchmarks because they
contain instructions currently not supported by VELLVM,
including the indirectbr instruction.

Fig. 6 summarizes the validation results and the time spent
on running the proof-generation codes and the proof checker
for each optimization pass. In the experiment, we compiled
each benchmark program with the -02 flag, and validated
the intermediate translations with the generated proofs. For
more detailed results, see [1, §A].

We show the total number of translation steps (#V), the
number of not-supported translations (#NS), and the num-
ber of translations failed at validation (#F). The rest of the
translations (i.e., #V — #F — #N8S) succeeded in validation.
Also, all the successful translations were shown to be equiv-
alent to the original translations using the 11vm-diff tool.
During the experiment, we also found and reported a bug in
11vm-diff, which has been confirmed and fixed [8].

Out of 2,205K validations in total, 1632K (74.0%) are suc-
cessfully validated. All 463 (0.01%) failures (#F) are due to
compiler bugs: 10 are due to the mem2reg bug [5] we dis-
cussed in §1.2, 295 are due to the two gvn bugs [6, 7] we
found, and 158 are due to a known gvn bug [11] that is cur-
rently fixed in the LLVM trunk. Note that there is no failure
due to the other mem2reg bug [9] we found.

The other 572.2K (26.0%) translations (#NS) are currently
not supported in our validator. Among them, 555.9K (97.1%)
use instructions not supported by VELLVM: vector operations

8We omitted Linux, since it is currently not compiled with LLVM (see [29]).

642

Kang, Kim, Song, Lee, Park, Shin, Kim, Cho, Choi, Hur, Yi

515.1K (90.0%), aggregate type operations 30.4K (5.31%), de-

bug attributes 8.7K (1.52%), and atomic operations 1.7K (0.29%).
13.0K (2.27%) use the alias and division-by-zero analysis

modules of LLVM; 2.3K (0.41%) alter type declarations; and

0.7K (0.12%) require deeper analysis on functions such as

read-only function analysis.

We measured the time spent on performing each opti-
mization in the original compiler (Orig); on performing each
optimization and calculating validation proofs in the mod-
ified compiler (PCal); on writing and reading the source
and target programs with the proofs via files (I/0); and on
validating the proofs by the proof checker (PCheck). The
table shows total times aggregated over the entire run.

In the experiment, we embarrassingly parallelized compi-
lation and validation jobs and fully utilized the 96 hardware
threads from four identical workstations with Intel Xeon E5-
2630 CPU (2.6GHz, 12 cores, 2 hardware threads per core),
128GB RAM, and 1TB SSD (Samsung 850 PRO). The whole
experiment took about three hours in wall clock.

Validating Randomly Generated Programs We randomly
generated 1,000 C programs using CSmith [53], compiled
them with -02 flag, and validated the intermediate transla-
tions with the generated proofs. All 55,008 validations for
gvn are successfully validated, except for one due to the gvn
bug [6] we found. Out of 42,584 validations for mem2reg,
11,816 (27.7%) are currently not supported due to LLVM life-
time intrinsics, which is not supported by VELLvM. The other
30,768 (72.3%) are all successfully validated.

Performance Proof checking takes much more time than
regular compilation, but we believe it is still reasonable for
compiler writers to use CRELLVM for stabilizing compilers.
Also, as we have shown in the experiment, compiler writers
can further reduce runtime by checking proofs in parallel.
Furthermore, there is still a large room for performance
improvement as we have not done any serious performance
analysis and tuning for the proof checker. In particular, we
believe we can significantly reduce I/O time, which is one of
the current bottlenecks, by writing proofs in binary format
rather than in plain-text JSON format and also by writing
only the changes made between IR files rather than writing
full IR files. In our benchmark, the CLANG frontend generated
4,885 IR files with average size of 187.63 KB, from which
2,205K validations with average proof size of 17.5 KB were
generated.

