Optimizing Homomorphic Evaluation Circuits by Program Synthesis and Term Rewriting

DongKwon Lee
Seoul National University
Korea
dklee@ropas.snu.ac.kr

Woosuk Lee∗
Hanyang University
Korea
woosuk@hanyang.ac.kr

Hakjoo Oh
Korea University
Korea
hakjoo_oh@korea.ac.kr

Kwangkeun Yi
Seoul National University
Korea
kwang@ropas.snu.ac.kr

Abstract
We present a new and general method for optimizing homomorphic evaluation circuits. Although fully homomorphic encryption (FHE) holds the promise of enabling safe and secure third party computation, building FHE applications has been challenging due to their high computational costs. Domain-specific optimizations require a great deal of expertise on the underlying FHE schemes, and FHE compilers that aims to lower the hurdle, generate outcomes that are typically sub-optimal as they rely on manually-developed optimization rules. In this paper, based on the prior work of FHE compilers, we propose a method for automatically learning and using optimization rules for FHE circuits. Our method focuses on reducing the maximum multiplicative depth, the decisive performance bottleneck, of FHE circuits by combining program synthesis and term rewriting. It first uses program synthesis to learn equivalences of small circuits as rewrite rules from a set of training circuits. Then, we perform term rewriting on the input circuit to obtain a new circuit that has lower multiplicative depth. Our rewriting method maximally generalizes the learned rules based on the equational matching and its soundness and termination properties are formally proven. Experimental results show that our method generates circuits that can be homomorphically evaluated 1.18x – 3.71x faster (with the geometric mean of 2.05x) than the state-of-the-art method. Our method is also orthogonal to existing domain-specific optimizations.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’20, June 15–20, 2020, London, UK
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7613-6/20/06...$15.00
https://doi.org/10.1145/3385412.3385996

1 Introduction
Fully Homomorphic Encryption (FHE) [30] enables safe and secure third-party computation with private data because it enables any computation on encrypted data without the decryption key. Because the cloud can perform any computation on encrypted data without learning anything about the data itself, the clients can safely upload their encrypted data without any need to trust the software/hardware vendors of the cloud.

However, building FHE applications has been challenging at the moment because of their high computational costs. Though building FHE applications itself does not require much expertise thanks to off-the-shelf libraries of FHE schemes [31, 32, 44], when naively implemented, even with the best FHE schemes [10, 18], FHE applications incur slowdown factors of orders of magnitudes compared to their plaintext version. One of the key challenges is therefore reducing the costs of FHE applications amenable to practical use.

Existing Approaches. There have been two approaches – domain-specific optimizations and optimizing FHE compilers – for reducing the costs of FHE applications, but they are still less powerful than desirable. Various domain-specific FHE optimization techniques have been successfully developed, but developing such techniques requires a great deal of
expertise on the underlying FHE schemes. For example, optimizations such as rescaling [23], data movement [38] and batching [39], and heuristics for encryption parameter selection [23, 25] enable several orders of magnitude speedups in a wide range of FHE applications (such as image recognition [23], statistical analysis [38], sorting [17], bioinformatics [19], database [8], and static program analysis [37]), yet required a great deal of expertise in cryptography. Lowering this hurdle of expertise is a goal of FHE compilers, which, equipped with FHE optimization techniques, automatically transform conventional high-level programs into optimized FHE code. For example, RAMPARTS [4], CINGULATA [15] and ALCHEMY [22] take programs written in a high-level language (e.g., Julia, C++, a custom DSL, resp.) and transform them into arithmetic circuit representations which can be evaluated using a backend FHE scheme. However, though the users do not have to concern about low-level details of underlying schemes when writing applications, they need to write FHE-friendly algorithms [16, 17, 19, 38] to achieve the desired efficiency, which still requires expertise. Furthermore, state-of-the-art compilers rely on hand-written optimization rules and devising such rules requires expertise and is likely to be sub-optimal.

Our Approach. In this paper, based on the prior work of FHE compilers, we propose a novel and general method for optimizing FHE Boolean circuits that outperforms existing automatic FHE optimization techniques. Our method focuses on reducing the number of nested multiplications and achieves sizeable optimizations even for existing domain-specific manually optimized results.

Our setting of the optimization problem is simple. Let be an arithmetic code that can be evaluated using FHE schemes, which can be either generated by a FHE compiler or written by a developer. Optimization is to find a new circuit ’ of lower computational cost while guaranteeing the same semantics as the original. Because the decisive performance bottleneck in homomorphic computation is the nested depth of multiplications [4, 15, 17, 49], we set the computation cost to be measured using the maximum multiplicative depth, which is simply the maximum number of sequential multiplications required to perform the computation. For example, the circuit \(c(x_1, x_2, x_3, x_4, x_5) = ((x_1 x_2) x_3) x_4 + x_5\) has multiplicative depth 3. The lower the multiplicative depth is, the more efficiently a circuit can be evaluated. For example, we can optimize by replacing it with \(c'(x_1, x_2, x_3, x_4, x_5) = (x_1 x_2) (x_3 x_4) + x_5\) that has depth 2.

To achieve this critical optimization for homomorphic computation circuits as much as possible, we combine two techniques: program synthesis and term rewriting. Fig. 1 depicts our approach.

- Our method first automatically learns equivalences of small circuits from a set of training circuits using the program synthesis technique and then uses the learned equivalences to optimize unseen circuits. To learn such equivalences, we partition each training circuit into multiple sub-parts and synthesize their equivalent counterparts of smaller depth. These machine-found optimization patterns are so surprisingly aggressive that we can hardly imagine them from human-devised optimization techniques.

- Next, armored with these automatically learned equivalences as rewrite rules, we perform term rewriting on the input circuit to obtain a new circuit that has lower multiplicative depth. We maximally generalize what have been learned from training circuits by giving flexibility to the rewriting procedure: our method is based on the equational matching instead of the syntactic matching. Our rewriting method is proven to be sound and terminating.

We implement our method atop CINGULATA [21], a widely used FHE compiler and evaluate our method on 18 FHE applications from diverse domains (statistical analysis, sorting, medical diagnosis, low-level algorithm). We learn rewrite rules from a set of CINGULATA-generated Boolean circuits and apply the rules into other circuits.1 On average, our method generates Boolean circuits that can be homomorphically evaluated 1.18x – 3.71x faster (with the geometric mean of 2.05x) than the state-of-the-art method [14].

Contributions.

- A novel general method for optimizing homomorphic evaluation circuits: we first learn rewrite rules from a set of training Boolean circuits using program synthesis and then perform term-rewriting on a given new circuit. The soundness and termination properties of this rewriting system are formally proven.
- Confirming the method’s effectiveness in a realistic setting – the method outperforms existing automatic FHE optimization techniques, and even shows sizeable optimizations for domain-specific manually optimized results.

2 Problem Definition

We define the problem of minimizing the multiplicative depth of Boolean circuits. We first provide background on homomorphic encryption (Section 2.1) and Boolean circuits (Section 2.2). In Section 2.3, we formally state the problem.

2.1 Homomorphic Encryption

A fully homomorphic encryption (FHE) scheme with binary plaintext space \(\mathbb{Z}_2 = \{0, 1\}\) can be described by the interface:

- \(\text{Enc}_{\text{pk}} : \mathbb{Z}_2 \rightarrow \Omega\)
- \(\text{Dec}_{\text{sk}} : \Omega \rightarrow \mathbb{Z}_2\)
- \(\text{Add}_{\text{pk}} : \Omega \times \Omega \rightarrow \Omega\)
- \(\text{Mul}_{\text{pk}} : \Omega \times \Omega \rightarrow \Omega\)

1Although the paper targets Boolean circuits, the method can also be directly applied to arithmetic circuits.
Based on these properties, we can show that the scheme is able to potentially evaluate all Boolean circuits.

As an instance, let us consider a simple symmetric version of a HE scheme defined as follows:

\[
\text{Dec}_{sk}(\text{Add}_{pk}(\text{Enc}_{pk}(m_1), \text{Enc}_{pk}(m_2))) = m_1 + m_2, \\
\text{Dec}_{sk}(\text{Mul}_{pk}(\text{Enc}_{pk}(m_1), \text{Enc}_{pk}(m_2))) = m_1 \times m_2.
\]

Note that such a scheme is able to potentially evaluate all Boolean circuits as addition and multiplication in \(\mathbb{Z}_2\) correspond to XOR and AND operations.

As for ciphertexts \(\bar{c}\), Dec(\(\bar{c}\)) outputs \((\bar{c} \mod p) \mod 2\).

