
174

Inductive Program Synthesis via Iterative Forward-Backward

Abstract Interpretation

YONGHO YOON, Seoul National University, Korea

WOOSUK LEE∗, Hanyang University, Korea

KWANGKEUN YI, Seoul National University, Korea

A key challenge in example-based program synthesis is the gigantic search space of programs. To address this

challenge, various work proposed to use abstract interpretation to prune the search space. However, most of

existing approaches have focused only on forward abstract interpretation, and thus cannot fully exploit the

power of abstract interpretation. In this paper, we propose a novel approach to inductive program synthesis

via iterative forward-backward abstract interpretation. The forward abstract interpretation computes possible

outputs of a program given inputs, while the backward abstract interpretation computes possible inputs of a

program given outputs. By iteratively performing the two abstract interpretations in an alternating fashion,

we can effectively determine if any completion of each partial program as a candidate can satisfy the input-

output examples. We apply our approach to a standard formulation, syntax-guided synthesis (SyGuS), thereby

supporting a wide range of inductive synthesis tasks. We have implemented our approach and evaluated it

on a set of benchmarks from the prior work. The experimental results show that our approach significantly

outperforms the state-of-the-art approaches thanks to the sophisticated abstract interpretation techniques.

CCS Concepts: • Software and its engineering→ Programming by example; Automatic programming;

• Theory of computation→ Abstraction; Program analysis.

Additional Key Words and Phrases: Program Synthesis, Programming by Example, Abstract Interpretation

ACM Reference Format:

Yongho Yoon, Woosuk Lee, and Kwangkeun Yi. 2023. Inductive Program Synthesis via Iterative Forward-

Backward Abstract Interpretation. Proc. ACM Program. Lang. 7, PLDI, Article 174 (June 2023), 25 pages.

https://doi.org/10.1145/3591288

1 PROBLEM AND OUR APPROACH

Inductive program synthesis aims to synthesize a program that satisfies a given set of input-output
examples. The popular top-down search strategy is to enumerate partial programs with missing
parts and then complete them to a full program.
Though such a strategy is effective for synthesizing small programs, it hardly scales to large

programs without being able to rapidly reject spurious candidates due to the exponential size of
the search space.
Therefore, various techniques have been proposed to prune the search space [Feng et al. 2017;

Gulwani 2011; Lee 2021; Polikarpova et al. 2016; Wang et al. 2017a]. In particular, abstract inter-
pretation [Cousot 2021; Rival and Yi 2020] has been widely used for pruning the search space

∗Corresponding author

Authors’ addresses: Yongho Yoon, yhyoon@ropas.snu.ac.kr, Seoul National University, Dept. of Computer Science &

Engineering, Korea; Woosuk Lee, woosuk@hanyang.ac.kr, Hanyang University, Dept. of Computer Science & Engineering,

Korea; Kwangkeun Yi, kwang@ropas.snu.ac.kr, Seoul National University, Dept. of Computer Science & Engineering, Korea.

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/6-ART174

https://doi.org/10.1145/3591288

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 174. Publication date: June 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0009-0005-4962-0416
HTTPS://ORCID.ORG/0000-0002-1884-619X
HTTPS://ORCID.ORG/0009-0007-5027-2177
https://doi.org/10.1145/3591288
https://orcid.org/0009-0005-4962-0416
https://orcid.org/0000-0002-1884-619X
https://orcid.org/0009-0007-5027-2177
https://doi.org/10.1145/3591288

174:2 Yongho Yoon, Woosuk Lee, and Kwangkeun Yi

Fig. 1. High-level architecture of our synthesis algorithm.

of inductive program synthesis [Feng et al. 2017; Singh and Solar-Lezama 2011; So and Oh 2017;
Wang et al. 2017a,b]. There are two kinds of abstract interpretation: forward abstract interpretation
that simulates program executions and backward abstract interpretation that simulates reverse
executions.
Most of the previous methods are solely based on forward abstract interpretation. They sym-

bolically execute each partial program using their abstract semantics and compute a sound over-
approximation of all possible outputs of programs derivable from the partial program. If the
over-approximated output does not subsume the desired output, the program can be safely dis-
carded.
However, forward abstract interpretation alone is not sufficient because it just tells us the

feasibility of a partial program, but not about how to complete it. Backward abstract interpretation,
on the other hand, can be used to derive necessary preconditions for the missing parts of a partial
program.
In this paper, we propose a new abstract interpretation-based pruning method for inductive

program synthesis that uses both forward and backward reasoning in an iterative manner. For
each partial program with missing expressions, a forward analysis computes (over-approximated)
invariants over the program’s final outputs and the results of intermediary operations from the
given input examples. Based on the result of the forward analysis and the desired output examples,
a backward analysis computes necessary preconditions that must be satisfied by the missing expres-
sions in order for the program to produce the desired output. These two analyses are synergistically
combined in a way that the result of one analysis refines the result of the other, and are iterated
until convergence. If any of the necessary preconditions cannot be satisfied, the partial program is
discarded because it cannot produce the desired output.

Fig. 1 depicts the overall architecture of our synthesis algorithm, inspired by a recently proposed
synthesis strategy [Lee 2021]. The algorithm takes synthesis specification comprising input-output
examples, initial partial programs with missing parts as input. Additionally, it requires an abstract
domain designed by domain experts that characterizes the abstract semantics of the target language.
Our algorithm consists of three key modules, namely Bottom-up enumerator, Necessary precondition
generator, and Composer :

• Bo�om-up enumerator: Given input-output examples and a number = which is initially 1,
the bottom-up enumerator generates components. The components are expressions (of size
≤ =) that are to be used to complete the missing parts of partial programs. The bottom-up
enumerator exhaustively generates components of the size bound modulo observational
equivalence.
• Necessary precondition generator: Given a partial program with missing parts, the nec-
essary precondition generator computes necessary preconditions that must be satisfied by
the missing expressions in order for the program to satisfy the specification. To do so, it

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 174. Publication date: June 2023.

Inductive Program Synthesis via Iterative Forward-Backward Abstract Interpretation 174:3

iteratively performs a forward and a backward abstract interpretations. The resulting nec-
essary precondition maps each missing expression to abstract values, which represent an
over-approximation of the possible values that the missing expression is allowed to generate
in order for the program to satisfy the specification.
• Composer: Given a partial program annotated with necessary preconditions and components,
the composer selects which hole to fill with which component and generates a new partial
program. When putting a component in a missing part, the composer checks if the necessary
precondition of the missing part is satisfied by the component. If no component satisfies
any of the necessary preconditions, the partial program is discarded. If a solution cannot be
found until all the combinations of components and missing parts are tried, the current set
of components is determined to be insufficient. In this case, the bottom-up enumerator is
invoked to add larger components (by increasing =), and the process is repeated.

Our algorithm is guaranteed to find a solution if it exists because the Bottom-up enumerator will
eventually generate components to complete the synthesis that satisfies the input-output examples.

We have applied our approach to the SyGuS [Alur et al. 2013] specification language. SyGuS is a
standard formation that has established various synthesis benchmarks through annual competi-
tions [Past SyGuS Competition 2020]. SyGuS employs a formal grammar to describe the space of
possible programs. Such a grammar is expressible in some SMT theory. We devise highly precise
abstract domains specialized for the operators in theories of bitvectors and SAT. By targetting the
standard formulation, our synthesis algorithm is applicable for a broad class of SyGuS problems
with arbitrary grammars in those theories.

We implemented our algorithm in a tool called Simba. We evaluated Simba on a set of 5 bench-
marks from the prior work on various applications: 500 benchmarks from program deobfuscation
[David et al. 2020], 369 benchmarks from program optimization [Lee et al. 2020], and 1006 bench-
marks from the SyGuS competition (synthesizing side-channel resistant circuits and bit-twiddling
tricks) [Past SyGuS Competition 2020]. Our evaluation results show that Simba is more scalable
than the state-of-the-art tools for inductive SyGuS problems Duet [Lee 2021] and Probe [Barke
et al. 2020]. For example, for the 544 non-conditional bitvector-manipulation problems, Simba is
able to solve 519 problems in less than 34.8 seconds on average per problem, compared to only 456
and 409 by Duet and Probe using 165.3 and 63.7 seconds on average, respectively. Simba provides
significant speedup over the state-of-the-art tools.
We summarize the main contributions of our work:

• A novel and general synthesis algorithm that prunes the search space effectively by using
both forward and backward abstract interpretation: Unlike existing synthesis algorithms, our
algorithm uses both forward and backward reasoning thus fully exploit the power of abstract
interpretation to prune the search space.
• A highly precise abstract domain for bitvectors and SAT: We devise precise forward and
backward abstract transfer functions for bitvector and boolean operators. The resulting
abstract domains are highly precise and can be used for inductive SyGuS problems with
arbitrary grammars in the theories of bitvectors and SAT.
• Implementation and evaluation of our algorithm: We implemented our algorithm in a tool
called Simba and evaluated it on a set of 5 benchmarks from a variety of applications.
The results show significant performance gains over the existing state-of-the-art synthesis
techniques.

Limitations. Our method requires a highly precise abstract domain for the target application. In
this paper, we have shown that our algorithm is effective for synthesizing bit-vector and Boolean

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 174. Publication date: June 2023.

174:4 Yongho Yoon, Woosuk Lee, and Kwangkeun Yi

expressions thanks to our highly precise abstract domains. However, whether our algorithm is
effective for other applications (e.g., synthesizing programs with loops, or synthesizing string-
manipulating programs) remains an open question. We discuss possible directions for future work
in Section 7.

2 OVERVIEW

We illustrate our method on the problem of synthesizing a bit-manipulating program. The desired
program is a function 5 that takes as input a bit-vector of fixed-width 4 denoted G and turns off all
bits left to the rightmost 0-bit in G . Let us represent bit-vectors as binary numbers. For example,
given a bit-vector 10112, the function is supposed to return 00112.
This problem is represented in SyGuS language, which formulates a synthesis problem as a

combination of a syntactic specification and a semantic specification. The syntactic specification
for 5 is the following grammar:

(→ G | 00012 input bit-vector and bit-vector literals
| (∧ (| (∨ (| (⊕ (bitwise logical binary operators
| (+ (| (× (| (/(| (>> (bitwise arithmetic binary operators

where (is the start non-terminal symbol, and the operators are the ones supported in the theory of
bit-vectors (⊕ denotes the bitwise exclusive-or operator and >> denotes the arithmetic right shift
operator where the leftmost bits are filled with the most significant bit of the left operand). The
semantic specification for 5 follows the programming-by-example (PBE) paradigm and comprises
input-output examples. For ease of exposition, we assume only one input-output example is given:
5 (10112) = 00112. A solution to the synthesis problem is 5 (G) = ((G + 00012) ⊕ G) >> 00012.

Abstract Domain. In our abstract interpretations we use the following abstract domain of bit-
vectors to represent the abstract semantics of the program. The bitwise domain is a set of elements
each of which is a sequence of abstract bits of length 4. Each abstract bit has a value from the set
{0, 1,⊥,⊤} where ⊤ represents the unknown value and ⊥ represents no value. The domain has
abstract operators for the bitwise logical and arithmetic operators. The abstract operators simulate
the behaviors of the concrete operators in the abstract domain. From now on, we denote each
abstract operator in this domain by the corresponding concrete operator with a superscript #. For
example, 1⊤10 ∧# 00⊤⊤ = 00⊤0.