Bug Reports By November 2016 when we completed our
initial implementation of CRELLVM for LLVM 3.7.1, we re-
ported three miscompilation bugs, one in mem2reg [5] and
two in gvn [6, 7], which were immediately confirmed and
subsequently fixed. Around July 2017 when we verified se-
lected inference rules, we reported another miscompilation
bug in mem2reg [9], which was immediately confirmed but
has not been fixed yet (as of 14 April 2018) because it is

CRELLVM: Verified Credible Compilation for LLVM

unlikely to occur in practice (it did not occur in our bench-
mark either) and there is no consensus on how to fix it.
Around March 2018, we additionally covered the function
performScalarPREInsertion in gvn, which was omitted ini-
tially because it is loosely related to value numbering: decid-
ing whether to perform the transformation, not the transfor-
mation itself, depends on value numbering. The reason for
this coverage is because we were informed of a new bug [11]
found in the function. As we have seen above, CRELLVM
successfully detected the bug by failing at 158 validations.

8 Discussion
8.1 Reliability

In order to see how effectively CRELLVM improved reliability
of LLVM, we investigated all bug reports about miscompi-
lation in mem2reg and gvn since the release of LLVM 3.7.1.
To the best of our knowledge, other than the five bugs [5-
7,9, 11] detected by CRELLVM, there is no confirmed mis-
compilation bug that is (i) due to the code we covered in
mem2reg and gvn and (ii) not related to any LLVM feature
that is currently not supported by CRELLVM (as of 14 April
2018).

Specifically, we conducted our investigation as follows. We
checked all relevant bug reports in the LLVM bug tracker [4]

and OSS-Fuzz bug tracker [3]. Moreover, we asked the 11vm-dev

mailing list about relevant bugs [2]. We also posted a draft
of this paper on our website in February 2018 and received
comments. One of the most important comments was about
the gvn bug [11] in the code we newly covered (i.e., the func-
tion performScalarPREInsertion). The bug was discovered
and fixed in October 2017 by Azul Systems via fuzz test-
ing of the company’s LLVM-based Java JIT compiler, using
JavaFuzzer [10] (private communication with Philip Reames,
March 2018).

8.2 Maintainability

To evaluate maintenance cost, we ported our full develop-
ment of CRELLVM to LLVM 5.0.1 just omitting instcombine
because it is not our main target. After the initial porting,
which took two days, we found one validation fail in gvn
due to insufficient proof generation. We fixed it by adding
an automation function, which took 5 days by one person
including analysis of the problem. After applying the gvn
bug fix [11] in the main trunk to LLVM 5.0.1, our bench-
mark experiment produces no validation failures except for
not-supported ones (see [1, §A] for details).

8.3 Limitations and Future Work

We discuss current limitations of CRELLVM, which also indi-
cate a direction of future research.

Semantics VELLVM does not fully formalize the LLVM IR
semantics. First, it does not support several features of LLVM

643

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

IR, including atomic operations for concurrency, vector op-
erations and attributes like noalias, readonly and nsw.

Second, VELLvM does not properly formalize casts between
integers and pointers, which itself is a challenging research
topic. Applying the idea of Kang et al. [22] would be inter-
esting future research.

Finally, VELLVM does not properly formalize the undef and
poison values, which is another research problem. Recently,
Lee et al. [25] proposed a possible solution to this problem
using a new instruction, called freeze. Applying it to VELLVM
would be interesting work.

Analyses Our proof checker does not support various anal-
ysis passes such as division-by-zero analysis, alias analysis,
read-only function analysis, and memory dependence anal-
ysis. We believe it would be possible to support them by
adding appropriate predicates and inference rules in the un-
derlying logic of proof checker.