- For ciphertexts \(\bar{c}_1\) and \(\bar{c}_2\), Add(\(\bar{c}_1, \bar{c}_2\)) outputs \(\bar{c}_1 + \bar{c}_2\).
- For ciphertexts \(\bar{c}_1\) and \(\bar{c}_2\), Mul(\(\bar{c}_1, \bar{c}_2\)) outputs \(\bar{c}_1 \times \bar{c}_2\).

For ciphertexts \(\bar{c}_1\leftarrow \text{Enc}(m_1)\) and \(\bar{c}_2\leftarrow \text{Enc}(m_2)\), we know each \(\bar{c}_i\) is of the form \(\bar{c}_i = pq_i + 2r_i + m_i\) for some integer \(q_i\) and noise \(r_i\). Hence Dec(\(\bar{c}_i\)) = \(\bar{c}_i \mod p\) mod 2) = \(m_i\), if \([2r_i + m_i] < p/2\). Then, the following equations hold:

\[
\bar{c}_1 + \bar{c}_2 = p(q_1 + q_2) + 2(r_1 + r_2) + m_1 + m_2 \\
\bar{c}_1 \times \bar{c}_2 = p(q_1q_2 + \cdots) + 2(2r_1r_2 + r_1m_2 + r_2m_1) + m_1m_2
\]

Based on these properties, we can show that the absolute values of noise_{\text{Add}} and noise_{\text{Mul}} are less than \(p/2\). Note that the noise in the resulting ciphertext increases during homomorphically addition and multiplication (twice and quadratically as much noise as before respectively). If the noise becomes larger than \(p/2\), the decryption result of the scheme will be spoiled. As long as the noise is managed, the scheme is able to potentially evaluate all Boolean circuits.

2.2 Boolean Circuit and Multiplicative Depth

Boolean Circuit. A Boolean circuit \(c \in \mathbb{C}\) is inductively defined as follows:

\[
c \rightarrow \land(c, c) | \oplus(c, c) | x | 0 | 1
\]

where \(\land\) and \(\oplus\) denote AND and XOR respectively, and \(x\) denotes an input variable. The grammar is functionally complete because any Boolean functions can be expressed using the grammar. For simplicity, we assume that circuits have a single output value. We will often denote \(1 \oplus c\) or \(c \oplus 1\) as \(\neg c\). In addition, we will use infix notation for \(\oplus\) and \(\land\).

Multiplicative Depth. Let \(\ell : \mathbb{C} \rightarrow \mathbb{N}\) be a function that computes the multiplicative depth of a circuit, which is inductively defined as follows:

\[
\ell(c) = \begin{cases}
1 + \max_{i \in \{1, 2\}} \ell(c_i) & (c = \land(c_1, c_2)) \\
\max_{i \in \{1, 2\}} \ell(c_i) & (c = \oplus(c_1, c_2)) \\
0 & \text{(otherwise)}
\end{cases}
\]

Critical Path. The input-to-output paths with the maximal number of AND gates are called critical paths. A set of critical paths, denoted \(P(c)\), of a circuit \(c\) is a set of strings over the alphabet of positive integers, which is inductively defined as follows:

\(^{2}\text{A leveled scheme may be turned into a fully homomorphic one by introducing a bootstrapping operation}[30], which is computationally heavy.\)
If \(c = x \) or 1, \(\mathcal{P}(c) \equiv \{ \epsilon \} \), where \(\epsilon \) is the empty string.

If \(c = f(c_1, c_2) \) where \(f \in \{ \land, \lor \} \), then

\[
\mathcal{P}(c) = \bigcup \{ p \mid p \in \mathcal{P}(c_i) \text{ s.t. } i \in \mathcal{I}_{\text{arg max}}_{1 \leq i \leq 2} f(c_i) \}
\]

A set of critical positions \(\mathcal{C}(c) \) consists of all prefixes of strings in \(\mathcal{P}(c) \).

Example 1. Consider a circuit \(c(v_1, v_2, v_3, v_4) \) defined as

\[
v_1 \land (1 \oplus (v_4 \land (1 \oplus (v_2 \land v_3))))
\]

The multiplicative depth of \(c \), \(\ell(c) \), is 3 because there are three consecutive AND operations performed on \(v_2 \) and \(v_3 \). The set \(\mathcal{P}(c) \) of critical paths in \(c \) is

\[
\begin{align*}
\mathcal{P}(c) &= \{2p \mid p \in \mathcal{P}(1 \oplus (v_4 \land (1 \oplus (v_2 \land v_3))))\} \\
&= \{22p \mid p \in \mathcal{P}(v_4 \land (1 \oplus (v_2 \land v_3)))\} \\
&= \{222p \mid p \in \mathcal{P}(v_4)\} \\
&= \{2222p \mid p \in \mathcal{P}(v_2 \land v_3)\} \\
&= \{22222\}
\end{align*}
\]

The set \(\mathcal{C}(c) \) of critical positions is:

\[\{\epsilon, 2, 22, 222, 2222, 22222\}\]

Note that in order to decrease the overall multiplicative depth of a Boolean circuit, all the parallel critical paths of the circuit must be rewritten. The depth of a critical path can be reduced if we reduce the depth of a sub-circuit at a critical position.

2.3 Problem

Given a Boolean circuit \(c \in \mathcal{C} \) whose input variables are \(x_1, \ldots, x_n \), we aim to find a semantically equivalent circuit \(c' \in \mathcal{C} \) whose depth is smaller than \(c \). Formally, our goal is to find \(c' \) such that

\[
\forall x_1, c(x_1, \ldots, x_n) \iff c'(x_1, \ldots, x_n), \ell(c) \geq \ell(c').
\]

In this paper, we propose to address this problem by combining program synthesis and term rewriting.

3 Informal Description

In this section, we illustrate our approach with examples. Our approach consists of offline and online phases (Figure 1).

Offline Learning via Program Synthesis

In the offline phase, we use program synthesis to learn a set of rewrite rules from training circuits. Suppose we have the circuit \(c \) in Example 1 in the training set:

\[
c = v_1 \land (\neg(v_4 \land (\neg(v_2 \land v_3))))
\]

The depth of this circuit is 3 and we would like to find a semantically-equivalent circuit \(c' \) with a smaller depth (i.e. \(\ell(c') \leq 2 \)). To do so, we formulate the task as an instance of the syntax-guided synthesis (SyGuS) problem [2]. The formulation comprises a syntactic specification, in the form of a context-free grammar that constrains the space of possible programs, and a semantic specification, in the form of a logical formula that defines a correctness condition. The syntactic specification for \(c' \) is the grammar:

\[
\begin{align*}
S & \rightarrow d_2 \\
d_2 & \rightarrow d_1 \land d_1 \mid d_2 \oplus d_2 \mid d_1 \\
d_1 & \rightarrow d_0 \land d_0 \mid d_1 \oplus d_1 \mid d_0 \\
d_0 & \rightarrow 0 \mid v_1 \mid v_2 \mid v_3 \mid v_4
\end{align*}
\]

where \(S \) denotes the start symbol, and each non-terminal symbol \(d_i \) denotes circuits of multiplicative depth \(\leq i \). The semantic specification for \(c' \) is given as a logical formula:

\[
\forall v_1, v_2, v_3, v_4. c(v_1, v_2, v_3, v_4) \iff c'(v_1, v_2, v_3, v_4)
\]

which enforces \(c' \) to be semantically equivalent to \(c \). Given this SyGuS formulation, an off-the-shelf program synthesizer (e.g. [3]) is able to find the following circuit \(c' \):

\[
c' = ((\neg(v_3 \land v_2)) \land (v_1 \land v_4)) \oplus v_1
\]

which has multiplicative depth 2.

Once we obtain a pair \((c, c')\) of original and optimized circuits, we simplify \(c \) and \(c' \) by replacing sub-circuits that are equivalent modulo commutativity with a new fresh variable. In this example, \(\neg(v_2 \land v_3) \) in \(c \) and \(\neg(v_1 \land v_2) \) in \(c' \) are equivalent modulo commutativity and therefore we replace them by a new variable \(x \), which simplifies \(c \) and \(c' \) into \(v_1 \land (\neg(v_4 \land x)) \) and \((x \land (v_1 \land v_4)) \oplus v_1 \), respectively. Note that the simplified circuits are still semantically equivalent. We replace sub-circuits with a variable after we check for equivalence using a SAT solver.

The purpose of this simplification step is to generalize the knowledge and maximize the possibility of applying the rewrite rule for optimization in the online phase. However, care is needed not to over-generalize and destroy the syntactic structures of the circuits. For example, if we aim to replace all semantically equivalent sub-circuits with a new fresh variable, we would obtain \(x \iff x \), which is useless.