Generation of Initial Partial Programs. We first generate a fixed set & of partial programs
which have one or more non-terminal symbols as placeholders. Starting from the start symbol (,
we exhaustively generate all possible partial programs by applying the production rules of the
grammar to non-terminal symbols up to a certain depth. In this example, for illustration purpose,
we assume that the & set has three partial programs:

& = {((⊕ G) >> 00012, ((/G) >> 00012, (1 × (2}

Component Generation. The component generator then generates a set � of components by
the bottom-up enumerative search, which maintains a set of complete programs and progressively
generates new programs by composing existing ones. The set of components consists of expressions
of size ≤ = where = is the size upperbound which is initially 1. This upperbound is increased by
1 whenever the current set of components is insufficient to synthesize a solution. The number
of components is potentially exponential to =, but we can reduce the number of components by
exploiting observational equivalence of expressions. For example, if G is in the component set,

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 174. Publication date: June 2023.

Inductive Program Synthesis via Iterative Forward-Backward Abstract Interpretation 174:5

G ∨ 00002 is not added to the set because they are observationally equivalent. Because initially
= = 1, the component set is

� = {G, 00012}.

These components are used to complete the missing parts (i.e., nonterminals) of the partial programs
in & in the following composition phase.

Derivation of Necessary Preconditions. Before we start the composition phase, we derive a
necessary precondition over each subexpression (including nonterminals) of the partial programs
in & using forward and backward analyses using the abstract domain. A necessary precondition
is represented as an element in the bitwise abstract domain. The followings are the derivation of
necessary preconditions for the partial programs in & .

• (1 × (2 (necessary preconditions: (1 ↦→ ⊤⊤⊤⊤, (2 ↦→ ⊤⊤⊤⊤): We first perform a forward
analysis on the partial program to obtain invariants over the program’s final output and the
results of intermediary operations. The nonterminals can be replaced by any expressions, so
the abstract output of both nonterminals is ⊤⊤⊤⊤. Thus, the abstract output of the entire
program is ⊤⊤⊤⊤. Now we check the feasiblity of the partial program by checking whether
the abstract output of the partial program is consistent with the desired output example. This
check can be simply done by applying the meet operator (⊓) to the abstract output of the
partial program and the abstraction of the desired output. Because the result does not contain
⊥ (⊤⊤⊤⊤ ⊓ 0011 = 0011), the partial program is feasible. Now the backward analysis can
be performed to obtain necessary preconditions over the non-terminals. From the desired
output 00112, considering possible overflows in the multiplication, (1 and (2 can be any value.
Therefore, the necessary precondition of (1 (and (2) is ⊤⊤⊤⊤.
• ((⊕ G) >> 00012 (necessary precondition: (↦→ 110⊤): By the forward analysis, the abstract
output of ((⊕ G) is ⊤⊤⊤⊤, and the abstract output of ((⊕ G) >> 00012 is ⊤⊤⊤⊤ >>

#

0001 = ⊤⊤⊤⊤. Now we check the feasiblity of the partial program. Becaues the result is not
inconsistent with the desired output (⊤⊤⊤⊤ ⊓ 0011 = 0011), the partial program is feasible.
Now the backward analysis is performed. From the desired output 00112, we can derive the
necessary precondition over ((⊕ G) as 011⊤ because 011⊤ >>

0001 = 0011. The necessary
precondition over (is 110⊤ because, for the input 10112 for G , 110⊤ ⊕

1011 = 011⊤.
• ((/G) >> 00012 (the program is infeasible): By the forward analysis, the abstract output
of ((/G) is 000⊤. That is because from the fact that the maximum possible value of (is
11112 (which is 15 in decimal) and the input G ’s value is 10112 (which is 11 in decimal), the
possible values of ((/G) are 0 and 1, which is represented as 000⊤ in the bitwise domain. The
abstract output of ((/G) >> 00012 is 0000 because 000⊤ >>

0001 = 0000. Now we check the
feasiblity of the partial program. Because the result is inconsistent with the desired output
(0000 ⊓ 0011 = 00⊥⊥), the partial program is infeasible.

As shown in the above, the partial program ((/G) >> 00012 is determined to be infeasible. Only
the other two partial programs will be considered in the composition phase.

Composition Process. Given the partial programs in & with necessary preconditions and the
set � of components, the composer generates new (partial) programs by replacing non-terminal
symbols in the partial programs with components.

The composer first chooses ((⊕G) >> 00012. It then searches for a component 2 in� = {G, 00012}
such that the necessary precondition over (is subsumed by the abstract output of 2 . There is no such
component because the necessary precondition 110⊤ is not subsumed by neither of the abstract
outputs of G (1011) and 00012 (0001). Therefore, the composer discards the partial program.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 174. Publication date: June 2023.

174:6 Yongho Yoon, Woosuk Lee, and Kwangkeun Yi

The next partial program is (1 × (2. Suppose the composer replaces (1 with G , obtaining a new
partial program G × (2. Whenever a new partial program is generated, the necessary precondition
generator is invoked to derive necessary preconditions over the non-terminals. Because the multi-
plication operation is modulo 24, computing the necessary precondition over (2 amounts to solving
the following equation:

10112 × ~ = 00112 mod 16

where ~ represents the unknown value of (2. Using the extended Euclidean algorithm, we can find
the solution to the equation as ~ = 10012. Thus, the necessary precondition over (2 is 1001. Unfor-
tunately, there is no component in � whose abstract output subsumes the necessary precondition.
Therefore, the composer discards the partial program.

Because the composer exhausts all the partial programs in& without finding a solution, it invokes
the component generator to generate more components.
Next, suppose the component generator generates components of size ≤ 3 resulting in � =

{G, 00012, G + 00012, · · · }.
The composer revisits the partial program ((1 ⊕ G) >> 00012. Recall the necessary precondition

over (1 is 110⊤. Now the component G + 00012 whose output is 11002 satisfies the necessary
precondition. Therefore, the composer replaces (1 with G + 00012 to obtain a new program ((G +
00012) ⊕ G) >> 00012. After evaluation of the program, the composer finds that the program is
correct and returns it as a solution.
The rest of the paper is organized as follows. Section 3 introduces preliminary concepts and

describes our overall synthesis algorithm. Section 4 presents our abstract domains specialized for
the theories of bitvectors and Boolean logic. Section 5 presents our experimental results. Section 6
discusses related work. Section 7 discusses future work. Section 8 concludes.

3 OVERALL SYNTHESIS ALGORITHM

In this section, we formulate our method. We first introduce preliminary concepts including
terms, regular tree grammars, and syntax-guided synthesis over a finite set of examples. We then
present our generic synthesis algorithm, which is based on iterative forward-backward abstract
interpretation.

3.1 Preliminaries

Term A signature Σ is a set of function symbols, where each 5 ∈ Σ is associated with a non-
negative interger =, the arity of 5 (denoted 0A8C~ (5)). For = ≥ 0, we denote the set of all n-ary
elements Σ by Σ

(=) . Function symbols of 0-arity are constants. Let + be a set of variables. The
set)Σ,+ of all Σ-terms over + is inductively defined; + ⊆)Σ,+ and ∀= ≥ 0, 5 ∈ Σ

(=) . C1, · · · , C= ∈
)Σ,+ . 5 (C1, · · · , C=) ∈)Σ,+ . A term can be viewed as a tree.

Position The set of positions of term B is a set Pos(B) of strings over the alphabet of natural
numbers, which is inductively defined as follows:

• If B = G ∈ + , Pos(B) = {n}.
• If B = 5 (B1, · · · , B=), then Pos(B) = {n} ∪

⋃=
8=1{8? | ? ∈ Pos(B8)}.

The position n is called the root position of term B . For ? ∈ Pos(B), the subterm of B at position ? ,
denoted by B |? , is defined by (i) B |n= B and (ii) 5 (B1, · · · , B=) |8@= B8 |@ . For ? ∈ Pos(B), we denote
by B [? ← C] the term that is obtained from B by replacing the subterm at position ? by C . Formally,
B [n ← C] = C and 5 (B1, · · · , B=) [8@ ← C] = 5 (B1, · · · , B8 [@ ← B], · · · , B=).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 174. Publication date: June 2023.

Inductive Program Synthesis via Iterative Forward-Backward Abstract Interpretation 174:7

Algorithm 1 The Simba Algorithm

Require: A SyGuS instance ⟨�,Φ =
⋃<

9=1{8 9 ↦→ > 9 }⟩ where each 8 9 , > 9 ∈ �

Require: Abstract domain �̂ such that P (�)
W

←−−−−−−−−−−−−−−−−→U
�̂

Require: An integer 3 for the maximum height of the partial programs

Ensure: A solution program % ∈ !(�) that satisfies Φ
1: & := GenerateSketches(�,3)
2: = := 1

3: C := ∅
4: repeat

5: & ′ := &

6: C := GenerateComponent(�,C, =) ⊲ C : # → P (!(�))
7: while & ′ is not empty do

8: remove % from & ′

9: if IsComplete(%) and % |= Φ then return %

10: else

11: A := Analyze(%,Φ) ⊲ A : Pos(%) → �̂<

12: if ∃? ∈ Pos(%) . ⊥
�̂
∈ A(?) then continue

13: ?>B := Pick(Holes(%)) ⊲ ?>B ∈ Pos(%)
14: for 2 ∈ C(% |?>B) s.t. ⟨U (⟦2⟧ (81)), · · · , U (⟦2⟧ (8<))⟩ ⊑ A(?>B) do
15: & ′ := & ′ ∪ {% [?>B ← 2]}
16: end for

17: end if

18: end while

19: = := = + 1
20: until false

Regular Tree Grammar. A regular tree grammar is a tuple � = (#, Σ, (, X) where # is a finite
set of nonterminal symbols (of arity 0), Σ is a signature, (∈ # is an initial nonterminal, and X is a
finite set of productions of the form �0 → f (8) (�1, · · · , �8) where each � 9 ∈ # is a nonterminal.
Given a tree (or a term) C ∈)Σ,+ , applying a production A = �→ V into C replaces an occurrence
of � in C with the right-hand side V . A tree C ∈)Σ,+ is generated by the grammar � iff it can be
obtained by applying a sequence of productions A1, · · · , A= to the tree of which root node represents
the initial nonterminal (. All the trees that can be derived from (are called the language of � and
denoted by !(�).

Inductive Syntax-Guided Synthesis The syntax-guided synthesis problem [Alur et al. 2013] is
a tuple ⟨�,Φ⟩. The goal is to find a program % that satisfies a given specification Φ in a decidable
theory. Programs must be written in a language !(�) described by a regular-tree grammar � .
In particular, we say a SyGuS instance is inductive if the specification is a set of input-output
pairs Φ =

⋃<
9=1{8 9 ↦→ > 9 } where 8 9 and > 9 are values

1. Assuming a deterministic semantics ⟦%⟧ is

assigned to each program % in !(�), the goal is to find a program % such that ⟦%⟧ (8) = > for all
8 ↦→ > ∈ Φ (denoted % |= Φ).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 174. Publication date: June 2023.