CFG-Changing Optimizations CRELLVM relies on the con-
dition that the source and target programs can be aligned
line-by-line by inserting logical no-op instructions. While
we think this condition holds for majority of LLVM optimiza-
tions, there are several important optimizations that break
the condition by changing the control-flow graph. Examples
include loop unrolling, loop unswitching and loop splitting.
We believe it would be possible to support them by gener-
alizing the proof checker following the ideas from existing
translation validation works [36, 49-52, 57].

9 Related Work

A large number of prior work on improving reliability of
compiler are roughly classified into the following categories.

Credible Compilation Rinard et al. [44], who coined the
term credible compilation, proposed the framework of cred-
ible compilation and presented a relational Hoare logic, in
which one can reason about register allocation and instruc-
tion scheduling optimizations in the presence of pointer
aliasing. Independently, Benton [16] proposed a relational
Hoare logic for a functional language. However, their logics
are designed for simple languages, and the framework has
not been implemented and applied to compilers.

Namjoshi et al. [33, 34] presented a “proof of concept” im-
plementation of credible compilation (or a witnessing com-
piler in their terminology) for LLVM optimizations such
as constant propagation, dead-code elimination, and LICM.
However, the work can be seen as rather preliminary for the
following reasons. First, their proof checker supports a small
subset of LLVM IR, most notably ignoring memory opera-
tions. Second, it assumes that main functions of the compiler
are correct. For example, it assumes that the constant-folding
function of LLVM is correct.

Verified translation validation is similar to verified cred-
ible compilation but differs in that it develops a verified

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

validator specialized for a particular optimization, rather
than developing a proof checker for a general logic. Various
verified translation validators have been developed for Com-
pCert: instruction scheduling [50], lazy code motion [51],
software pipelining [52]; register allocation [43]; SSA trans-
formation [14]; and GVN and sparse conditional constant
propagation (SCCP) [19].

(Foundational) proof carrying code (PCC) [12, 35] is simi-
lar to (verified) credible compilation, but it employs a (veri-
fied) unary logic for validating safety properties of the gen-
erated target program.

Translation Validation This approach develops a gen-
eral validator that checks correctness of any given trans-
lation between IR programs without requiring any proof.
Compared to credible compilation, translation validation is
more scalable (i.e., more easily applicable to different opti-
mizations) because it requires much less manual effort due
to no need for writing proof-generation code. On the other
hand, though it can be used to guarantee correctness of cer-
tain compilations, it can hardly be used to find compiler bugs
due to many false positives. The reason for false positives is
that such a general validator is inherently incomplete since
it is agnostic to the compiler’s internal logic.

Due to such incompleteness, a variety of translation val-
idators with different heuristics and trade-offs were proposed
[20, 36, 38, 39, 45-47, 49, 54, 57, 58]. In particular, Tristan et
al. [49] and Stepp et al. [46] developed translation validators
for LLVM optimization passes, including dead-code elimina-
tion, GVN-PRE, constant propagation, and LICM. However,
they failed at about 20% of the validations, most of which
are likely to be false positives.

Compiler Verification Verified compilers provide the high-
est level of reliability by proving the semantics-preservation
property for all possible source programs in a proof assis-
tant. CompCert [26, 27] is the most sophisticated formally
verified optimizing C compiler, whose correctness is proved
in Coq [13], and CakeML [23] is an optimizing ML compiler
formally verified in the HOL4 theorem prover [40]. However,
verifying a full-fledged compiler is highly costly and verified
compilers are usually much less performant than production
compilers.

Zhao et al. [55, 56] implemented and verified the vmem2reg
pass for LLVM in Coq, but its algorithm is significantly sim-
plified compared to that in LLVM. Their simplified algorithm
is based on a rewriting logic in which each rewriting step
preserves semantics and each intermediate program is type-
checked. On the other hand, LLVM’s register-promotion
algorithm temporarily breaks the semantics-preservation
property and even the intermediate programs are not type-
checked, because ill-formed empty ¢-nodes are inserted in
the middle and their arguments are filled later. According to
the authors, this renders the formal verification hard for the
register-promotion implementation in LLVM.