In summary, the offline learning phase produces the following rewrite rule:

\[
v_1 \land (\neg(v_4 \land x)) \rightarrow (x \land (v_1 \land v_4)) \oplus v_1.
\]

Online Optimization via Term Rewriting

In the online phase, we use the learned rewrite rule to optimize unseen circuits. Suppose we want to optimize the following circuit whose multiplicative depth is 4:

\[
(\neg(v_5 \land v_6) \land (\neg(v_7 \land v_8) \land (\neg(v_9 \land v_7) \land (v_9 \land v_7))).
\]

To optimize the circuit, we first compare it with the left-hand side of the learned rewrite rule (i.e. \(v_1 \land (\neg(v_4 \land v_3)) \)), and find a substitution \(\sigma \) that makes the two circuits equivalent. For example, our matching algorithm in Section 4 is able to find the following substitution:

\[
\sigma = \begin{cases}
v_1 & \mapsto v_5 \land v_6 \\
v_4 & \mapsto v_7 \land v_8 \\
x & \mapsto (\neg(v_6 \land v_8) \land (v_9 \land v_7))
\end{cases}
\]
Note that $\sigma(v_1 \land (\neg(v_2 \land x)))$ is equivalent to the circuit in (3).
Next, we apply the substitution to the right-hand side of the rewrite rule, obtaining the following optimized circuit:

$$(\neg((v_2 \land v_2) \lor (v_3 \land v_3)) \land ((v_4 \land (v_5 \land (v_6 \lor v_6)))) \oplus (v_6 \land v_6).$$

whose multiplicative depth is 3. Therefore, the resulting circuit is guaranteed to be semantically equivalent to the original one in (3).

Scaling via Divide-and-Conquer. We have described how to obtain a rewrite rule from a small circuit and applying it into a new yet small circuit. In practice, however, real circuits are much larger, and the aforementioned method using the SyGuS formulation is not directly applicable. Even state-of-the-art SyGuS tools can only handle small circuits because the search space for synthesis grows exponentially with the maximum depth and number of input variables.

To address this scalability issue, we apply our approach in a divide-and-conquer manner; we divide a circuit into pieces, find a replacement for each piece, and finally compose them to form a final circuit. For example, consider the circuit c_{ex} of depth 5, which is depicted in Figure 2(a) (the critical path is highlighted in red):

$$c_{ex} \overset{\text{def}}{=} (((a \land b) \land c) \land d) \land e \land f. \quad (4)$$

We can divide the circuit into two pieces r_1 and r_2 through which a critical path passes. By introducing two auxiliary variables, c_{ex} can be rewritten as r_2 where

$$r_2 \overset{\text{def}}{=} (r_1 \land e) \land f, \quad r_1 \overset{\text{def}}{=} ((a \land b) \land c) \land d.
$$

We first find a replacement for r_1. We can replace r_1 of depth 3 by the following:

$$r_1' \overset{\text{def}}{=} (a \land b) \land (c \land d)$$

which has depth 2 and the same semantics as r_1. Next, we find a replacement for r_2. We treat r_1 in the definition of r_2 as a special variable that has its own depth 2. Considering the depth of r_1, we replace r_2 of depth 4 by

$$r_2' \overset{\text{def}}{=} r_1' \land (e \land f)$$

that has depth 3 and the same semantics as r_2. Combining r_1' and r_2' produces the final circuit of depth 3. We use this divide-and-conquer strategy in both of our offline learning and online rewriting phases.

4 Algorithm

We first review (Section 4.1) key definitions and results borrowed from [6] that will be used in the rest of the paper. Then we present the offline learning phase (Section 4.2) and online optimization phase (Section 4.3) based on term rewriting.

![Figure 2](image_url)

Figure 2. (a) The circuit c_{ex} of depth 5. (b) A circuit that has depth 3 and the same semantics as c_{ex}.

4.1 Preliminaries

Term. A signature Σ is a set of function symbols, where each $f \in \Sigma$ is associated with a non-negative integer n, the arity of f (denoted $\text{arity}(f)$). For $n \geq 0$, we denote the set of all n-ary elements Σ by Σ^n. Function symbols of 0-arity are called constants. Let X be a set of variables. The set $T_{X, X}$ of all Σ-terms over X is inductively defined: $X \subseteq T_{X, X}$ and for all $n \geq 0$, $f \in \Sigma^n$. $t_1, \ldots, t_n \in T_{X, X}$. $f(t_1, \ldots, t_n) \in T_{X, X}$. We will denote $\text{Var}(s)$ for $s \in T_{X, X}$ as a set of variables in term s. Note that the set \mathcal{C} of circuits consists of terms over $\Sigma = \{ \land, \lor, 0, 1 \}$.

Position. The set of positions of term s is a set $\text{Pos}(s)$ of strings over the alphabet of positive integers, which is inductively defined as follows:

- If $s = x \in X$, $\text{Pos}(s) \overset{\text{def}}{=} \{ x \}$.
- If $s = f(s_1, \ldots, s_n)$, then $\text{Pos}(s) \overset{\text{def}}{=} \{ x \} \cup \bigcup_{i=1}^{n} \{ ip \mid p \in \text{Pos}(s_i) \}$.

Substitution. A $T_{X, X}$-substitution is a function $X \rightarrow T_{X, X}$. The set of all $T_{X, X}$-substitutions is denoted by $\text{Sub}(T_{X, X})$. Any $T_{X, X}$-substitution σ can be extended to a mapping $\widehat{\sigma} : T_{X, X} \rightarrow T_{X, X}$ as follows: for $s \in X$, $\widehat{\sigma}(x) \overset{\text{def}}{=} \sigma(x)$ and for any non-variable term $s = f(s_1, \ldots, s_n)$, $\widehat{\sigma}(s) \overset{\text{def}}{=} f(\widehat{\sigma}(s_1), \ldots, \widehat{\sigma}(s_n))$. With a slight of abuse of notation, we denote σ as just σ.

Term Rewriting. A Σ-identity (or simply identity) is a pair $(s, t) \in T_{X, X} \times T_{X, X}$. Identities will be written as $s \equiv t$. A term rewrite rule is an identity (l, r), written $l \rightarrow r$, such that $l \in X$ and $\text{Var}(r) \subseteq \text{Var}(l)$. A term rewriting system (Σ, E) consists of a set Σ of function symbols and a set E of term rewrite rules over $T_{X, X}$. We will often identify such a system with its rule set E, leaving Σ implicit. The rewrite relation \rightarrow_E on $T_{X, X}$ induced by a term rewriting system E.
is defined as follows:
\[s \rightarrow_{E} t \iff \exists l \rightarrow r \in E, p \in Pos(s), \sigma \in Sub(T_{L,X}). \]
\[s \mid p = \sigma(l), t = s[p \leftarrow \sigma(r)] \]

Example 2. Let \(E \overset{\text{def}}{=} \{ x \land (y \land z) \approx (x \land y) \land z, 1 \land x \approx x, x \land y \approx y \land x \} \). Then, \(1 \land (a \land 1) \rightarrow_{E} (1 \land a) \land 1 \rightarrow_{E} a \land 1 \rightarrow_{E} 1 \land a \rightarrow_{E} a. \)

Equational Theory. Let \(\overset{*}{\rightarrow} \) denote the reflexive-transitive-symmetric closure of \(\rightarrow_{E} \). The identity \(s \approx t \) is a semantic consequence of \(E \) (denoted \(E \models s \approx t \)) iff \(s \overset{*}{\rightarrow} t \). And the relation \(\overset{\text{def}}{=} \{ (s, t) \in T_{L,X} \times T_{L,X} \mid E \models s \approx t \} \) is called the *equational theory* induced by \(E \).

Example 3. The theory of commutativity for circuits is \(\overset{\text{def}}{=} \{ (s, t) \in C \times C \mid C \models s \approx t \} \) where \(C = \{ x \land y \approx y \land x, x \oplus y \approx y \oplus x \} \).

Example 4. Boolean ring theory is \(\overset{\text{def}}{=} \{ (s, t) \in C \times C \mid R \models s \approx t \} \) where
\[
R = \{ (x \oplus y \approx y \oplus x), (x \land y \approx y \land x), \}
\]
\[
(x \lor y) \approx x \lor (y \lor z),
\]
\[
(x \land y) \land z \approx x \land (y \lor z),
\]
\[
x \land x \approx x, x \lor x \approx x,
\]
\[
0 \lor x \approx x, 0 \land x \approx 0,
\]
\[
x \land (y \lor z) \approx (x \land y) \lor (x \land z),
\]
\[
1 \land x \approx x
\]

Boolean ring theory formalizes digital circuits. For any two circuits \(c_1, c_2 \), \(c_1 \overset{R}{\rightarrow} c_2 \) means they are semantically equivalent due to Birkhoff [6].