174:8 Yongho Yoon, Woosuk Lee, and Kwangkeun Yi

3.2 Overall Algorithm

Now we describe our algorithm of bidirectional search-based inductive synthesis accelerated by
using forward/backward abstract interpretation. Algo. 1 shows the high-level structure of our
synthesis algorithm, which takes

• Inductive SyGuS instance with a regular tree grammar � and< input-output examples Φ

• Abstract domain �̂ that abstracts the set � of values of all terms in !(�) and a Galois
connection U : P (�) → �̂ and W : �̂ → P (�)
• Integer 3 that specifies the maximum height of the sketches (partial programs with nontermi-
nals) to be explored

The sketches of height ≤ 3 are enumerated top-down according to the grammar � , and inserted
into the priority queue& (line 1). Then, the size upperbound = for components is initially set to be 1
(line 2). The integer = will be increased by 1 at each iteration (line 19) until a solution is found. The
component pool C (which is initially the empty set) includes all the components of size ≤ = that are
generated in a bottom-up fashion. The main loop (lines 4–20) is repeated until a solution is found.
The priority queue& ′ which will be used in a current iteration is initialized by inserting the sketches
in& into& ′ (line 5). The GenerateComponent procedure incrementally builds expressions of size
≤ = by composing the previously generated expressions (line 6). By exploiting the observational
equivalence, C does not include multiple components which are semantically equivalent to each
other with respect to the specification. In the while loop (lines 7–18), the algorithm explores the
search space determined by the current component pool C and the set of sketches. If a candidate %
dequeued from& ′ is a complete program and correct with respect to the specification, % is returned
as a solution (line 9). Otherwise, another candidate in & ′ is explored. If a candidate % is a partial
program, we analyze % to infer a necessary precondition for each subexpression in % . The Analyze

procedure computes a mapA that maps each subexpression in % to a tuple of< abstract values in �̂
(line 11). The 9-th abstract value represents a necessary precondition to be satisfied any expression
that is substituted for the nonterminal in order to satisfy the 9-th input-output example 8 9 ↦→ > 9 . If
% has a position having ⊥�̂ representing no expression can be put in that position, % is determined
to be infeasible and discarded (line 12). Otherwise, a nonterminal in % is chosen (line 13). For each
component 2 that can be substituted for the nonterminal and satisfies the necessary precondition
(line 14), we replace the nonterminal with 2 and enqueue the resulting program into & ′ (line 15). If
no solution is found with the current component pool C, the size = is increased by 1 (line 19) and
the main loop is repeated.
Our algorithm has the following properties. First, our algorithm is sound and complete in the

following sense.

Theorem 3.1. Algo. 1 is sound and complete in the sense that if a solution to a given inductive

SyGuS instance exists, Algo. 1 eventually finds the solution.

Second, it can determine the unrealizability [Hu et al. 2020] of a given inductive SyGuS instance
if every sketch in the queue & ′ has a position having ⊥�̂ and discarded at line 12 in the main loop.
That is, no sketch can be completed to a feasible program. Lastly, it can be solely used for top-down
synthesis rather than bidirectional synthesis, which makes it applicable to existing top-down
synthesis algorithms. To do so, instead of using a fixed set of sketches, at each iteration of the main
loop (lines 4–20), we can add larger sketches to the queue & ′ by increasing the maximum height 3
of the sketches to be explored while keeping the size upperbound = to be 1 until a solution is found.

1SyGuS instances with a logical formula, which have a unique output that satisfies the formula for a given input, can be

transformed into ones with input-output examples by counterexample-guided inductive synthesis (CEGIS) [Solar-Lezama

et al. 2006].

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 174. Publication date: June 2023.

Inductive Program Synthesis via Iterative Forward-Backward Abstract Interpretation 174:9

3.3 The Iterative Forward-Backward Analysis

We describe the Analyze procedure in Algo. 1 in detail. It is known that by alternating forward
and backward analyses, we can compute an overapproximation of the set of states that are both
reachable from the program entry and able to reach a desired state at the program exit [Cousot and
Cousot 1992]. In our setting where a program is a tree, execution of a program starts at the leaves
of the program tree (constants or the input variable) and proceeds to the root. Therefore, for each
node of the program tree, a forward analysis computes an over-approximation of the set of values
that may be computed from a subtree rooted at the node in a bottom-up manner. A backward
analysis computes an over-approximation of the set of values that may be used to generate output
desired by its parent in a top-down fashion.
Given a candidate % and = input-output examples Φ, the Analyze procedure performs the

iterative forward-backward analysis for each input-output example and combines the results to
obtain a map A. The analysis result A maps each position in % to a tuple of abstract values

3̂1, · · · , 3̂< .
The forward abstract semantics with respect to an input-output example 8 ↦→ > is characterized

by the least fixpoint of the following function F⟨8,> ⟩ : (Pos(%) → �̂) → (Pos(%) → �̂):

F⟨8,> ⟩ = _- . I8
F
⊔ � # (-) where I8

F
= {? ↦→

U (8) (% |?∈ +)
⊤ (% |?∈ #)
U (% |?) (% |? is a constant)
⊥ (otherwise)

| ? ∈ Pos(%)}.

The initial state I8
F
maps each nonterminal in # to ⊤ since a nonterminal represents a hole that can

be filled by any expression. Each variable is mapped to the abstraction of the input example (i.e.,
U (8)), and each constant is mapped to the abstraction of the constant itself. The forward abstract
function � # is defined as follows:

� # (-) = {? ↦→

{ −→
5 # (- (?1), · · · , - (?:)) (% |?= 5 (· · ·), 0A8C~ (5) = :)
⊥ (otherwise)

| ? ∈ Pos(%)}

where
−→
5 # denotes the forward abstract operator of an operator 5 . It takes abstract values of

arguments and returns a resulting abstract value.
The backward abstract semantics with respect to an input-output example 8 ↦→ > is characterized

by the greatest fixpoint of the following function B⟨8,> ⟩ : (Pos(%) → �̂) → (Pos(%) → �̂):

B⟨8,> ⟩ = _- . I>B ⊓ �
(-) where I>B = {? ↦→

{
U (>) (? = n)
⊤ (otherwise)

| ? ∈ Pos(%)}.

The final state I>B maps the root position to the abstraction of the output example (i.e., U (>)) and

every other position to ⊤. The backward abstract function �# is defined as follows:

�# (-) = {? ↦→

{ ←−
5 #
8 (- (?

′), - (?′1), · · · , - (?′:)) (? = ?′8, % |?′= 5 (· · ·), 0A8C~ (5) = :)
⊤ (otherwise)

| ? ∈ Pos(%)}

where
←−
5 #
8 denotes the backward abstract operator of an operator 5 . It takes an abstract value of the

result and abstract values of arguments, and returns an abstract value of the 8-th argument, which
corresponds to the necessary precondition for the 8-th argument to satisfy the input-output example.

The intersection of the forward and backward abstract semantics is computed by obtaining the
limit of the following decreasing chain defined for all = ∈ N until the chain converges [Cousot and
Cousot 1992]: ¤- 0

⟨8,> ⟩
= lfp F⟨8,> ⟩ , ¤-

2=+1
⟨8,> ⟩

= gfp _- . ¤- 2=
⟨8,> ⟩
⊓ B⟨8,> ⟩ (-), and ¤-

2=+2
⟨8,> ⟩

= lfp _- . ¤- 2=+1
⟨8,> ⟩
⊓

F⟨8,> ⟩ (-).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 174. Publication date: June 2023.

174:10 Yongho Yoon, Woosuk Lee, and Kwangkeun Yi

The Analyze procedure is defined as follows:

Analyze(%,
<⋃

9=1

8 9 ↦→ > 9)= {? ↦→ ⟨A1 (?), · · · ,A< (?)⟩ | ? ∈ Pos(%),∀1 ≤ 9 ≤ <.A 9 = lim
=→∞

¤-=
⟨8 9 ,> 9 ⟩

}

Example 3.2. Consider the partial program % = ((⊕ G) >> 00012 in the overview example in
Section 2 where the input example 8 = 10112 and the output example > = 00112. The subterms
of % are ((⊕ G), 00012, (, and G , and their positions are 1, 2, 11, and 12, respectively. Assuming

that the abstract domain �̂ is the bitwise domain, the initial state for the forward analysis I8
F
is

{n ↦→ ⊥⊥⊥⊥, 1 ↦→ ⊥⊥⊥⊥, 2 ↦→ 0001, 11 ↦→ ⊤⊤⊤⊤, 12 ↦→ 1011}. The initial state for the backward
analysis I>B maps the root position n to 0011 and every other position to ⊤⊤⊤⊤. The table below

shows the first three elements of the decreasing chain ¤-=
⟨8,> ⟩

:

Position ? ¤- 0
⟨8,> ⟩
(?) ¤- 1

⟨8,> ⟩
(?) ¤- 2

⟨8,> ⟩
(?)

n ⊤⊤⊤⊤ 0011 0011

1 ⊤⊤⊤⊤ 011⊤ 011⊤

2 0001 0001 0001

11 ⊤⊤⊤⊤ 110⊤ 110⊤

12 1011 1011 1011

We assume the forward and backward abstract operators in the bitwise domain defined for the
bitwise XOR operator and the arithmetic right shift operator (described in Section 4) are used.
Because the chain converges at ¤- 2

⟨8,> ⟩
, the Analyze procedure returns it as the final result.

3.4 Optimizations

In the implementation, we apply the following optimizations to improve the efficiency of Algo. 1.

Concretization to Avoid Unnecessary Scans. In addition to the component pool C : # →
P (!(�)) that memorizes the component expressions derivable from each nonterminal, we also
maintain an additional map V : # → (� × �) → P (!(�)) that returns components that
exhibit a certain input-output behavior. For example, in the overview example in Section 2,
V(() (10112, 11002) = {G + 00012} because G + 00012 outputs 11002 when given 10112 as input.
This map is used to save the time for line 14 only when the analysis result A(?>B) is precise
enough (i.e., its concretization result is a small set). In such a case, instead of computing the set
{2 ∈ C(% |?>B | ⟨U (⟦2⟧ (81)), · · · , U (⟦2⟧ (8<))⟩ ⊑ A(?>B))}, we compute

⋂
{V(% |?>B) (8 9 , E 9) |

A(?>B) = ⟨3̂1, · · · , 3̂<⟩,∀1 ≤ 9 ≤ <. E 9 ∈ W (3 9)} to obtain the set of components that are compat-
ible with the analysis result. This can save the time for line 14 by avoiding scanning the entire
component pool C.

Divide-and-Conquer for Conditional Programs. In the case of synthesis of conditional
programs, we incorporate the divide-and-conquer enumerative approach [Alur et al. 2017] into
our algorithm as follows. First, for each input-output example, by using Algo. 1, we synthesize a
conditional-free program which satisfies that example. Second, we combine these conditional-free
programs into a single conditional program that works for all examples by using the previous
decision tree learning algorithm from [Alur et al. 2017]. Conditional predicates are generated by
bottom-up enumeration.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 174. Publication date: June 2023.

Inductive Program Synthesis via Iterative Forward-Backward Abstract Interpretation 174:11

4 ABSTRACT DOMAINS

In this section, we propose efficient but precise abstract domains that can be used for a wide
range of inductivey SyGuS problems with background theories of (1) fixed-width bitvectors and (2)
propositional logic.
For a space reason, we only present some noteworthy points of our abstract domains. The full

details of our abstract domains are available in the supplementary material.

4.1 Notations

For the theory of bitvectors of fixed-widthF , we follow the standard syntax and semantics of the
bit-vector operators described in the SMT-LIB v2.0 standard [Barrett et al. 2010]. Unsigned and
signed bit-vectors are represented as bitstrings of lengthF (i.e., {0, 1}F). The values of unsigned
bit-vectors range over {0, · · · , 2F − 1}, and those of signed ones range over {−2F−1, · · · , 2F−1 − 1}
respectively. We refer to −2F−1, 2F−1 − 1, 0, and 2F − 1 as smin, smax, umin, and umax respectively.
We denote [=]8 as 8-th bit of the bitstring representation of= and [=]8:9 as a substring of= comprising
8-th bit, 8+1-th bit, · · · , 9-th bit of =. The concatenation of two strings =1 and =2 is denoted by
=1 · =2, and the length of a string = is denoted by |= |. We denote =[0/1] as the bitstring obtained by
replacing every occurrence of 1 in = with 0. For an interval [;, ℎ], we denote ;1 ([;, ℎ]) and D1 ([;, ℎ])
as the lower and upper bounds of [;, ℎ] respectively. Lastly, for a bitstring =, we denote Trail0s(=)
as the number of trailing zeros in =.