644

Kang, Kim, Song, Lee, Park, Shin, Kim, Cho, Choi, Hur, Yi

DSL for Optimizations Lopes et al. [30-32] presented Alive,
a DSL for writing peephole optimizations using the SMT
solver Z3 [41]. With Alive, one can either prove the cor-
rectness of an optimization or find a counterexample. They
ported 300 micro-optimizations of instcombine to Alive,
and in doing so they found 8 bugs in instcombine. How-
ever, the Alive DSL is not expressive enough to describe
complex algorithms such as mem2reg and gvn, and limited
to supporting only peephole optimizations that do not in-
volve reasoning about cyclic control flows. In addition, Alive
makes simplifying assumptions on the LLVM semantics, and
their encoding of an optimization into SMT queries is a part
of the TCB. Furthermore, since there is a gap between an ac-
tual implementation in C++ and a corresponding algorithm
description in Alive DSL, implementation bugs cannot be
detected. Tatlock and Lerner [48] also presented a DSL for
writing CompCert optimizations based on a rewriting logic,
but it is not general enough to support register promotion
and GVN-PRE.

Compiler Testing Random testing tools such as CSmith [17,
42, 53] and EMI [24] have been very successful. They have

found hundreds of bugs in GCC and LLVM. However, most

of them are found in the instcombine pass and none of them

are miscompilation bugs in mem2reg and gvn.

10 Conclusion

We have demonstrated that the credible-compilation ap-
proach scales to the production compiler LLVM by develop-
ing our CRELLVM framework. We also empirically demon-
strated that CRELLVM can be an effective tool for achieving
high reliability of major optimizations by discovering four
long-standing bugs in the mem2reg and gvn passes.

Acknowledgments

We thank Daniel Berlin, Davide Italiano, Yeonwoo Kim, Philip
Reames, John Regehr, and anonymous reviewers for very
helpful feedback, and Sung-hwan Lee for his contribution to
early development of CRELLVM. This research was supported
by Samsung Research Funding Center of Samsung Electron-
ics under Project Number SRFC-IT1502-07. Jeehoon Kang,
Yoonseung Kim, and Juneyoung Lee have been supported by
Korea Foundation for Advanced Studies Scholarships.

References

[1] Supplementary material for this paper, available at http://sf.snu.ac.kr/
crellvm/.

http://lists.llvm.org/pipermail/llvm-dev/2018- April/122482.html.
https://bugs.chromium.org/p/oss-fuzz.

https://bugs.llvm.org/.

https://bugs.llvm.org/show_bug.cgi?id=24179.
https://bugs.llvm.org/show_bug.cgi?id=28562.
https://bugs.llvm.org/show_bug.cgi?id=29057.
https://bugs.llvm.org/show_bug.cgi?id=33623.
https://bugs.llvm.org/show_bug.cgi?id=33673.

[S B R i e '

[2
[3
[4
[5
[6
[7
[8
[9

—

http://sf.snu.ac.kr/crellvm/
http://sf.snu.ac.kr/crellvm/
http://lists.llvm.org/pipermail/llvm-dev/2018-April/122482.html
https://bugs.chromium.org/p/oss-fuzz
https://bugs.llvm.org/
https://bugs.llvm.org/show_bug.cgi?id=24179
https://bugs.llvm.org/show_bug.cgi?id=28562
https://bugs.llvm.org/show_bug.cgi?id=29057
https://bugs.llvm.org/show_bug.cgi?id=33623
https://bugs.llvm.org/show_bug.cgi?id=33673

CRELLVM: Verified Credible Compilation for LLVM

—
—
=)

—

https://github.com/AzulSystems/JavaFuzzer.
https://reviews.llvm.org/D38619.

Andrew W. Appel. 2001. Foundational Proof-Carrying Code (LICS
01).

The Coq Proof Assistant. https://coq.inria.fr/.