Example 5. The original circuit \(c \) and its optimized version \(c' \) in Section 3 are semantically equivalent because
\[
c = v_1 \land (1 \oplus (v_4 \land \neg((v_2 \land v_3))))
\]
\[
\overset{R}{\rightarrow} v_1 \lor (v_1 \lor (v_4 \land \neg((v_2 \land v_3))))
\]
\[
\overset{R}{\rightarrow} v_1 \lor ((v_1 \land v_4) \land \neg((v_3 \land v_2)))
\]
\[
\overset{R}{\rightarrow} ((v_1 \lor v_4) \land \neg((v_3 \land v_2))) \lor v_1
\]
\[
\overset{R}{\rightarrow} ((v_3 \land v_2)) \lor (v_1 \land v_4) \lor v_1 = c'
\]

E-Matching. A substitution \(\sigma \) is an \(E \)-matcher of two terms \(s \) and \(t \) if \(s \sigma = t \). Given two terms \(s \) and \(t \), an \(E \)-matching algorithm computes \(\{ \sigma \in Sub(T_{L,X}) \mid s \sigma = t \} \).

Example 6. Given two terms \(s = x \land y \) and \(t = (a \land b) \land (b \land a) \), \(C \)-matching algorithm returns two substitutions which are \(x \rightarrow a \land b, y \rightarrow b \land a \) and \(x \rightarrow b \land a, y \rightarrow a \land b \).

4.2 Learning Rewrite Rules

In this section, we describe how to learn rewrite rules using the divide-and-conquer approach described in Section 3. The method is inspired by the prior work [26], which uses syntax-guided synthesis to automatically transform a circuit into an equivalent and provably secure one.

4.2.1 The Overall Algorithm

The pseudocode is shown in Algo. 1. Here, \(c \) denotes an original training circuit, \(\theta \) denotes a threshold value for termination condition, \(n \) is an user-provided predefined limit for region selection. The algorithm generates an optimized circuit \(c' \), and returns a set \(E \) of rewrite rules collected in the process of optimization.

Our algorithm repeatedly identifies a circuit region and synthesizes a replacement. To identify a circuit region, we randomly choose a critical path and traverse the path from input-to-output. If the left and right children at a position have different depths, we include both gates in fan-in and recurse on the child of deeper depth. We repeat this process until the region size reaches a predefined limit. Once we successfully synthesize a replacement, we can decrease the overall depth if a unique critical path passes through the region. Otherwise, we decrease the number of parallel critical paths by one.

Our method first initializes \(c' \) to be the original circuit \(c \), \(E \) to be the empty set and the worklist \(W \) to be a set of critical positions, respectively (lines 1–3). The loop (lines 4–13) repeats the process of selecting a region and synthesizing a replacement. First, a critical position \(pos \) is chosen in the input-to-output order (line 5). Given a subcircuit at \(pos \), the GetRegion procedure is invoked to obtain a circuit region \(r \) such that \(|r| \leq n \) (line 6). The GetRegion procedure substitutes some subterms of a given circuit with fresh variables and returns the result along with the substitution. Section 4.2.2 will detail more on this procedure. Next, we invoke a SyGuS solver to synthesize a replacement for \(r \) (line 7). If a solution is found (line 8), we obtain a term rewrite rule \(r \rightarrow r' \). We generalize the rule by invoking the Normalize procedure, and add it into the set \(E \) (line 9). The old region \(r \) is replaced with the new region \(r' \) (line 10). Because the replacement step may change the overall structure of the
current circuit, we recompute critical positions and update the worklist (line 11). This process is repeated as long as there is room for improvement, and the ratio between the sizes of c' and c does not exceed the threshold value θ (line 4).

The ratio between the circuit sizes is considered because the depth reduction may not be beneficial if a new circuit c' additionally performs a huge number of AND/XOR operations. Although the multiplicative depth is the dominating factor for homomorphic evaluation performance, the number of operations can also have a non-trivial impact if it is enormous. The threshold value varies depending on the underlying FHE schemes. In our evaluation, we set θ to be 3. The algorithm eventually returns the set E of rewrite rules (line 14), which include all the transformations occurred while optimizing c into c'.

4.2.2 Region Selection. The GetRegion procedure for the region selection is shown in Alg. 2. The region selection method is heuristic based on our observation that replacing long and narrow regions covering critical paths often leads to significant optimization effects. If the given region size n is 1 or the given circuit region is a variable of a constant (i.e., $|c| = 1$) (line 2), we just represent the given circuit region as a fresh variable and return it along with the corresponding substitution (line 3). Otherwise (i.e., $|c| > 1$), we first let c_1 and c_2 be the left and right child of c, resp. (lines 5 - 6). If the depth of c_1 (or c_2 resp.) is deeper than the other (line 7 (line 10, resp.)), we keep extending the region in c_1 (or c_2, resp.) (line 8 (line 11, resp.), and substitute c_2 (c_1, resp.) with a fresh variable (line 9 (line 12, resp.)).

Example 7. Consider the circuit c_{ex} in (4). GetRegion(c_{ex}, 5) returns $\langle (r_1 \land e) \land f, \{ r_1 \mapsto ((a \land b) \land c) \land d \} \rangle$ (see Fig. 2(a)).

4.2.3 Synthesizing Replacement. Given a circuit region r, an upper bound n of desired multiplicative depths, and

\begin{algorithm}
\caption{GetRegion}
\begin{algorithmic}
\State \textbf{Input:} c: input boolean circuit region
\State \textbf{Input:} n: predefined size limit for regions
\State \textbf{Output:} r: a circuit region
\State \textbf{Output:} σ: a substitution from variables to circuits
\Line 1: $x \leftarrow$ a new fresh variable
\Line 2: if $n = 1$ or $|c| = 1$ then
\Line 3: \hspace{1em} return $\langle x, \{ x \mapsto c \} \rangle$
\Line 4: end if
\Line 5: $c_1 \leftarrow c \upharpoonright 1$
\Line 6: $c_2 \leftarrow c \upharpoonright 2$
\Line 7: if $\ell(c_1) > \ell(c_2)$ then
\Line 8: \hspace{1em} $\langle r', \sigma \rangle \leftarrow \text{GetRegion}(c_1, n-1)$
\Line 9: \hspace{1em} return $\langle c[1 \mapsto r', 2 \mapsto x], \sigma \{ x \mapsto c_2 \} \rangle$
\Line 10: else
\Line 11: \hspace{1em} $\langle r', \sigma \rangle \leftarrow \text{GetRegion}(c_2, n-1)$
\Line 12: \hspace{1em} return $\langle c[1 \mapsto x, 2 \mapsto r'], \sigma \{ x \mapsto c_1 \} \rangle$
\Line 13: end if
\end{algorithmic}
\end{algorithm}

\begin{itemize}
\item \textbf{Input:} c: input boolean circuit region
\item \textbf{Input:} n: predefined size limit for regions
\end{itemize}

a substitution σ, the function Synthesize returns a new semantically equivalent region r' of depth $\leq n$.

For $1 \leq i \leq n$, let x^i denote one of variables such that $\ell(x^i) = i$. We can formulate a SyGuS instance as follows. The syntactic specification for r' is

\begin{align*}
S & \rightarrow d_n \\
\{ d_n \rightarrow d_{n-1} \land d_n \mid d_n \oplus d_n \mid x^n \}
\end{align*}

\vdots

\begin{align*}
\{ d_0 \rightarrow 0 \mid 1 \mid x^0 \}
\end{align*}

where S denotes the start symbol and each d_i represents circuits of multiplicative depth $\leq i$. The semantics specification for r' enforces the equivalence of r and r':

$\forall x^0, \ldots , x^{n-1}, r(x^0, \ldots , x^{n-1}) \equiv r'(x^0, \ldots , x^{n-1}).$

When Synthesize fails to find a solution, it returns \bot.

Example 8. After selecting the region r_2 as in Example 7, we find a replacement for r_2 using the following formulation, hoping to reduce the depth from 5 to 4. The syntactic specification for r'_2 is

$S \rightarrow d_4$

$\{ d_4 \rightarrow d_3 \land d_5 \mid d_4 \oplus d_4 \mid d_5 \}
\end{align*}

\vdots

$\{ d_0 \rightarrow 0 \mid 1 \mid e \mid f \}$

and the semantics specification is the semantic equivalence with r_2. Note that r_1 is producible from d_3 because its depth is 3. Given this problem, a SyGuS solver (e.g., [3]) finds the solution $r_1 \land (e \land f)$ which has depth 4.