4.2 Abstract Domain for Fixed-width Bitvectors

Abstract Domain. Our abstract domain for fixed-width bitvectors is a reduced product domain.
Reduced product of abstract domains can be used to achieve precise abstractions by synergistically
combining the expressiveness power of several abstract domains [Cousot 2021]. Our abstract
domain comprises the following domains.

The bitwise domain ⟨�̂, ⊑�̂,⊔�̂,⊓�̂⟩ is a domain that tracks the value of each bit of a bit-vector
independently, also used in prior work [Miné 2012; Regehr and Duongsaa 2006]. Each element of

the bitwise domain �̂ is a string of abstract bits of lengthF as already introduced in Section 2. The

domain is formally defined as follows: �̂
def
= {11 ·12 · · ·1F | ∀1 ≤ 8 ≤ F. 18 ∈ {0, 1,⊥,⊤}}. To define

the galois connection between �̂ and P (Z), we define the following function that computes the
bit-vector representation ? (G) of an integer G using the two’s complement representation [Miné
2012]:

? (G)
def
=

{
11 · · ·1F where ∀1 ≤ 8 ≤ F. 18 = ⌊G/2

F−8 ⌋ mod 2 (G ≥ 0)
1′1 · · ·1

′
F where ∀1 ≤ 8 ≤ F. 1′8 = ¬18 , 18 = [? (−G − 1)]8 (G < 0)

Note that the leftmost bit is the most significant bit. The galois connection P (Z)
W
�̂

←−−−−−−−−−−−−−−→U
�̂

�̂ is

defined as follows:

U
�̂
(/)

def
=

⊔
�̂
{? (G) | G ∈ / } W

�̂
(1)

def
=

{
∅ (∃8 . [1]8 = ⊥)

W
unsigned

�̂
(1) ∪ W

signed

�̂
(1) (otherwise)

where the concretization functions for unsigned and signed bit-vectors are defined as follows:

W
unsigned

�̂
(1)

def
= {

∑F−1
8=0 28<F−8 | ∀1 ≤ 8 ≤ F. <8 ∈ W� ([1]8)}

W
signed

�̂
(1)

def
= {−2F−1<1 +

∑F−2
8=0 28<F−8 | ∀1 ≤ 8 ≤ F. <8 ∈ W� ([1]8)}.

The signed interval domain ⟨(̂, ⊑(̂ ,⊔(̂ ,⊓(̂ ⟩ is a domain for representing bitvectors as intervals

of signed bit-vectors. Formally, (̂
def
= {[;, ℎ] | ;, ℎ ∈ {0, 1}F, ⟦bvsle⟧ (;, ℎ) = true} where bvsle

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 174. Publication date: June 2023.

174:12 Yongho Yoon, Woosuk Lee, and Kwangkeun Yi

is the binary predicate for signed less than or equal. The galois connection P (Z)
W
(̂

←−−−−−−−−−−−−−−→U
(̂

(̂ is

standard.
The unsigned interval domain ⟨*̂ , ⊑*̂ ,⊔*̂ ,⊓*̂ ⟩ is a domain for representing bitvectors as intervals

of unsigned bit-vectors. Formally, *̂
def
= {[;, ℎ] | ;, ℎ ∈ {0, 1}F, ⟦bvule⟧ (;, ℎ) = true} where bvule

is the binary predicate for unsigned less than or equal. The galois connection P (Z)
W
*̂

←−−−−−−−−−−−−−−→U
*̂

*̂ is

also standard.
The above three domains are combined to form the product abstract domain �̂ = �̂ × (̂ × *̂ .

with the galois connection P (Z)
W

←−−−−−−−−−−−−−−→U
�̂ that can be simply defined by combining the galois

connections of the three domains.
To let the information flow among the three domains to mutually refine them, we need to use a

reduction operator that exploits the information tracked by one of the three domains to refine the
information tracked by the others. The reduction requires to compute a fixpoint [Granger 1992],

and our iterated reduction operator d : �̂ → �̂ is defined as follows:

d
def
= fix _⟨1, B,D⟩. ⟨1 ⊓ c(̂→�̂ (B) ⊓ c*̂→�̂ (D), B ⊓ c�̂→(̂ (1) ⊓ c*̂→(̂ (D), D ⊓ c�̂→*̂ (1) ⊓ c(̂→*̂ (B)⟩

where c�̂1→�̂2
is our projection operator that propagates information from abstract domain �̂1

to another domain �̂2. For example, the c�̂→*̂ operator takes a bitwise element and returns an
unsigned interval whose lower bound (resp. upper bound) is a bit-vector obtained by replacing
every ⊤ abstract bit with 0 (resp. 1). More details can be found at the supplementary material.

A reduction operator d in abstract domain �̂ should be sound in the sense that it has to satisfy

the following two properties: for all 3 ∈ �̂ , (1) d (3) ⊑ 3 (the result of its application is a more
precise abstract element); (2) W (d (3)) = W (3) (an abstract element and its reduction has the same
meaning).

Theorem 4.1. Our reduction operator d is sound.

Abstract Operators. Now we define forward and backward abstract operators. Because we deal
with binary numbers with a fixed number of digits, all the domains consider possible overflows/un-

derflows. For each bit-vector operation 5 of arity : , the forward abstract operator
−→
5 # : �̂: → �̂ ,

which takes : abstract elements of arguments and returns an abstract element of the result, is
defined to be

−→
5 # (⟨11, B1, D1⟩, · · · , ⟨1: , B: , D:⟩) = d (⟨

−→
5 #

�̂
(11, · · · , 1:),

−→
5 #

(̂
(B1, · · · , B:),

−→
5 #

*̂
(D1, · · · , D:)⟩)

where
−→
5 #

�̂
,
−→
5 #

(̂
, and

−→
5 #

*̂
are the forward operators in the bitwise domain, the signed domain, and the

unsigned domain, respectively. For each 1 ≤ 8 ≤ : , the backward abstract operator
←−
5 #
8 : �̂

:+1 → �̂:

takes the current abstract element of the result and : abstract elements of arguments, and returns
a more refined abstract element of the 8-th argument.

←−
5 #
8 (⟨1, B,D⟩, ⟨11, B1, D1⟩ · · · ⟨1: , B: , D:⟩) = d (⟨

←−
5 #

�̂,8
(1,11 · · ·1:),

←−
5 #

(̂,8
(B, B1 · · · B:),

←−
5 #

*̂ ,8
(D,D1 · · ·D:)⟩)

where
←−
5 #

�̂,8
,
←−
5 #

(̂,8
, and

←−
5 #

*̂ ,8
are the backward operators in the bitwise domain, the signed domain,

and the unsigned domain, respectively. We always apply the reduction operator whenever we apply
the forward or backward operators in order to maintain analysis results in the most precise form.

In the following, we describe the forward and backward operators for each domain. We will use
the same bit-vector operator names as the ones defined in the SMT-LIB v2.0 standard.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 174. Publication date: June 2023.

Inductive Program Synthesis via Iterative Forward-Backward Abstract Interpretation 174:13

Forward Abstract Operators for the Signed/Unsigned Interval Domains In the following,
we explain some salient features of the forward abstract operators in detail.

•
−−−−→
bvadd#

(̂
is defined similarly to the standard integer interval arithmetic with a slight difference

that it is aware of possible overflows/underflows. Formally,

−−−−→
bvadd#

(̂
([;1, ℎ1], [;2, ℎ2]) = Wrap

(̂
([⟦bvadd⟧ (;1, ;2), ⟦bvadd⟧ (ℎ1, ℎ2)]) (

−−−−→
bvadd#

*̂
is similar.)

where Wrap(̂ ([;, ℎ]) = [;, ℎ] if ([;, ℎ] ⊑(̂ [smin, smax]) and [smin, smax] otherwise. The
other abstract operators for subtraction, multiplication, and division are similarly defined.

•
−−−−→
bvneg#

*̂
switches the lower and upper bounds of the interval with the exception of the case

where the lower bound represents zero and the upper bound represents a non-zero value.
That is because the negation of 1 is −1 which is represented as 11 · · · 12 in two’s complement
representation. 11 · · · 12 is the largest value in the unsigned interval domain. Therefore, the
top element is returned in this case. Formally,

−−−−→
bvneg#

*̂
([;, ℎ]) =

{
⊤
*̂

(; = ? (0), ℎ ≠ ? (0))

[⟦bvneg⟧ (ℎ), ⟦bvneg⟧ (;)] (otherwise)

•
−−−−−−→
bvsdiv#

(̂
simulates the following concrete semantics of the signed division.

⟦bvsdiv⟧ (B, C) =

⟦bvudiv⟧ (B, C) (if B and C are both non-negative)
⟦bvudiv⟧ (⟦bvneg⟧ (B), ⟦bvneg⟧ (C)) (if both are negative)
⟦bvneg⟧ (⟦bvudiv⟧ (⟦bvneg⟧ (B), C)) (if B is negative and C is non-negative)
⟦bvneg⟧ (⟦bvudiv⟧ (B, ⟦bvneg⟧ (C))) (if B is non-negative and C is negative)

Following the above semantics,
−−−−−−→
bvsdiv#

(̂
splits the intervals of the arguments into the four

cases and computes the quotient of each case separately using the
−−−−−−→
bvudiv# operator, which

is standardly defined.

Forward Abstract Operators for the Bitwise Domain Some remarkable points are as follows:

•
−−−−→
bvadd#

�̂
is defined by the RippleCarryAdd operator defined in [Regehr and Duongsaa 2006],

which simulates the ripple-carry addition of two bit-vectors in the bitwise domain.

•
−−−−→
bvneg#

�̂
is defined from that ⟦bvneg⟧ (1) = ⟦bvadd⟧ (⟦bvnot⟧ (1), ? (1)) [Warren 2012].

•
−−−−→
bvmul#

�̂
is defined from that the number of trailing zeros in the result of ⟦bvmul⟧ (11, 12) is

the sum of the number of trailing zeros in 11 and 12. Formally,

−−−−→
bvmul#

�̂
(11, 12) = ⊤F−(=+<) · 0(=+<) where = = Trail0s(11),< = Trail0s(12)

• The abstract operators for the arithmetic shift
−−−−−−→
bvashr#

�̂
is defined using the shift-right

operators in the bitwise domain defined as follows: 1 >>
#
G 8 shifts all the abstract bits of 1 to

the right by 8 bits, and the leftmost bits are filled with G . Formally,

−−−−−−→
bvashr#

�̂
(11, 12) =

⊔
{11 >>

#
[11]1

(8 mod F) | 8 ∈ W
unsigned

�̂
(12)}.

The other abstract shift operators are similarly defined.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 174. Publication date: June 2023.

174:14 Yongho Yoon, Woosuk Lee, and Kwangkeun Yi

BackwardAbstract Operators for the Signed/Unsigned Interval Domains Some noteworthy
points are as follows:

•
←−−−−−−
bvurem#

*̂ ,1
(8, 81, 82) refines the abstract value of the first operand (81) from abstract values of

the second operand (82) and the result (8), and is defined as follows:

←−−−−−−
bvurem#

*̂ ,1
(8, 81, 82) =

{
8 ⊓

*̂
81 (⟦bvule⟧ (? (2F−1), ;1 (8)) = true)

⊤ (otherwise)

This behavior is based on the fact that for some bit-vectors 11, 12, and 1, if ⟦bvurem⟧ (11, 12) =
1 and the most significant bit of 1 is 1, then 1 = 11. The proof is available in the supplementary
material.