[14] Gilles Barthe, Delphine Demange, and David Pichardie. 2014. Formal
Verification of an SSA-Based Middle-End for CompCert. ACM Trans.
Program. Lang. Syst. 36, 1 (March 2014).

The SPEC CINT2006 Benchmark. https://www.spec.org/cpu2006/
CINT2006/.

Nick Benton. 2004. Simple Relational Correctness Proofs for Static
Analyses and Program Transformations (POPL "04).

Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli
Fern, Eric Eide, and John Regehr. 2013. Taming Compiler Fuzzers
(PLDI ’13).

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. 1991. Efficiently Computing Static Single Assign-
ment Form and the Control Dependence Graph. ACM Trans. Program.
Lang. Syst. 13, 4 (Oct. 1991).

Delphine Demange, David Pichardie, and Léo Stefanesco. 2016. Veri-
fying Fast and Sparse SSA-Based Optimizations in Coq (CC ’16).
Chris Hawblitzel, Shuvendu K. Lahiri, Kshama Pawar, Hammad
Hashmi, Sedar Gokbulut, Lakshan Fernando, Dave Detlefs, and Scott
Wadsworth. 2013. Will You Still Compile Me Tomorrow? Static Cross-
version Compiler Validation (ESEC/FSE ’13).

Chung-Kil Hur, Derek Dreyer, Georg Neis, and Viktor Vafeiadis. 2012.
The Marriage of Bisimulations and Kripke Logical Relations. In POPL.
Jeehoon Kang, Chung-Kil Hur, William Mansky, Dmitri Garbuzov,
Steve Zdancewic, and Viktor Vafeiadis. 2015. A Formal C Memory
Model Supporting Integer-pointer Casts (PLDI ’15).

Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens.
2014. CakeML: A Verified Implementation of ML (POPL ’14).

Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler Validation
via Equivalence Modulo Inputs (PLDI ’14).

[25] Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy
Das, David Majnemer, John Regehr, and Nuno P. Lopes. 2017. Taming
Undefined Behavior in LLVM (PLDI ’17).

Xavier Leroy. 2006. Formal Certification of a Compiler Back-end or:
Programming a Compiler with a Proof Assistant (POPL °06).

Xavier Leroy. 2009. Formal verification of a realistic compiler. Com-
mun. ACM (2009).

Xavier Leroy, Andrew W. Appel, Sandrine Blazy, and Gordon Stewart.
2012. The CompCert Memory Model, Version 2. Research report RR-
7987. INRIA.

LLVM Linux. http:/llvm.linuxfoundation.org.

Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John
Regehr. 2015. Provably Correct Peephole Optimizations with Alive
(PLDI ’15).

David Menendez and Santosh Nagarakatte. 2017. Alive-Infer: Data-
driven Precondition Inference for Peephole Optimizations in LLVM
(PLDI ’17).

David Menendez, Santosh Nagarakatte, and Aarti Gupta. 2016. Alive-
FP: Automated Verification of Floating Point Based Peephole Opti-
mizations in LLVM (SAS ’16).

Kedar S. Namjoshi, Giacomo Tagliabue, and Lenore D. Zuck. 2013. A
Witnessing Compiler: A Proof of Concept (RV ’13).

(15]
(16]

(17]

(18]

(19]

[20]

(23]

[24]

[26]
[27]

(28]

645

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

[34] Kedar S. Namjoshi and Lenore D. Zuck. 2013. Witnessing Program
Transformations (SAS ’13).

[35] George C. Necula. 1997. Proof-carrying Code (POPL ’97).

[36] George C. Necula. 2000. Translation Validation for an Optimizing
Compiler (PLDI *00).

[37] Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee, Daejun Park,
Jeehoon Kang, and Kwangkeun Yi. 2014. Global Sparse Analysis Frame-

work. ACM Trans. Program. Lang. Syst. 36, 3 (Sept. 2014).
[38] Amir Pnueli, Michael Siegel, and Eli Singerman. 1998. Translation

Validation (TACAS ’98).