4.2.4 Collecting and Simplifying Rewrite Rules. When we obtain a rewrite rule $l \rightarrow r$, we simplify it by invoking the Normalize procedure (line 9 in Alg. 1). We normalize each rewrite rule $l \rightarrow r \in E$ as follows:

- Let $S = \{ (l|_{p_1}, r|_{p_2}) \mid p_1 \in \text{Pos}(l), p_2 \in \text{Pos}(r), l|_{p_1} \approx_C r|_{p_2} \}$.
- For each $(l|_{p_1}, r|_{p_2}) \in S$, we transform $l \rightarrow r$ into $l' \rightarrow r'$ where $l' = \sigma(l), r' = \sigma(r), \sigma = \{ l|_{p_1} \mapsto x, r|_{p_2} \mapsto x \}$, and x is a fresh variable. We transform the rule only if l' is semantically equivalent to r'.

We consider a term rewrite rule that cannot be further simplified by this procedure normalized modulo commutativity. Example 9. Suppose we want to normalize a rewrite rule:

$\frac{(a \land b) \land a \rightarrow (b \land a) \land b}{l}$

Note that $l \mid_1 = (a \land b) \approx_C r \mid_1 = (b \land a)$. If we replace the subterms $l \mid_1$ and $r \mid_1$ with a fresh variable x, we would obtain $x \land a \rightarrow x \land b$, which is undesirably semantics-changing. In this case, we do not replace the subterms.
4.3 Rule-based Circuit Optimization

Next, we describe our algorithm that uses the set E of (normalized) learned rewrite rules to optimize unseen circuits.

4.3.1 Our Term Rewriting System. Our term rewriting system is based on the following relation $\rightarrow_{E,\ell}$ induced by E (learned rewrite rules) and ℓ (the function computing the multiplicative depth).

$$s \rightarrow_{E,\ell} t \iff \exists l \in E, p \in CP(s), \sigma \in \text{Sub}(C),$$

$$s \mathrel{\mid} p \subseteq C \sigma(l), \ell(\sigma(l)) > \ell(\sigma(r)), t = s[p \leftarrow \sigma(r)].$$

Because our primary goal is to reduce the overall multiplicative depth, the above rewrite relation differs from the ordinary relation in Section 4.1 in three aspects.

First, we rewrite critical paths by considering only critical positions $CP(s)$ of a given circuit s. Rewriting non-critical paths are not of our interest.

Second, we admit a rewrite step only if it decreases the depth of a critical path. This condition is reflected in $\ell(\sigma(l)) > \ell(\sigma(r))$.

Lastly, we perform rewriting modulo commutativity to provide flexibility to the rewriting procedure. This is for maximizing the possibility of applying the learned rewrite rules for optimization. Instead of syntactically matching a left-hand side of a rule with a subterm as in the ordinary rewrite relation, each rewrite step requires C-matching, which is reflected in $s \mathrel{\mid} p \subseteq C \sigma(l)$. Here, a complication arises that there may be multiple C-matchers. In such a case, we choose the one that can reduce depth.

Example 10. Recall the rewrite rule (2) in Section 3

$$v_1 \land \neg(v_1 \land x) \rightarrow (x \land (v_1 \land v_4)) \oplus v_1.$$

and the target circuit (3) of depth 4

$$(v_5 \land v_6) \land \neg((v_7 \land v_8) \land \neg((v_8 \land v_9) \land (v_9 \land v_7))).$$

There are two substitutions that make l match with the target circuit: $\sigma_1 = \{v_1 \mapsto v_5 \land v_6, v_4 \mapsto v_7 \land v_8, x \mapsto \neg(v_8 \land v_9) \land (v_9 \land v_7)\}$ and $\sigma_2 = \{v_1 \mapsto v_5 \land v_6, v_4 \mapsto \neg(v_8 \land v_9) \land (v_9 \land v_7), x \mapsto v_7 \land v_8\}$. Applying the substitutions into r gives us two candidates for the replacement, which are

$$\sigma_1(r) = \neg((v_5 \land v_6) \land (v_9 \land v_7)) \land (v_5 \land v_6) \land (v_9 \land v_7) \oplus (v_5 \land v_6),$$

$$\sigma_2(r) = (v_5 \land v_6) \land (v_5 \land v_6) \land (v_9 \land v_7) \oplus (v_5 \land v_6).$$

Note that $\sigma_1(r)$ has depth 3 whereas $\sigma_2(r)$ has depth 4. Because only σ_1 can reduce the depth, we choose σ_1.

The following theorems ensure that our term rewriting system is semantics-preserving and terminating.

Theorem 1 (Soundness). $\forall c, c' \in C. c \rightarrow_{E,\ell} c' \Rightarrow c \simeq_R c'$.

Proof. Available in supplementary material.

Theorem 2 (Termination). $\rightarrow_{E,\ell}$ is a terminating relation.

Proof. Available in supplementary material.

Intuitively, termination is enforced because every rewrite step decreases the depth of a critical path. If the rewritten critical path is unique, we reduce the overall multiplicative depth of the circuit. Otherwise, we reduce the number of parallel critical paths. Because every circuit has at least one critical path of non-negative depth, the rewriting procedure eventually terminates.

Using the rewrite relation $\rightarrow_{E,\ell}$, given a circuit c, we perform term rewriting on c to obtain an optimized circuit c' such that $c \rightarrow_{E,\ell} c'$. At each rewrite step, we randomly choose a critical path and traverse the path to find a target region to be replaced. The traversal order is randomly chosen between the input-to-output and output-to-input orders. Similarly to Algo. 1, we stop the rewriting procedure when there are so many additional AND/XOR gates in c' that the depth reduction may not be beneficial.

4.3.2 Optimizations. In practice, we apply the following optimization techniques into the rewriting procedure.

Prioritizing Large Rewrite Rules. In the case where multiple rewrite rules are applicable, we choose the largest rule. The size of a rule $l \rightarrow r$ is simply measured by $|l|$. This heuristic is based on our observation that large rules are applicable less often than small rules, but they expedite transformation by modifying a wider area.

Bounded C-matching. From a performance perspective, the main weakness of our rewriting system is that each rewrite step requires C-matching, which is known to be NP-complete [36]. We limit the search space of C-matching algorithm by limiting the number of applications of commutativity rules (see supplementary material for details).

Term Graph Rewriting. So far, we have presented our method as if circuits are represented as functional expressions for ease of presentation. In practice, we cannot directly implement this kind of conventional term rewriting based on strings or trees because of an efficiency issue. For example, term rewrite rules such as (2) containing some variable more often on its right-hand side than on its left-hand side can increase the size of a term by a non-constant amount. This problem can be overcome by creating several pointers to a subterm instead of copying it.

For efficiency, we conduct term graph rewriting [41] on circuits. Term graph rewriting is a model for computing with graphs representing functional expressions. Graphs allow sharing common subterms, which improves the efficiency of conventional term rewriting in space and time. Thus, we represent circuits as graphs and perform rewriting on the graphs by translating term rewrite rules into suitable graph transformation rules. Term graph rewriting is sound with respect to term rewriting in that every graph transformation step corresponds to a sequence of applications of term rewrite rules. The interested reader is referred to [41] for
more details about the soundness proof and the translation method.

5 Evaluation

We implemented our method as a tool named Lobster. This section evaluates our Lobster system to answer the questions:

Q1: How effective is Lobster for optimizing FHE applications from various domains?
Q2: How does Lobster compare with existing general-purpose FHE optimization techniques?
Q3: What is the benefit of the rule normalization and equational matching for rule applications of Lobster?
Q4: What is the benefit of using learned rewrite rules?
Q5: How sensitive is Lobster to changes in a given training set?

All of our experiments were conducted on Linux machines with Intel Xeon 2.6GHz CPUs and 256G of memory.

5.1 Experimental Setup

Implementation. Lobster comprises three pieces: (i) an offline rule learner, (ii) an online circuit optimizer, and (iii) a homomorphic circuit evaluator. Lobster is written in OCaml and consists of about 3K lines of code.

The offline rule learner uses EUSolver [3], which is an open-source search-based synthesizer. We chose EUSolver among the general-purpose synthesizers that participated in the 2019 SyGuS competition [46] since the tool performs best for our optimization tasks. We use a timeout of one hour for synthesizing each rewrite rule.

The online circuit optimizer transforms Boolean circuits generated by CINGULATA [13], an open-source FHE compiler, into depth-optimized ones. CINGULATA first directly translates a given FHE application written in C++ into a Boolean circuit representation, and then heuristically minimizes the circuit area by removing redundancy using the ABC tool [12], which has been widely used for hardware synthesis. Then, our optimizer performs the rewriting procedure on the resulting circuit.

Circuits optimized by the online optimizer are evaluated by our homomorphic circuit evaluator built using HElib [32].4 When homomorphically evaluating circuits, we set the security parameter to 128 which is usually considered large enough. It means a ciphertext can be broken in the worst case time proportional to 2^{128}.

Benchmarks. First, our benchmarks comprise 25 FHE applications written using the CINGULATA APIs shown in Table 1. We first collected 64 benchmarks from the following three sources and ruled out 21 which are already depth-optimal and 18 which are out of reach for homomorphic evaluation because of the enormous circuit sizes.