Backward Abstract Operators for the Bitwise Domain Some noteworthy operators are as
follows:

•
←−−−−
bvand#

�̂,1
infers the abstract value of the left operand of bvand from the abstract values of the

other operand and the result. For example, for each abstract bit of the result, if the bit is 1,
we can infer that the corresponding bit of the first operand is 1 as well. Formally,

←−−−−
bvand#

�̂,1
(1,11, 12) = 3132 · · ·3F where ∀1 ≤ 8 ≤ F. 38 =

1 ([1]8 = 1)
0 ([1]8 = 0, [12]8 = 1)
⊤ (otherwise)

The abstract operators for the other bitwise logical operators are defined similarly.

• For
←−−−−
bvshl#

�̂,1
(1,11, 12), if the shift amount is a constant, we can infer the abstract value of the

first operand by shifting 1 to the right (i.e., reverse direction) by the shift amount. However,
the shift amount is not exactly known in general, so we should overapproximate it. We apply
the join operator into the results of shifting 1 to the right by all possible shift amounts. The
minimum shift amount is zero and the maximum shift amount is the number of trailing zeros
of 1 obtainable assuming every unknown bit (⊤) is 0. This range can be more refined by
considering the abstract value of the second operand. Formally,

←−−−−
bvshl#

�̂,1
(1,11, 12) =

⊔
{1 >>

#
⊤ (= modF) | = ∈ W

*̂
([0, Trail0s(1 [0/⊤])] ⊓ c

�̂→*̂
(12))}

•
←−−−−
bvmul#

�̂,1
is most complicated among the backward abstract operators, which is defined as

follows:

←−−−−
bvmul#

�̂,1
(1, 11, 12) =

{
InferMulOp(12, 1) (|W

unsigned

�̂
(12) | = |W

unsigned

�̂
(1) | = 1)

⊤F−; · 0; (otherwise)
where ; = max{0, Trail0s(1) − Trail0s(12 [0/⊤])}

where the InferMulOp will be defined soon. This backward abstract operator precisely infers
the abstract value of the first operand if the second operand and the result are exactly
known. Suppose the second operand and the result represent non-negative numbers =2 and
= respectively 2. Because the multiplication is modulo 2F , our goal is to find G such that

G × =2 ≡ = (mod 2F) (1)

When both =2 and = are not zero, we can find G as follows (cases where =2 or = is zero
are trivial): let the numbers of trailing zeros of 12 and 1 are C2 and C respectively. Because

2The bitwise multiplication is not aware of the signedness of the operands. Therefore, it is safe to consider the operands as

non-negative numbers.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 174. Publication date: June 2023.

Inductive Program Synthesis via Iterative Forward-Backward Abstract Interpretation 174:15

=2 ≠ 0 ∧ = ≠ 0, =2 = 2C2 ×<2 and = = 2C ×< for some odd numbers<2 and<. We have two
cases.
– Case 1) C ≥ C2: We can transform the equation (1) into G × (=2/2

C2) ≡ (=/2C2) (mod 2F−C2)
because =2/2

C2 is odd, =2/2
C2 and 2F−C2 are coprime. By the extended Euclidean algorithm,

we can find the modular multiplicative inverse of =2/2
C2 modulo 2F−C2 . Let~ be the modular

multiplicative inverse. Then,

G × (=2/2
C2) × ~ ≡ (=/2C2) × ~ (mod 2F−C2) (multiplying ~ into both sides)

G ≡ (=/2C2) × ~ (mod 2F−C2)
G × 2C2 ≡ (=/2C2) × ~ × 2C2 (mod 2F) (multiplying 2C2 into both sides)

In conclusion, in binary representation of G , the lastF − C2 bits must be equal to those of
=/2C2 × ~. The first C2 bits of G can be any values.

– Case 2) C < C2: In this case, there is no solution to the equation (1). That is because the
linear congruence (1) has solutions if and only if the greatest common divisor (gcd) of =2
and 2F divides =. The gcd of =2 and 2F is 2C2 , and it cannot divide = because C2 > C .

The above case analysis is implemented in the function InferMultOperand defined as follows:

InferMulOp(12, 1) =

⊤ (=2 = = = 0)
0 (=2 ≠ 0, = = 0)
⊤C2 · [? (=/2C2 × ~)]F−C2:F (=2 ≠ 0, = ≠ 0, C ≥ C2)
⊥ (=2 = 0 ∧ = ≠ 0 ∨ =2 ≠ 0 ∧ = ≠ 0 ∧ C < C2)

where =2 = W
unsigned

�̂
(12), = = W

unsigned

�̂
(1), C = Trail0s(1), C2 = Trail0s(12), and ~ is the

modular multiplicative inverse of =2/2
C2 modulo 2F−C2 .

If the second operand and the result are not exactly known, to overapproximate the abstract
value of the first operand, we just exploit the fact that the number of trailing zeros of the
result is the sum of the number of trailing zeros of the first operand and the second operand.

4.3 Abstract Domain for Boolean Algebra

Our abstract domain for Boolean algebra is based on the abstract domain for bit vectors. The
abstract domain is the set � = {0, 1,⊥,⊤} and can be understood as a variant of the bitwise domain
where the lengthF = 1. The abstract operators for Boolean operators such as and, or, xor, not are
defined in the same way as in the bitwise domain.

5 EVALUATION

We have implemented our approach in a tool called Simba3 which consists of 10K lines of OCaml
code and employs Z3 [De Moura and Bjorner 2008] as the constraint solving engine. Our tool is
publicly available for download4.
This section evaluates Simba to answer the following questions:

Q1: How does Simba perform on synthesis tasks from a variety of different application domains?
Q2: How does Simba compare with existing synthesis techniques?
Q3: How effective is the abstract interpretation-based pruning technique in Simba for reducing

the search space compared to other alternatives (e.g., using an SMT solver, no pruning)?

All of our experiments were run on a Linux machine with an Intel Xeon 2.6GHz CPU and 256GB
of RAM.

3Synthesis from Inductive specification eMpowered by Bidirectional Abstract interpretation
4https://github.com/yhyoon/simba

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 174. Publication date: June 2023.

174:16 Yongho Yoon, Woosuk Lee, and Kwangkeun Yi

5.1 Experimental Setup

Benchmarks. We chose 1,875 synthesis tasks from three different application domains: i) bit-
vector manipulation without conditionals (BitVec), ii) bit-vector manipulation with conditionals
(BitVec-Cond), and iii) circuit transformation (Circuit),

They are from the benchmarks used for evaluating the Duet tool, prior work on program
deobfuscation [David et al. 2020], and the annual SyGuS competition [Past SyGuS Competition
2020].

The BitVec domain comprise 544 tasks of the background theory of bit-vector arithmetic. All of
the solutions to these problems are condtional-free programs.

• HD: 44 benchmarks from the SyGuS competition suite (General track). These problems
originate from the book Hacker’s Delight [Warren 2012], which is commonly referred to
as the bible of bit-twiddling hacks. The semantic specification is a universally-quantified
first-order formula that is functionally equivalent to the target program. 5

• Deobfusc: 500 benchmarks from the evaluation benchmarks of a program deobfuscator
QSynth (dataset “VR-EA" in [David et al. 2020]). These problems aim at finding programs
equivalent to randomly generated bit-manipulating programs from input-output examples,
and have been used to evaluate the state-of-the-art deobfuscators [Blazytko et al. 2017;
David et al. 2020; Menguy et al. 2021]. Because the obfuscated programs are syntactically
complicated, the best practice so far is a black-box approach that samples input-output
behaviors from the obfuscated programs and synthesize the target programs from the samples.
Following this approach, we have randomly generated 20 input-output examples for each
obfuscated program.

The BitVec-Cond domain comprise 750 tasks from the Duet evaluation benchmarks 6. These
problems concern finding programs equivalent to randomly generated bit-manipulating programs
from input-output examples ranging from 10 to 1,000. In contrast to the Deobfusc benchmarks,
the solutions to these problems often contain conditionals.
The Circuit domain from the evaluation benchmarks of Duet comprise 581 tasks of the back-

ground theory of SAT.

• Lobster: 369 problems from [Lee et al. 2020]. These problems are motivated by optimizing
homomorphic evaluation circuits. Each problem is, given a circuit � , to synthesize a circuit
�′ that computes the same function as � but has a smaller multiplicative depth that is
functionally equivalent to � .
• Crypto: 212 problems used in the SyGuS competition and motivated by side-channel attacks
on cryptographic modules in embedded systems. Each problems is, given a circuit � , to
synthesize a constant-time circuit �′ (i.e. resilent to timing attacks) that computes the same
function as � .

Baseline Solvers. We compare Simba against existing general-purpose synthesis tools with
some form of domain specialization. Our algorithm is generally applicable to any domain, but
it requires a suitable abstract domain for the target problems to further improve the efficiency.
Thus, we compare Simba with the following general-purpose tools that employ a kind of domain
specialization:

5We have slightly modified the original benchmarks, which are for 32-bit integers, to be for 64-bit integers. This is for a fair

comparison with Probe since Probe can handle 64-bit integers only.
6The benchmarks are slight modifications of the SyGuS competition suite (PBE-BitVector track). The syntactic restriction in

each problem is replaced by a more general grammar.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 174. Publication date: June 2023.

Inductive Program Synthesis via Iterative Forward-Backward Abstract Interpretation 174:17

Fig. 2. Comparison between Simba and the other baseline solvers on different domains.

• Duet is the state-of-the-art tool for inductive SyGuS problems that employs a bidirectional
search strategy with a domain specialization technique called top-down propagation. Top-
down propagation is a divide-and-conquer strategy that recursively decomposes a given
synthesis problem into multiple subproblems. It requires inverse semantics operators that
should be designed for each usable operator in the target language.
• Probe performs a bottom-up search with guidance from a probabilistic model. Such a proba-
bilistic model can be learned just in time during the search process by learning from partial
solutions encountered along the way. Thus, such a model can be viewed as a result of domain
specialization for each problem instance.

We compare Simba with Duet for all the benchmarks and with Probe only for the BitVec domain
because the Circuit and the BitVec-Cond domains are beyond the scope of Probe7.

5.2 Effectiveness of Simba

We evaluate Simba on all the benchmarks and compare it with Duet and Probe. For each instance,
we measure the running time of synthesis and the size of the synthesized program, using a timeout
of one hour.

The results are summarized in Fig. 3. Fig. 3d shows the statistics of the solving times and solution
sizes, and Fig. 3a and 3b show the number of instances solved with the fastest time for each domain
per solver. Because Probe is not applicable to the Circuit and BitVec-Cond domains, the results
for Probe on these domains are not shown.
Overall, Simba outperforms the other baseline tools both in terms of the number of instances

solved and the average solving time. As shown in Fig. 3d, Simba solves 1716 instances, while Duet
and Probe solve 1671 and 409 instances respectively. Simba is the fastest solver in 1397 instances
(75% of the total), while Duet is the fastest in 397 instances. Fig. 2 shows the cactus plot of the
solving times for Simba, Duet, and Probe. The horizontal axis represents the number of solved
instances and the vertical axis represents the cumulative solving time. The plot suggests that Simba
solves more instances than Duet and Probe in a shorter time.
In comparison to Duet, Simba is more efficient in the BitVec domain and Circuit domain,

while Duet is more efficient in the BitVec-Cond domain. Since Simba performs the forward-
backward analysis for each input-output example, the number of examples affects the efficiency.
In the BitVec-Cond domain, the number of examples is unusually large (up to 1000), which
makes Simba inefficient. On the other hand, Duet is able to handle the large number of examples
efficiently. However, for the other domains (particularly BitVec), Simba outperforms Duet because
Duet’s inverse semantics often creates sub-problems that are hard to solve whereas Simba does
not generate such sub-problems.