[39] Amir Pnueli, Ofer Strichman, and Michael Siegel. 1998. The Code
Validation Tool CVT: Automatic Verification of a Compilation Process
(STTT *98).

[40] HOL Interactive Theorem Prover. https://hol-theorem-prover.org/.

[41] The Z3 Theorem Prover. https://github.com/Z3Prover/z3.

[42] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and

Xuejun Yang. 2012. Test-case reduction for C compiler bugs (PLDI

’12).

Silvain Rideau and Xavier Leroy. 2010. Validating Register Allocation

and Spilling (CC ’10).

Martin C. Rinard and Darko Marinov. 1999. Credible Compilation with

Pointers (RRV °99).

Hanan Samet. 1978. Proving the Correctness of Heuristically Opti-

mized Code (ACM ’78).

Michael Stepp, Ross Tate, and Sorin Lerner. 2011. Equality-based

Translation Validator for LLVM (CAV ’11).

[47] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009.
Equality Saturation: A New Approach to Optimization (POPL "09).

[48] Zachary Tatlock and Sorin Lerner. 2010. Bringing Extensibility to
Verified Compilers (PLDI ’10).

[49] Jean-Baptiste Tristan, Paul Govereau, and Greg Morrisett. 2011. Eval-
uating Value-graph Translation Validation for LLVM (PLDI ’11).

[50] Jean-Baptiste Tristan and Xavier Leroy. 2008. Formal Verification
of Translation Validators: A Case Study on Instruction Scheduling
Optimizations (POPL ’08).

[51] Jean-Baptiste Tristan and Xavier Leroy. 2009. Verified Validation of
Lazy Code Motion (PLDI ’09).

[52] Jean-Baptiste Tristan and Xavier Leroy. 2010. A Simple, Verified Val-
idator for Software Pipelining (POPL ’10).

[53] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding
and Understanding Bugs in C Compilers (PLDI ’11).

[54] Anna Zaks and Amir Pnueli. 2008. CoVaC: Compiler Validation by
Program Analysis of the Cross-Product (FM "08).

[55] Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve
Zdancewic. 2012. Formalizing the LLVM Intermediate Representation
for Verified Program Transformations (POPL ’12).

[56] Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve

Zdancewic. 2013. Formal Verification of SSA-based Optimizations for

LLVM (PLDI ’13).

Lenore Zuck, Amir Pnueli, Benjamin Goldberg, Clark Barrett, Yi Fang,

and Ying Hu. 2002. Translation and Run-Time Validation of Loop

Transformations (RV °02).

Lenore D. Zuck, Amir Pnueli, and Benjamin Goldberg. 2003. VOC: A

Methodology for the Translation Validation of Optimizing Compilers

(3. UCS ’03).

[43]
[44]
[45]

[46]

[57]

[58]

https://github.com/AzulSystems/JavaFuzzer
https://reviews.llvm.org/D38619
https://coq.inria.fr/
https://www.spec.org/cpu2006/CINT2006/
https://www.spec.org/cpu2006/CINT2006/
http://llvm.linuxfoundation.org
https://hol-theorem-prover.org/
https://github.com/Z3Prover/z3

	Abstract
	1 Introduction
	1.1 Overview of Crellvm
	1.2 Advantages of Crellvm over Testing

	2 Overview
	2.1 Translation Example
	2.2 Proof Validation
	2.3 Proof Generation

	3 Register Promotion
	3.1 Translation Example
	3.2 ERHL Proof
	3.3 Proof Validation
	3.4 Proof Generation

	4 Reasoning about Cyclic Control Flows
	5 ERHL Proof Checker and Logic
	6 Implementation
	7 Experiment
	8 Discussion
	8.1 Reliability
	8.2 Maintainability
	8.3 Limitations and Future Work

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