- CINGULATA benchmarks – 9 FHE-friendly algorithms from diverse domains (medical diagnosis, stream cipher, search, sort) available in [21].
- Sorting benchmarks – four privacy-preserving sorting algorithms (merge, insertion, bubble, and odd-even) presented in [17].
- Hackers Delight benchmarks – 26 homomorphic bitwise operations adapted from [52], a collection of bit-twiddling hacks. We include these benchmarks because they can be potentially used as building blocks for efficient FHE applications that perform computations over fixed-width integers.
- EPFL benchmarks – 25 circuits from EPFL combinatorial benchmark suite [1]. The circuits are intendedly suboptimal to test the ability of circuit optimization tools.

We concluded the 21 benchmarks are depth-optimal based on empirical evidence. We could not mine any rules from their circuit representations even after 7 days of running the offline learner. This means that even the state-of-the-art synthesizer with practically unlimited time cannot find any improvement. 7 out of 9 CINGULATA benchmarks fall into this category since they are already carefully hand-tuned to be depth-optimal. 14 out of 26 Hackers Delight benchmarks have no room for improvement because their circuit representations are fairly simple. We excluded 18 circuits from EPFL benchmarks because they are out of reach for homomorphic evaluation even with the state-of-the-art FHE scheme [32]. Our homomorphic circuit evaluator runs out of memory for the circuits where the number of AND/XORs is greater than 10,000, or the multiplicative depth is larger than 100. All the FHE sorting algorithms can take up to 6 encrypted 8-bit integers as input.

Baseline. We compare Lobster to the work by Carpov et al. [14], which also aims at minimizing the multiplicative depth of circuits for homomorphic evaluation. The work is also based on term rewriting, but only with two hand-written rewrite rules. The first rule is based on AND associativity: $(x \land y) \land z \rightarrow x \land (y \land z)$. In a given circuit c, a substitution σ such that $\sigma((x \land y) \land z)$ is syntactically matched with a sub-circuit of c is found. The matched part $\sigma((x \land y) \land z)$ is replaced with $\sigma(x \land (y \land z))$ if $\ell(y) < \ell(x)$ and $\ell(z) < \ell(x)$. This rewrite rule, when applied into a critical path, reduces the depth by one from $\ell(\sigma(x)) + 2$ to $\ell(\sigma(x)) + 1$. The second rewrite rule is based on XOR distributivity: $(x \oplus y) \land z \rightarrow (x \land z) \oplus (y \land z)$. This rule does not affect the depth, but it can make the first rule applicable by clearing XOR operators away. The two rewrite rules repeatedly rewrite critical paths until a heuristic

\footnote{Learning to Optimize Boolean circuits using Synthesis & Term Rewriting}

\footnote{We could not use the homomorphic circuit evaluator provided by CINGULATA because it crashed for some of our evaluation benchmarks, which are fairly sizeable circuits.}
Table 1. Benchmark characteristics. \(\times\text{Depth}\) denotes the multiplicative depth. \#\text{AND} and \text{Size} give the number of AND operations and the circuit size, respectively.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>(\times\text{Depth})</th>
<th>#\text{AND}</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>cardio</td>
<td>medical diagnostic algorithm [16]</td>
<td>10</td>
<td>109</td>
<td>318</td>
</tr>
<tr>
<td>dsort</td>
<td>FHE-friendly direct sort [17]</td>
<td>9</td>
<td>708</td>
<td>1464</td>
</tr>
<tr>
<td>msort</td>
<td>merge sort [17]</td>
<td>45</td>
<td>810</td>
<td>1525</td>
</tr>
<tr>
<td>isort</td>
<td>insertion sort [17]</td>
<td>45</td>
<td>810</td>
<td>1525</td>
</tr>
<tr>
<td>bsort</td>
<td>bubble sort [17]</td>
<td>45</td>
<td>810</td>
<td>1525</td>
</tr>
<tr>
<td>osort</td>
<td>oddeven sort [17]</td>
<td>25</td>
<td>702</td>
<td>1343</td>
</tr>
<tr>
<td>hd-01</td>
<td>isolate the rightmost 1-bit [35]</td>
<td>6</td>
<td>87</td>
<td>118</td>
</tr>
<tr>
<td>hd-02</td>
<td>absolute value [35]</td>
<td>6</td>
<td>76</td>
<td>229</td>
</tr>
<tr>
<td>hd-03</td>
<td>floor of average of two integers (a clever impl.) [35]</td>
<td>5</td>
<td>27</td>
<td>64</td>
</tr>
<tr>
<td>hd-04</td>
<td>floor of average of two integers (a naive impl.) [52]</td>
<td>10</td>
<td>75</td>
<td>159</td>
</tr>
<tr>
<td>hd-05</td>
<td>max of two integers [35]</td>
<td>7</td>
<td>121</td>
<td>295</td>
</tr>
<tr>
<td>hd-06</td>
<td>min of two integers [35]</td>
<td>7</td>
<td>121</td>
<td>295</td>
</tr>
<tr>
<td>hd-07</td>
<td>turn off the rightmost contiguous string of 1-bits [35]</td>
<td>5</td>
<td>17</td>
<td>32</td>
</tr>
<tr>
<td>hd-08</td>
<td>determine if an integer is a power of 2 [35]</td>
<td>6</td>
<td>18</td>
<td>37</td>
</tr>
<tr>
<td>hd-09</td>
<td>round up to the next highest power of 2 [35]</td>
<td>14</td>
<td>134</td>
<td>236</td>
</tr>
<tr>
<td>hd-10</td>
<td>find first 0-byte [52]</td>
<td>6</td>
<td>35</td>
<td>73</td>
</tr>
<tr>
<td>hd-11</td>
<td>the longest length of contiguous string of 1-bits [52]</td>
<td>18</td>
<td>391</td>
<td>652</td>
</tr>
<tr>
<td>hd-12</td>
<td>number of leading 0-bits [52]</td>
<td>16</td>
<td>116</td>
<td>232</td>
</tr>
<tr>
<td>bar</td>
<td>barrel shifter [1]</td>
<td>12</td>
<td>3141</td>
<td>5710</td>
</tr>
<tr>
<td>cavlc</td>
<td>coding-cavlc [1]</td>
<td>16</td>
<td>655</td>
<td>1219</td>
</tr>
<tr>
<td>ctrl</td>
<td>ALU control unit [1]</td>
<td>8</td>
<td>107</td>
<td>180</td>
</tr>
<tr>
<td>dec</td>
<td>decoder [1]</td>
<td>3</td>
<td>304</td>
<td>312</td>
</tr>
<tr>
<td>i2c</td>
<td>i2c controller [1]</td>
<td>15</td>
<td>1157</td>
<td>1987</td>
</tr>
<tr>
<td>int2float</td>
<td>int to float converter [1]</td>
<td>15</td>
<td>213</td>
<td>386</td>
</tr>
<tr>
<td>router</td>
<td>lookahead XY router [1]</td>
<td>19</td>
<td>170</td>
<td>277</td>
</tr>
</tbody>
</table>

termination condition is satisfied. As the tool is not publicly available, we reimplemented their algorithm.9

5.2 Effectiveness of Lobster

Optimization Effect. We evaluate Lobster on the benchmarks and compare it with Carpov et al. [14]. Both of the tools are provided circuits initially generated by CINGULATA. We aim to determine whether Lobster can learn rewrite rules from training circuits and effectively generalize them for optimizing other unseen circuits. To this end, we conduct leave-one-out cross validation; for each benchmark, we use rewrite rules learned from the other remaining benchmarks. Both of the tools are given the timeout limit of 12 hours for the optimization tasks; in case of exceeding the limit, we use the best intermediate results computed so far. We measure reduction ratios of the multiplicative depth and speedups in overall homomorphic evaluation time (vs. initial CINGULATA-generated circuits).

The results are summarized in Fig. 3. More detailed information can be found in Table 2. Lobster is able to optimize 19 out of 25 benchmarks within the timeout limit. Lobster achieves 1.18x – 3.71x speedups with the geometric mean of 2.05x. The number of AND gates increases up to 2x more with the geometric mean of 1.17x. The depth reduction ratios range from 6.3% to 47.4% with the geometric mean of 21.9%. Note that the depth reduction ratios are generally proportional to performance improvements (but not exactly proportional since the number of AND operations also influences the performance).