7The solutions of the BitVec-Cond instances are large conditional programs that require extensive case splitting which is

not supported by Probe.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 174. Publication date: June 2023.

174:18 Yongho Yoon, Woosuk Lee, and Kwangkeun Yi

(a) # Fastest solved in the BitVec

domain

(b) # Fastest solved in the Circuit

domain

(c) # Fastest solved in the BitVec-

Cond domain

Benchmark # Solved Time (Average) Time (Median) Size (Average) Size (Median)

category Simba Duet Probe S D P S D P S D P S D P

HD 42 36 31 5.7 42.7 11.8 0.1 0.2 1.0 7.7 8.5 6.5 6 8 5

Deobfusc 477 420 378 37.3 175.8 68.0 0.0 0.1 2.9 9.6 10.0 7.9 9 9 8

BitVec-Cond 619 646 - 123.6 28.6 - 5.3 5.7 - 269.6 350.6 - 137 46 -

Lobster 369 369 - 0.4 7.4 - 0.2 0.8 - 12.9 10.9 - 13 11 -

Crypto 209 200 - 9.7 1.8 - 0.1 0.2 - 11.9 12.8 - 11 12 -

Overall 1716 1671 409 56.4 58.0 63.7 0.2 1.7 2.7 107.1 145.4 7.8 15 13 8

(d) Statistics for the solving times and solution sizes. All times are in seconds. Probe could not run for the

Circuit and BitVec-Cond domain. The number of problems in the HD, Deobfusc, Lobster, Crypto, and

BitVec-Cond categories are 44, 500, 369, 212, and 750 respectively (1875 in total).

Fig. 3. Main result comparing the performance of Simba, Duet, and Probe (breakdown by categories). The

timeout is set to one hour.

We measure solution quality by solution sizes in AST nodes. According to Occam’s razor, smaller
solutions are better since they are less likely to overfit the input-output examples. In general, Probe
generates the smallest solutions (with average sizes of 6.5 and 7.9 for two domains), although Simba
is also capable of generating solutions of similar sizes (with average sizes of 7.7 and 9.6). The slight
gap between the two tools can be attributed to the fact that Simba can solve instances that Probe
cannot solve due to its limited scalability. For example, Simba’s solutions for the two domains not
solved by Probe have average sizes of 10.5 and 13.1, respectively, while Simba’s solutions to the
ones solved by both tools have average sizes of 6.8 and 8.6, respectively.

Result in Detail. We study the results for each domain in detail. Table 1 shows the detailed
results on randomly chosen 25 problems (5 for each category). The results suggest the significant
impact of the forward and backward analyses. For example, for hd-20-d1-prog, Simba discarded
11, 365 out of total 11, 710 partial programs generated during the synthesis (97.1%) with a small
overhead of 0.22 seconds. For target-410, 187, 858 out of 188, 501 partial programs (99.7%) are
early pruned by Simba with an acceptable overhead of 3.06 seconds. Furthermore, we observe that
even partial programs are not discarded, the holes in the partial programs are highly constrained
by the necessary preconditions, thereby significantly reducing the number of components to be
explored for the completion of the partial programs. On the other hand, Duet and Probe do not
perform such pruning and thus generate many unlikely candidates, taking 10 to 1000 times longer
than Simba.

Analysis of the Impact of the Number of Examples. We study the impact of the number of
examples on the performance of Simba. Since the forward-backward analysis is performed as many
times as the number of examples, the number of examples affects the efficiency, but the impact

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 174. Publication date: June 2023.

Inductive Program Synthesis via Iterative Forward-Backward Abstract Interpretation 174:19

Table 1. Results for 25 randomly chosen benchmark problems (5 for each category), where Time gives

synthesis time,)� gives time spent for forward and backward analysis, and |% | shows the size of the

synthesized program (measured by number of AST nodes).

Benchmark
Benchmark

Probe Duet Simba

category Time |% | Time |% | Time)� |% |

HD

hd-03-d5-prog 0.85 4 1.19 4 0.06 0.00 4

hd-07-d0-prog 0.92 6 0.09 6 0.07 0.00 6

hd-14-d5-prog 4.91 9 >1h - 0.60 0.26 9

hd-19-d1-prog >1h - >1h - 10.79 7.07 19

hd-20-d1-prog >1h - 228.98 15 98.22 0.22 15

Deobfusc

target_9 >1h - 2310.23 16 31.45 2.85 16

target_119 0.87 5 0.02 8 0.05 0.03 9

target_385 15.35 9 37.46 10 0.33 0.25 9

target_410 >1h - 2635.78 16 69.38 3.06 16

target_449 2.61 7 0.01 7 0.03 0.00 7

BitVec-Cond

133_1000 - - 48.18 35 166.55 6.89 139

23_10 - - 340.75 62 0.89 0.40 15

60_100 - - 6.90 14 0.15 0.10 14

icfp_gen_10.7 - - 4.68 67 1.19 0.20 192

icfp_gen_14.1 - - 6.29 154 49.61 37.75 415

Lobster

hd09.eqn_45_0 - - 21.95 15 11.09 0.32 13

longest_1bit-opt.eqn_63_1 - - 0.59 13 0.17 0.01 11

longest_1bit-opt.eqn_75_1 - - 1.31 14 0.24 0.01 15

p03.eqn_38_2 - - 0.22 9 0.11 0.01 9

p09.eqn_49_1 - - 0.24 7 0.19 0.01 9

Crypto

CrCy_2-P6_2-P6 - - 193.68 20 0.65 0.07 20

CrCy_5-P9-D5-sIn - - 0.13 11 0.11 0.00 11

CrCy_8-P12-D5-sIn4 - - 0.21 11 0.14 0.01 11

CrCy_8-P12-D7-sIn5 - - 1.99 19 0.63 0.04 19

CrCy_10-sbox2-D5-sIn11 - - 0.28 9 0.13 0.00 9

on efficiency is not significant in practice as long as the number of examples is not too large. We
have conducted experiments with 500 deobfuscation benchmarks with the number of examples
ranging from 5 to 20. When the number of examples given to Simba are 5, 10, and 20, the average
synthesis time is 29.8, 31.0, and 37.3 seconds, respectively. In all cases, the average solution size is
9.5. In other words, the average synthesis time increased by just 25% when the number of examples
increased fourfold (from 5 to 20).

Summary of Results. Simba solves harder synthesis problems more quickly compared to the
state-of-the-art baseline tools in diverse domains.

5.3 Efficacy of Our Abstract Interpretation-based Pruning

We now evaluate the effectiveness of our abstract interpretation-based pruning. For this purpose,
we compare the performance of three variants of Simba, each using a different combination:

• Simba with the forward and backward analyses (i.e., the original Simba)
• ForwardOnly only with the forward analysis
• BruteForce without any pruning technique (i.e., only with the bidirectional search strategy) 8

• SMTSolver equipped with the SMT-based pruning. It checks the feasibility of each partial
program by checking the satisfiability of an SMT formula. The formula encodes the partial
program under construction and the desired input-output behavior of the program. A similar

8Despite the pruning is disabled, the other optimizations such as symmetry breaking and observational equivalence reduction

are still enabled.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 174. Publication date: June 2023.

174:20 Yongho Yoon, Woosuk Lee, and Kwangkeun Yi

(a) Performance of different vari-

ants of Simba

Benchmark # Solved Time (Average)

category S FW SMT BF S FW SMT BF

HD 42 41 40 41 5.7 12.9 163.6 13.4

Deobfusc 477 421 424 421 37.3 128.8 178.7 131.2

Lobster 369 368 358 368 0.4 43.7 234.9 43.5

Crypto 209 209 208 209 9.7 11.8 45.7 11.9

Overall 1097 1039 1030 1039 18.4 70.5 170.8 71.5

(b) Statistics for the solving times. S, FW, SMT, and BF denote Simba,

ForwardOnly, SMTSolver, and BruteForce variants respectively.
Fig. 4. Result for the ablation study.

approach was used inMorpheus [Feng et al. 2017] to prune the search space. Because the
SMT solving is without any approximation, it is expected to be more accurate than the
abstract interpretation-based pruning at the cost of higher computational cost.

By comparing the performance of these variants, we aim to understand

• the overall impact of our abstract interpretation-based pruning (Simba vs. BruteForce)
• the necessity of the backward analysis (Simba vs. ForwardOnly vs. BruteForce)
• the cost-effectiveness of using an abstract interpreter (ForwardOnly vs. SMTSolver)

Fig. 4 shows the results of the ablation study (Fig. 4b shows the statistics for the solving times
and Fig. 4a shows the cactus plots). We exclude the BitVec-Cond benchmarks which require
extensive case-splitting dealt with by the divide-and-conquer strategy [Alur et al. 2017] to focus on
evaluating the core idea of our approach.
The first observation is that our abstract interpretation-based pruning is effective in reducing

the search space (1097 solved by Simba vs. 1039 solved by BruteForce). The second observation is
that the backward analysis is necessary to prune the search space effectively because BruteForce
and ForwardOnly are almost the same whereas Simba is much better than ForwardOnly. The third
observation is that using the SMT solver is more expensive than using an abstract interpreter (1039
solved by ForwardOnly vs. 1030 solved by SMTSolver). Though the SMT solver is more accurate than
the abstract interpreter, the success rate of pruning by the SMT solver is not enough to offset the
increased computational cost. Thus, using the abstract interpreter strikes a good balance between
the precision and the computational cost. As an example, for the benchmark hd-14-d1, by the
SMTSolver variant, the SMT solver is invoked 2,247 times and used to prune 1,091 partial programs.
This takes 49.08 seconds out of 52.33 seconds spent for solving the benchmark. On the other hand,
by Simba, the forward-backward analysis is invoked 1,230 times to prune 1,127 partial programs.
This takes only 0.06 second out of 0.15 second spent for solving the benchmark. This shows the
cost-effectiveness of using the abstract interpreter.

Summary of Results. Both of the forward and backward analyses are necessary to prune the
search space effectively. In addition, using the SMT solver is more expensive than using an abstract
interpreter.

6 RELATED WORK

Synthesis with Abstract Interpretation. Most of the previous pruning approaches to program
synthesis by abstract interpretation have employed forward abstract interpretation only [Feng
et al. 2017; Singh and Solar-Lezama 2011; So and Oh 2017; Vechev et al. 2010; Wang et al. 2017a,b].
Contrary to these approaches, our technique uses both forward and backward reasoning to derive
necessary preconditions for missing expressions and use them to effectively prune the search space.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 174. Publication date: June 2023.

Inductive Program Synthesis via Iterative Forward-Backward Abstract Interpretation 174:21

Pailoor et al. [2021] accelerate synthesis via backward reasoning to check if necessary precondi-
tions can be met by each candidate program. In their setting, a necessary precondition for a partial
program % is a constraint on % ’s inputs that must be satisfied by any completion of % in order for %
to satisfy a given contraint over a desired new data structure. If the condition is falsified by any
input, the partial program is discarded. Such a necessary precondition can be computed by the
standard weakest precondition method. However, there is no synergistic combination of forward
and backward reasoning, thereby potentially limiting the pruning power.
To the best of our knowledge, Mukherjee et al. [2020] is the only prior work that uses both

forward and backward abstract interpretation to prune the search space of synthesis. However, a
synergistic combination of forward and backward analyses is missing. In this work, the forward and
backward analyses are performed separately without any interaction between them. In addition,
their work is limited to LLVM superoptimization, whereas our work is applicable to a wide range
of inductive synthesis problems by targetting the SyGuS specification language.