We next study the results in detail. Most notably, Lobster achieves 2.45x and 1.34x speedups for the two CINGULATA benchmarks cardio and dsort, respectively. Recall that they are already carefully hand-tuned to be depth optimized. This result shows that our method provides significant performance gains that are complementary to those achieved by domain-specific optimizations. The four sorting benchmarks also observe significant performance improvements. Lobster reduces the depth by 20% for each of them. The osort benchmark shows a 2.4x speedup, and the other three benchmarks show 1.5x speedups. As of the Hacker’s Delight benchmarks, 7 out of 12 observe improvements. For hd-09, hd-11 and hd-12, we observe 1.32x – 1.64x speedups. In particular, the

9We use the “random” priority function because it slightly outperforms the “non-random” heuristics according to the results in [14].
Figure 3. Main results comparing the optimization performance of Lobster and Carpov et al [14] – Speedups in overall homomorphic evaluation time (left) (vs. initial Cingulata-generated circuits) and depth reduction ratios (right).

Table 2. Detailed main results. Opt. Time gives online optimization time. The timeout for optimization is set to 12 hours. #AND ↑ shows the ratio between the number of AND gates of the optimized circuit and the original one. Eval. Time shows homomorphic evaluation time (where '-' means that the evaluation time is the same as the original).

<table>
<thead>
<tr>
<th>Name</th>
<th>Original</th>
<th>Carpov et al [14]</th>
<th>LOBSTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>cardio</td>
<td>10 17m 14s</td>
<td>9 10s x1.07 10m 08s</td>
<td>8 24s x1.06 7m 02s</td>
</tr>
<tr>
<td>dsort</td>
<td>9 10m 52s</td>
<td>8 1m 25s x1.08 8m 29s</td>
<td>8 2m 31s x1.12 8m 08s</td>
</tr>
<tr>
<td>msort</td>
<td>45 5h 20m 59s</td>
<td>41 19m 39s x1.02 5h 00m 06s</td>
<td>36 8h 02m 06s x1.79 3h 33m 19s</td>
</tr>
<tr>
<td>isort</td>
<td>45 5h 20m 16s</td>
<td>45 5m 06s - -</td>
<td>36 8h 29m 58s x1.83 3h 38m 13s</td>
</tr>
<tr>
<td>bsort</td>
<td>45 5h 21m 46s</td>
<td>41 19m 04s x1.02 5h 06m 09s</td>
<td>36 7h 59m 44s x1.83 3h 39m 57s</td>
</tr>
<tr>
<td>osort</td>
<td>25 2h 16m 58s</td>
<td>25 1m 55s - -</td>
<td>20 7h 22m 20s x2.00 57m 06s</td>
</tr>
<tr>
<td>hd-01</td>
<td>6 4m 36s</td>
<td>6 1s - -</td>
<td>6 13s - -</td>
</tr>
<tr>
<td>hd-02</td>
<td>6 4m 50s</td>
<td>6 1s - -</td>
<td>6 21s - -</td>
</tr>
<tr>
<td>hd-03</td>
<td>5 1m 08s</td>
<td>5 1s - -</td>
<td>5 4s - -</td>
</tr>
<tr>
<td>hd-04</td>
<td>10 9m 06s</td>
<td>9 1s x1.00 7m 36s</td>
<td>8 10s x1.04 3m 20s</td>
</tr>
<tr>
<td>hd-05</td>
<td>7 6m 08s</td>
<td>7 5s - -</td>
<td>7 3m 28s - -</td>
</tr>
<tr>
<td>hd-06</td>
<td>7 6m 14s</td>
<td>7 4s - -</td>
<td>7 2m 30s - -</td>
</tr>
<tr>
<td>hd-07</td>
<td>5 1m 02s</td>
<td>5 1s - -</td>
<td>3 3s x0.76 24s</td>
</tr>
<tr>
<td>hd-08</td>
<td>6 2m 18s</td>
<td>5 1s x1.00 1m 03s</td>
<td>5 2s x1.00 1m 00s</td>
</tr>
<tr>
<td>hd-09</td>
<td>14 13m 03s</td>
<td>12 2s x1.10 9m 34s</td>
<td>10 1m 04s x1.32 7m 56s</td>
</tr>
<tr>
<td>hd-10</td>
<td>6 4m 24s</td>
<td>5 1s x1.03 2m 07s</td>
<td>5 3s x1.03 1m 25s</td>
</tr>
<tr>
<td>hd-11</td>
<td>18 33m 31s</td>
<td>17 2s x1.00 28m 30s</td>
<td>15 1m 18s x1.00 21m 40s</td>
</tr>
<tr>
<td>hd-12</td>
<td>16 22m 31s</td>
<td>15 1m 35s x1.00 18m 1s</td>
<td>15 26s x1.00 17m 04s</td>
</tr>
<tr>
<td>bar</td>
<td>12 5m 55s</td>
<td>12 59s - -</td>
<td>11 4h 49m 30s x0.96 48m 19s</td>
</tr>
<tr>
<td>cavlc</td>
<td>16 26m 35s</td>
<td>10 1m 48s x1.20 15m 1s</td>
<td>10 8m 48s x1.02 13m 06s</td>
</tr>
<tr>
<td>ctrl</td>
<td>8 3m 06s</td>
<td>6 3s x1.02 2m 44s</td>
<td>5 22s x1.12 1m 18s</td>
</tr>
<tr>
<td>dec</td>
<td>3 38s</td>
<td>3 1s - -</td>
<td>3 5s - -</td>
</tr>
<tr>
<td>i2c</td>
<td>15 51m 00s</td>
<td>9 2m 47s x1.08 21m 38s</td>
<td>8 16m 52s x1.05 15m 59s</td>
</tr>
<tr>
<td>int2float</td>
<td>15 15m 23s</td>
<td>9 10s x1.13 6m 30s</td>
<td>8 1m 05s x1.10 4m 09s</td>
</tr>
<tr>
<td>router</td>
<td>19 37m 26s</td>
<td>10 14s x1.31 12m 34s</td>
<td>10 1m 49s x1.12 12m 31s</td>
</tr>
</tbody>
</table>

Speedups for hd-04, hd-07, hd-08 and hd-10 are remarkable (2.7x, 2.6x, 2.3x and 3.1x, respectively). However, both of the two optimizers fail to optimize the other 5 benchmarks, which are relatively simple. Based on the fact that these
small and tricky algorithms are designed to efficiently perform computations on plaintexts, we suspect these benchmarks to be depth-optimal. As of the EPFL benchmarks, 6 out of 7 observe improvements. Both optimizers fail to optimize dec, which we suspect to be already depth-optimal. For bar, we observe 1.18x speedup. For the other benchmarks (cavlc, ctrl, i2c, int2float and router), LOBSTER achieves remarkable speedups (2.0x – 3.7x). The number of AND gates increases 1.17x more on average. For the 4 sorting benchmarks (m1,i,b,osort), we observe nearly 2x increases. For hd09, we observe 1.32x increase. For the other benchmarks, we observe negligible increases. The increases in the number of XOR gates is similar, with the geometric mean of 1.2x.

In terms of time spent for the optimization, LOBSTER successfully optimizes circuits within several minutes in most cases, with the exception of sizeable circuits such as the four sorting benchmarks and bar benchmark that require up to 8 hours.

Learning Capability. We investigate the learned rewrite rules. From all the benchmarks, our rule learner mines 186 rewrite rules. The rule sizes (the size of a rule \(l \rightarrow r\) is measured by \(|l|\)) range from 4 to 38. The average and median sizes are 12 and 11, respectively. The machine-found optimization patterns are surprisingly aggressive. For example, the following intricate rules enable to reduce the depth of a rewritten critical path by 1 when applied once (we denote \(1 \oplus c\) as \(\neg c\)).

\[
\begin{align*}
(v_1 \land (v_2 \land ((v_3 \oplus (v_4 \land v_5)) \oplus (v_6 \land v_5)))) \rightarrow \\
(((v_6 \oplus v_4) \land v_3) \oplus (v_2 \land v_1)) \\
((\neg((v_1 \land (\neg(v_2 \oplus v_3))) \oplus (v_2 \oplus v_3))) \land v_4) \rightarrow \\
(((\neg v_2) \oplus v_3) \land ((\neg v_1) \land v_4)) \\
((\neg((\neg(((v_1 \oplus v_3) \land v_3) \land v_4) \land v_5)) \oplus (v_2))) \rightarrow \\
(((v_2 \oplus v_1) \land v_3) \land (v_3 \land v_5) \oplus v_2) \\
((\neg((v_1 \oplus (v_2 \land v_3)) \oplus (v_4 \land v_3))) \land v_5) \rightarrow \\
(((v_2 \oplus v_4) \land (v_4 \lor v_3)) \oplus ((\neg v_1) \land v_5))
\end{align*}
\]

Next, we investigate how long it takes to learn rewrite rules. The offline learning algorithm (Algo. 1) is time consuming. The timeout limit for the offline learning is set to 168 hours (i.e., 1 week), and we use intermediate results (rules collected so far) when the budget expires. On average, the offline learning phase for each benchmark takes 125 hours. For dsort, hd01, hd02, hd03, hd10, ctrl and dec, the learning takes 1 ~ 46 hours. For router, it takes 129 hours. The other benchmarks takes 168 hours (i.e., the learner is forced to stop when the time budget expires).