In contrast to our work that uses fixed abstract domains throughout the synthesis process, another
line of work is based on abstraction refinement [Guo et al. 2019; Vechev et al. 2010; Wang et al. 2018,
2017b]. In these approaches, programs that do not satisfy the specification are used to iteratively
refine the domain until a solution is found. Blaze [Wang et al. 2017b] with its extension [Wang
et al. 2018] automatically learns predicate abstract domains from a given set of predicate templates
and training synthesis problems. This approach is useful when there is no expert having a good
understanding of the target application domain. Our work shows that highly precise abstractions
for abstract interpretation can significantly improve the synthesis performance without abstraction
refinement. We expect our key idea of using forward and backward analyses can be applied to
abstraction refinement-based approaches to further improve the synthesis performance.

Iterated Forward/Backward Analysis. The combination of forward and backward static anal-
yses, which was first introduced in [Cousot 1978], has been studied in the context of program
verification [Cousot and Cousot 1992; Dimovski and Legay 2020; Kafle and Gallagher 2015; Kana-
gasabapathi and Thushara 2020; Massé 2001], model checking [Cousot and Cousot 1999], coun-
terexample generation for failed specifications [Yin 2019; Yin et al. 2019], and filtering spurious
static analysis alarms [Rival 2005]. In general, iterated forward and backward analyses increase the
precision of the analysis at the cost of increased analysis time.
To the best of our knowledge, our work is the first to use the iterated forward and backward

analyses for inductive synthesis. Our key finding is that a highly precise analysis employing both
forward and backward reasoning can increase the success rate of pruning, which is enough to
offset the increased analysis time.

Abstract Domains for Bit-Vector Arithmetic. There is a large body of work on abstract
domains for bit-vector arithmetic. In the following, we briefly describe a few of them. Miné [2012]
and Regehr and Duongsaa [2006] proposed to use a combination of the interval domain and
the bitwise domain. Some of our forward abstract transfer functions are borrowed from these
works. The wrapped interval domain [Gange et al. 2015] can precisely track effects of overflow
and underflow by wrapping the bit-vector values around the minimum and maximum bit-vector
values. Sharma and Reps [2017] proposed a framework for transforming numeric abstract domains
over integers to bit-vector domains. Simon and King [2007] proposed a wrap-around operator for
polyhedra to track the wrap-around effects.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 174. Publication date: June 2023.

174:22 Yongho Yoon, Woosuk Lee, and Kwangkeun Yi

To the best of our knowledge, none of the existing domains for bit-vectors provide backward
abstract transfer functions. As already shown in our experiments, the backward abstract interpre-
tation is crucial for pruning the search space. Therefore, to employ the existing domains for our
approach, one needs to develop backward abstract transfer functions for them.

Domain Specializations for Inductive Synthesis. Recent works have demonstrated significant
performance gains by exploiting domain knowledge in various forms such as domain-specific
languages [Gulwani 2011; Kini and Gulwani 2015; Rolim et al. 2017], probabilistic models [Barke
et al. 2020; Lee et al. 2018], inverse semantics [Lee 2021], and templates [Inala et al. 2016]. In
particular, Duet [Lee 2021] combines the bidirectional search with specialized inverse semantics

(also called witness functions) that return the set of possible inputs that can produce a given
output. Our work combines the birectional search with abstract interpretation. Our experiments
show that highly precise abstract semantics can provide significant performance gains that are
complementary to those achieved by other domain specializations such as inverse semantics and
probabilistic models, and it is promising to incorporate our approach into the previous approaches.

7 FUTURE WORK

A possible extension of our approach is to support other theories in SyGuS such as integer arith-
metic and string theory. Due to insufficient precision of a single abstract domain, multiple abstract
domains are necessary including forward/backward abstract transfer functions and a reduction oper-
ator to define a reduced product of those abstract domains. For integer arithmetic, a reduced product
of existing non-relational abstract domains such as the interval domain [Cousot and Cousot 1977]
and the congruence domain [Granger 1989] can be used. Furthermore, relational domains [Miné
2006; Singh et al. 2017] can aid in tracking the relations between different program holes and
input variables. For strings, abstract domains using prefixes, suffixes, and simple regular expres-
sions [Costantini et al. 2011], pushdown automata [Kim and Choe 2011], and parse stacks [Doh
et al. 2009] can be used. Another possible extension is to synthesize programs with loops. In
contrast to our current loop-free setting, the forward and backward analyses may require advanced
widening/narrowing operators (e.g., widening with inferred thresholds [Lakhdar-Chaouch et al.
2011]) to expedite the convergence of the fixpoint iteration while maintaining precision.

8 CONCLUSION

We presented a novel program synthesis algorithm that effectively prunes the search space by using
a forward and backward abstract interpretation. Our implementation Simba and its evaluation
showed that the performance is significantly better than the existing state-of-the-art synthesis
systems Duet and Probe. The key to enable this performance and scalability of inductive program
synthesis is to combine a forward abstract interpretation with a backward one to rapidly narrow
down the search space. Our experiments also showed that using SMT solver on behalf of such
sophisticated static analysis does not scale.

ACKNOWLEDGMENTS

We thank the reviewers for insightful comments. This work was supported by IITP (2022-0-00995),
NRF (2020R1C1C1014518, 2021R1A5A1021944), Supreme Prosecutors’ Office of the Republic of
Korea grant funded by Ministry of Science and ICT(0536-20220043), BK21 FOUR Intelligence
Computing (Dept. of CSE, SNU) (4199990214639) grant funded by the Korea government (MSIT),
Sparrow Co., Ltd., Samsung Electronics Co., Ltd. (IO220411-09496-01), Greenlabs (0536-20220078),
and Cryptolab (0536-20220081).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 174. Publication date: June 2023.

Inductive Program Synthesis via Iterative Forward-Backward Abstract Interpretation 174:23

DATA-AVAILABILITY STATEMENT

The artifact is available at Zenodo[Yoon et al. 2023].

REFERENCES

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh,

Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In Formal Methods in

Computer-Aided Design (FMCAD ’13).

Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling Enumerative Program Synthesis via Divide and

Conquer. In Tools and Algorithms for the Construction and Analysis of Systems, Axel Legay and Tiziana Margaria (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 319–336.

Shraddha Barke, Hila Peleg, and Nadia Polikarpova. 2020. Just-in-Time Learning for Bottom-up Enumerative Synthesis.

Proc. ACM Program. Lang. 4, OOPSLA, Article 227 (nov 2020), 29 pages. https://doi.org/10.1145/3428295

Clark W. Barrett, Aaron Stump, and Cesare Tinelli. 2010. The SMT-LIB Standard Version 2.0.

Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Holz. 2017. Syntia: Synthesizing the Semantics of

Obfuscated Code. In 26th USENIX Security Symposium (USENIX Security 17). USENIX Association, Vancouver, BC, 643–659.

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/blazytko

Giulia Costantini, Pietro Ferrara, and Agostino Cortesi. 2011. Static Analysis of String Values. In Formal Methods and

Software Engineering, Shengchao Qin and Zongyan Qiu (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 505–521.

Patrick Cousot. 1978. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs monotones sur un

treillis, analyse sémantique des programmes. Habilitation à diriger des recherches. Institut National Polytechnique de

Grenoble - INPG ; Université Joseph-Fourier - Grenoble I. https://tel.archives-ouvertes.fr/tel-00288657 Universités :

Université scientifique et médicale de Grenoble et Institut national polytechnique de Grenoble.

Patrick Cousot. 2021. Principles of Abstract Interpretation. The MIT Press.

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs

by Construction or Approximation of Fixpoints. In Proceedings of The ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages. 238–252.

Patrick Cousot and Rahida Cousot. 1992. Abstract Interpretation and Application to Logic Programs. J. Log. Program. 13,

2–3 (jul 1992), 103–179. https://doi.org/10.1016/0743-1066(92)90030-7

Patrick Cousot and Radhia Cousot. 1999. Refining Model Checking by Abstract Interpretation. Automated Software

Engineering 6, 1 (1999), 69–95. https://doi.org/10.1023/A:1008649901864

Robin David, Luigi Coniglio, and Mariano Ceccato. 2020. QSynth - A Program Synthesis based approach for Binary Code

Deobfuscation. Proceedings 2020 Workshop on Binary Analysis Research (2020).

Leonardo De Moura and Nikolaj Bjorner. 2008. Z3: An Efficient SMT Solver. In Proceedings of the Theory and Practice of

Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,

Hungary) (TACAS’08). Springer-Verlag, Berlin, Heidelberg, 337–340.

Aleksandar S. Dimovski and Axel Legay. 2020. Computing Program Reliability Using Forward-Backward Precondition

Analysis and Model Counting. In Fundamental Approaches to Software Engineering, Heike Wehrheim and Jordi Cabot

(Eds.). Springer International Publishing, Cham, 182–202.

Kyung-Goo Doh, Hyunha Kim, and David A. Schmidt. 2009. Abstract Parsing: Static Analysis of Dynamically Generated

String Output Using LR-Parsing Technology. In Proceedings of the 16th International Symposium on Static Analysis (Los

Angeles, CA) (SAS ’09). Springer-Verlag, Berlin, Heidelberg, 256–272. https://doi.org/10.1007/978-3-642-03237-0_18

Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri. 2017. Component-Based Synthesis of

Table Consolidation and Transformation Tasks from Examples. SIGPLAN Not. 52, 6 (jun 2017), 422–436. https:

//doi.org/10.1145/3140587.3062351

Graeme Gange, Jorge A. Navas, Peter Schachte, Harald Sondergaard, and Peter J. Stuckey. 2015. Interval Analysis and

Machine Arithmetic: Why Signedness Ignorance Is Bliss. ACM Trans. Program. Lang. Syst. 37, 1, Article 1 (jan 2015),

35 pages. https://doi.org/10.1145/2651360

Philippe Granger. 1989. Static analysis of arithmetical congruences. International Journal of Computer Mathematics 30, 3-4

(1989), 165–190. https://doi.org/10.1080/00207168908803778 arXiv:https://doi.org/10.1080/00207168908803778

Philippe Granger. 1992. Improving the results of static analyses of programs by local decreasing iterations. In Foundations

of Software Technology and Theoretical Computer Science, Rudrapatna Shyamasundar (Ed.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 68–79.

Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-output Examples. In Proceedings of the 38th

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL ’11).

Zheng Guo, Michael James, David Justo, Jiaxiao Zhou, Ziteng Wang, Ranjit Jhala, and Nadia Polikarpova. 2019. Program

Synthesis by Type-Guided Abstraction Refinement. Proc. ACM Program. Lang. 4, POPL, Article 12 (dec 2019), 28 pages.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 174. Publication date: June 2023.

https://doi.org/10.1145/3428295
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/blazytko
https://tel.archives-ouvertes.fr/tel-00288657
https://doi.org/10.1016/0743-1066(92)90030-7
https://doi.org/10.1023/A:1008649901864
https://doi.org/10.1007/978-3-642-03237-0_18
https://doi.org/10.1145/3140587.3062351
https://doi.org/10.1145/3140587.3062351
https://doi.org/10.1145/2651360
https://doi.org/10.1080/00207168908803778
https://arxiv.org/abs/https://doi.org/10.1080/00207168908803778

174:24 Yongho Yoon, Woosuk Lee, and Kwangkeun Yi

https://doi.org/10.1145/3371080

Qinheping Hu, John Cyphert, Loris D’Antoni, and Thomas Reps. 2020. Exact and Approximate Methods for Proving

Unrealizability of Syntax-Guided Synthesis Problems. In Proceedings of the 41st ACM SIGPLAN Conference on Programming

Language Design and Implementation (London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY,

USA, 1128–1142. https://doi.org/10.1145/3385412.3385979

Jeevana Priya Inala, Rohit Singh, and Armando Solar-Lezama. 2016. Synthesis of Domain Specific CNF Encoders for

Bit-Vector Solvers. In Theory and Applications of Satisfiability Testing – SAT 2016, Nadia Creignou and Daniel Le Berre

(Eds.). Springer International Publishing, Cham, 302–320.