5.3 Comparison to the Baseline

LOBSTER significantly outperforms the existing state-of-the-art [14] in terms of both optimization time and homomorphic evaluation time. Only 15 out of 25 benchmarks can be optimized by [14], whereas LOBSTER is able to optimize 19. The maximum speedup of [14] is 3.0x with the geometric mean of 1.58x. The maximum depth reduction ratio is 47.4% with the geometric mean of 15.7%.

We empirically observe that [14] often falls into the basin of local minima because its two rewrite rules can modify only a small area at a time. On the contrary, LOBSTER applies large rewrite rules and escapes local optima.

5.4 Efficacy of Reusing Learned Rewrite Rules

To investigate the benefit of reusing learned rewrite rules, we compare LOBSTER to a simpler method that uses the offline rule learner as an on-the-fly optimization synthesizer. The timeout limit for optimization is again set to 12 hours, and we use the best intermediate results when the budget expires.

Fig. 4 summarizes the results. The synthesis-based optimizer can optimize only 12 benchmarks within the timeout limit. Furthermore, in all the 12 benchmarks, the depth reduction ratio is less than that of LOBSTER that reuses learned rewrite rules. That is due to its limited scalability; if the synthesis-based optimizer is given 7 days, it can achieve optimization effects similar to LOBSTER’s. Such enormous optimization costs are mainly due to the inability to prove unrealizability (i.e., no solution) of attempts of optimizing already depth-optimal circuit regions. In such cases, the synthesizer wastes the timeout limit of 1 hour. On the contrary, LOBSTER can avoid such situations by giving up cases beyond the reach of previously learned rules.

5.5 Efficacy of Equational Rewriting

We now evaluate the effectiveness of design choices made in LOBSTER– the rule normalization and equational term rewriting. We compare LOBSTER with its variant without the two techniques. In other words, the variant uses syntactic
5.1 Normalization + Equational matching

are testing benchmarks, and the other 11 benchmarks are training benchmarks. As can be seen in Fig. 6 that summarizes the results, the smaller set of training programs does not lead to significant performance degradation. The cardio, cavlc, i2c, int2float and router benchmarks observe optimization effects less powerful than before, but the other benchmarks remain the same. We conclude that overall, the performance of Lobster is not sensitive to changes in a given set of training programs.

5.6 Sensitivity to Changes in a Training Set

We now investigate the effects of changing the number of training programs. We have conducted 2-fold cross validation; for each of four benchmark categories (Cingulata, Sorting, HD, EPFL), we used rules learned from the smaller half and applied them to the other larger half, and compare with the result of leave-one-out cross validation. The 14 benchmarks on the x-axis in Fig. 6 are testing benchmarks, and the 11 benchmarks are training benchmarks. As can be seen in Fig. 6 that summarizes the results, the smaller set of training programs does not lead to significant performance degradation. The cardio, cavlc, i2c, int2float and router benchmarks observe optimization effects less powerful than before, but the other benchmarks remain the same. We conclude that overall, the performance of Lobster is not sensitive to changes in a given set of training programs.

6 Related Work

FHE Compilers. FHE compilers [4, 15, 22, 23] allow programmers to easily write FHE applications without detailed knowledge of the underlying FHE schemes. These compilers also provide optimizations for reducing the multiplicative depth of the compiled circuits. However, the optimization rules used by modern FHE compilers are hand-written, which requires manual effort and is likely to be sub-optimal. In this paper, we aimed to automatically generate optimization rules that can be used by existing compilers.

Cingulata [15] is an open-source compiler that translates high-level programs written in C++ into boolean circuits. Cingulata also supports optimization of circuits for reducing multiplicative depth. It uses ABC [12], an open-source boolean circuit optimizer. Cingulata also uses more advanced, yet hand-written, circuit optimization techniques specially designed for minimizing multiplicative depth [5, 14]. In particular, the multi-start heuristic by Carpov et al. [14], which we used for comparison with Lobster in Section 5, shows a significant reduction in multiplicative depths for their benchmarks. However, we note that the benchmark circuits used in [14] are “intendedly suboptimal to test the ability of optimization tools” [1]. By contrast, the benchmarks used in this paper include circuits that are already carefully optimized in terms of FHE evaluation as explained in Section 5.1, thereby leaving relatively small room for depth reduction. We observe the heuristic in [14] does not perform very well for such a hard optimization task. We recently implemented Aubry et al. [5] and observed that Aubry et al. [5] is slightly better than Carpov et al. [14] (16.9% vs. 15.7% in terms of geometric mean of depth reduction ratio) for our benchmarks.

RAMPARTS [4] is a compiler for translating programs written in Julia into circuits for homomorphic evaluation. It optimizes the size and multiplicative depth of the circuits using symbolic execution. It also automatically selects the parameters of FHE schemes and the plain text encoding for input values. RAMPARTS uses a number of hand-written circuit optimization rules for reducing multiplicative depth.

ALCHEMY [22] is a system that provides domain-specific languages and a compiler for translating high-level plaintext
programs into low-level ones for homomorphic evaluation. The compiler automatically controls the ciphertext size and noise by choosing FHE parameters, generating keys and hints, and scheduling maintenance operations. The domain-specific languages are statically typed and are able to check the safety conditions that parameters should satisfy.

CHET [23] is a domain-specific compiler for FHE applications on neural network inference. It enables a number of optimizations automatically but they are specific to tensor circuits, e.g., determining efficient tensor layout, selecting good encryption parameters, etc. By contrast, our technique is domain-unaware and does not rely on a limited set of hand-written rules.

Superoptimization. Similar to ours, existing superoptimizers [7, 13, 33, 42, 43] for traditional programs are able to learn rewrite rules automatically. The major technical difference, however, is that we use equational matching, rather than syntactic matching, to maximize generalization.

Bansal and Aiken [7] present a technique for automatically constructing peephole optimizers. Given a set of training programs, the technique learns a set of replacement rules (i.e. peephole optimizers) using exhaustive enumeration. The correctness of the learned rules is ensured by a SAT solver. The learned rules are stored in an optimization database and used for other unseen programs via syntactic pattern matching. Optgen [13] is also based on enumeration for generating peephole optimization rules that are sound and complete up to a certain size by generating all rules up to the size and checking the equivalence by an SMT solver. Souper [42] is similar to [7] but is based on a constraint-based synthesis technique and targets a subset of LLVM IR. STOKE [33, 43] uses a stochastic search based on MCMC to explore the space of all possible program transformations for the x86-64 instruction set.

Program Synthesis. Over the last few years, inductive program synthesis has been widely used in various application domains (e.g. [26–29, 45, 51, 53]). In this work, we use inductive synthesis to minimize multiplicative depth of boolean circuits. To our knowledge, this is the first application of program synthesis for efficient homomorphic evaluation. Our work has been inspired by the work by Eldib et al. [26], where syntax-guided synthesis and static analysis are used to automatically transform a circuit into an equivalent and provably secure one that is resistant to a side-channel attack.

Term Rewriting. Term rewriting has been widely used in program transformation systems (e.g. [9, 11, 47, 48, 56]). The previous rewrite techniques rely on hand-written rules that require domain expertise, whereas this work uses automatically synthesized rewrite rules. For example, Chiba et al. [20] presented a framework of applying code-transforming templates based on term rewriting, where programs are represented by term rewriting systems and transformed by a set of given rewrite rules (called templates). Visser et al. [50] used term rewriting in ML compilers and presented a language for writing rewriting strategies. In this work, we focus on a different application domain of term rewriting (i.e. homomorphic evaluation) and provide a novel idea of learning and using rewrite rules automatically.

7 Conclusion

In this paper, we presented a new method for optimizing FHE boolean circuits that does not require any domain expertise and manual effort. Our method first uses program synthesis to automatically discover a set of optimization rules from training circuits. Then, it performs term rewriting on the new, unseen circuit based on the equational matching to maximally leveraging the learned rules. We demonstrated the effectiveness of our method with 18 FHE applications from diverse domains. The results show that our method achieves sizeable optimizations that are complementary to existing domain-specific optimization techniques.

Acknowledgments

This work was partially supported by Korea Institute for Information & Communications Technology Promotion (No. 2017-0-00616), National Research Foundation of Korea (No. 2019R1G1A1100293, No. 2020R1C1C1014518, No. 21A2101511-13068, & No. 2017M3C4A7068175), Samsung Electronics (No. SRFC-IT1502-53), SK Hynix (No. 0536-20190093) and Hanyang University (No. HY-2018).

References