Bishoksan Kafle and John P. Gallagher. 2015. Constraint Specialisation in Horn Clause Verification. In Proceedings of the

2015 Workshop on Partial Evaluation and Program Manipulation (Mumbai, India) (PEPM ’15). Association for Computing

Machinery, New York, NY, USA, 85–90. https://doi.org/10.1145/2678015.2682544

Somasundaram Kanagasabapathi and M. G. Thushara. 2020. Forward and Backward Static Analysis for Critical numerical

accuracy in Floating Point Programs. Comput. Sci. 21 (2020).

Se-Won Kim and Kwang-Moo Choe. 2011. String Analysis as an Abstract Interpretation. In Verification, Model Checking, and

Abstract Interpretation, Ranjit Jhala and David Schmidt (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 294–308.

Dileep Kini and Sumit Gulwani. 2015. FlashNormalize: Programming by Examples for Text Normalization. In Proceedings of

the 24th International Conference on Artificial Intelligence (Buenos Aires, Argentina) (IJCAI’15). AAAI Press, 776–783.

Lies Lakhdar-Chaouch, Bertrand Jeannet, and Alain Girault. 2011. Widening with Thresholds for Programs with Complex

Control Graphs. In Automated Technology for Verification and Analysis, Tevfik Bultan and Pao-Ann Hsiung (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 492–502.

DongKwon Lee, Woosuk Lee, Hakjoo Oh, and Kwangkeun Yi. 2020. Optimizing Homomorphic Evaluation Circuits by

Program Synthesis and Term Rewriting. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language

Design and Implementation (London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY, USA,

503–518. https://doi.org/10.1145/3385412.3385996

Woosuk Lee. 2021. Combining the top-down propagation and bottom-up enumeration for inductive program synthesis.

Proceedings of the ACM on Programming Languages 5, POPL (2021), 1–28.

Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. 2018. Accelerating Search-Based Program Synthesis Using

Learned Probabilistic Models. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design

and Implementation (Philadelphia, PA, USA) (PLDI 2018). Association for Computing Machinery, New York, NY, USA,

436–449. https://doi.org/10.1145/3192366.3192410

Damien Massé. 2001. Combining Forward And Backward Analyses of Temporal Properties. In Programs as Data Objects,

Olivier Danvy and Andrzej Filinski (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 103–116.

Grégoire Menguy, Sébastien Bardin, Richard Bonichon, and Cauim de Souza Lima. 2021. Search-Based Local Black-Box

Deobfuscation: Understand, Improve and Mitigate. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and

Communications Security (Virtual Event, Republic of Korea) (CCS ’21). Association for Computing Machinery, New York,

NY, USA, 2513–2525. https://doi.org/10.1145/3460120.3485250

Antoine Miné. 2006. The octagon abstract domain. Higher-Order and Symbolic Computation 19, 1 (2006), 31–100. https:

//doi.org/10.1007/s10990-006-8609-1

Antoine Miné. 2012. Abstract domains for bit-level machine integer and floating-point operations. In WING’12 - 4th

International Workshop on invariant Generation. Manchester, United Kingdom, 16. https://hal.archives-ouvertes.fr/hal-

00748094

Manasij Mukherjee, Pranav Kant, Zhengyang Liu, and John Regehr. 2020. Dataflow-Based Pruning for Speeding up

Superoptimization. Proc. ACMProgram. Lang. 4, OOPSLA, Article 177 (nov 2020), 24 pages. https://doi.org/10.1145/3428245

Shankara Pailoor, Yuepeng Wang, Xinyu Wang, and Isil Dillig. 2021. Synthesizing Data Structure Refinements from Integrity

Constraints. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and

Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York, NY, USA, 574–587.

https://doi.org/10.1145/3453483.3454063

Past SyGuS Competition. 2020. https://sygus.org/comp/.

Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program Synthesis from Polymorphic Refinement

Types. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Santa Barbara, CA, USA) (PLDI ’16). Association for Computing Machinery, New York, NY, USA, 522–538. https:

//doi.org/10.1145/2908080.2908093

John Regehr and Usit Duongsaa. 2006. Deriving Abstract Transfer Functions for Analyzing Embedded Software. In

Proceedings of the 2006 ACM SIGPLAN/SIGBED Conference on Language, Compilers, and Tool Support for Embedded

Systems (Ottawa, Ontario, Canada) (LCTES ’06). Association for Computing Machinery, New York, NY, USA, 34–43.

https://doi.org/10.1145/1134650.1134657

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 174. Publication date: June 2023.

https://doi.org/10.1145/3371080
https://doi.org/10.1145/3385412.3385979
https://doi.org/10.1145/2678015.2682544
https://doi.org/10.1145/3385412.3385996
https://doi.org/10.1145/3192366.3192410
https://doi.org/10.1145/3460120.3485250
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1007/s10990-006-8609-1
https://hal.archives-ouvertes.fr/hal-00748094
https://hal.archives-ouvertes.fr/hal-00748094
https://doi.org/10.1145/3428245
https://doi.org/10.1145/3453483.3454063
https://sygus.org/comp/
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/1134650.1134657

Inductive Program Synthesis via Iterative Forward-Backward Abstract Interpretation 174:25

Xavier Rival. 2005. Understanding the Origin of Alarms in Astrée. In Static Analysis, Chris Hankin and Igor Siveroni (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 303–319.

Xavier Rival and Kwangkeun Yi. 2020. Introduction to Static Analysis: an Abstract Interpretation Perspective. The MIT Press.

Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit Gulwani, Rohit Gheyi, Ryo Suzuki, and Björn

Hartmann. 2017. Learning Syntactic Program Transformations from Examples. In Proceedings of the 39th International

Conference on Software Engineering (Buenos Aires, Argentina) (ICSE’17). IEEE Press, 404–415. https://doi.org/10.1109/

ICSE.2017.44

Tushar Sharma and Thomas Reps. 2017. Sound Bit-Precise Numerical Domains. In Verification, Model Checking, and Abstract

Interpretation, Ahmed Bouajjani and David Monniaux (Eds.). Springer International Publishing, Cham, 500–520.

Axel Simon and Andy King. 2007. Taming the Wrapping of Integer Arithmetic. In Static Analysis, Hanne Riis Nielson and

Gilberto Filé (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 121–136.

Gagandeep Singh, Markus Püschel, and Martin Vechev. 2017. Fast Polyhedra Abstract Domain. In Proceedings of the 44th

ACM SIGPLAN Symposium on Principles of Programming Languages (Paris, France) (POPL ’17). Association for Computing

Machinery, New York, NY, USA, 46–59. https://doi.org/10.1145/3009837.3009885

Rishabh Singh and Armando Solar-Lezama. 2011. Synthesizing Data Structure Manipulations from Storyboards. In

Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software En-

gineering (Szeged, Hungary) (ESEC/FSE ’11). Association for Computing Machinery, New York, NY, USA, 289–299.

https://doi.org/10.1145/2025113.2025153

Sunbeom So and Hakjoo Oh. 2017. Synthesizing Imperative Programs from Examples Guided by Static Analysis. In Static

Analysis, Francesco Ranzato (Ed.). Springer International Publishing, Cham, 364–381.

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat. 2006. Combinatorial Sketching for

Finite Programs. In Proceedings of the 12th International Conference on Architectural Support for Programming Languages

and Operating Systems (San Jose, California, USA) (ASPLOS XII).

Ma[rtin Vechev, Eran Yahav, and Greta Yorsh. 2010. Abstraction-Guided Synthesis of Synchronization. In Proceedings of the

37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Madrid, Spain) (POPL ’10).

Association for Computing Machinery, New York, NY, USA, 327–338. https://doi.org/10.1145/1706299.1706338

ChenglongWang, Alvin Cheung, and Rastislav Bodik. 2017a. Synthesizing Highly Expressive SQL Queries from Input-Output

Examples. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Barcelona, Spain) (PLDI 2017). Association for Computing Machinery, New York, NY, USA, 452–466. https://doi.org/10.

1145/3062341.3062365

XinyuWang, Greg Anderson, Isil Dillig, and K. L. McMillan. 2018. Learning Abstractions for Program Synthesis. In Computer

Aided Verification, Hana Chockler and Georg Weissenbacher (Eds.). Springer International Publishing, Cham, 407–426.

Xinyu Wang, Isil Dillig, and Rishabh Singh. 2017b. Program Synthesis Using Abstraction Refinement. Proc. ACM Program.

Lang. 2, POPL, Article 63 (Dec. 2017), 30 pages. https://doi.org/10.1145/3158151

Henry S. Warren. 2012. Hacker’s Delight (2nd ed.). Addison-Wesley Professional.

Banghu Yin. 2019. Property Oriented Verification via Iterative Abstract Interpretation. In Proceedings of the 41st International

Conference on Software Engineering: Companion Proceedings (Montreal, Quebec, Canada) (ICSE ’19). IEEE Press, 162–164.

https://doi.org/10.1109/ICSE-Companion.2019.00067

Banghu Yin, Liqian Chen, Jiangchao Liu, Ji Wang, and Patrick Cousot. 2019. Verifying Numerical Programs via Iterative

Abstract Testing. In Static Analysis: 26th International Symposium, SAS 2019, Porto, Portugal, October 8–11, 2019, Proceedings

(Porto, Portugal). Springer-Verlag, Berlin, Heidelberg, 247–267. https://doi.org/10.1007/978-3-030-32304-2_13

Yongho Yoon,Woosuk Lee, and Kwangkeun Yi. 2023. Artifact of Inductive Program Synthesis via Iterative Forward-Backward

Abstract Interpretation. https://doi.org/10.5281/zenodo.7816533

Received 2022-11-10; accepted 2023-03-31

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 174. Publication date: June 2023.

https://doi.org/10.1109/ICSE.2017.44
https://doi.org/10.1109/ICSE.2017.44
https://doi.org/10.1145/3009837.3009885
https://doi.org/10.1145/2025113.2025153
https://doi.org/10.1145/1706299.1706338
https://doi.org/10.1145/3062341.3062365
https://doi.org/10.1145/3062341.3062365
https://doi.org/10.1145/3158151
https://doi.org/10.1109/ICSE-Companion.2019.00067
https://doi.org/10.1007/978-3-030-32304-2_13
https://doi.org/10.5281/zenodo.7816533

	Abstract
	1 Problem and Our Approach
	2 Overview
	3 Overall Synthesis Algorithm
	3.1 Preliminaries
	3.2 Overall Algorithm
	3.3 The Iterative Forward-Backward Analysis
	3.4 Optimizations

	4 Abstract Domains
	4.1 Notations
	4.2 Abstract Domain for Fixed-width Bitvectors
	4.3 Abstract Domain for Boolean Algebra

	5 Evaluation
	5.1 Experimental Setup
	5.2 Effectiveness of Simba
	5.3 Efficacy of Our Abstract Interpretation-based Pruning

	6 Related Work
	7 Future Work
	8 Conclusion
	Acknowledgments
	References

