
Programming Research Laboratory
Seoul National University

Basic Concepts of
Abstract Interpretation∗

Soonho Kong
http://ropas.snu.ac.kr/∼soon/

May 25, 2007

∗Work of P. Cousot and R.Cousot

Basic Concepts of Abstract Interpretation, 1 / 35

http://ropas.snu.ac.kr/~soon/


P. Cousot and R. Cousot.
Basic Concepts of Abstract Interpretation.
In Building the Information Society, R. Jacquard (Ed.), pages
359–366. Kluwer Academic Publishers 2004.

Basic Concepts of Abstract Interpretation, 2 / 35



Overview

Goal

To Understand basic concepts of abstract interpretation.
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Introduction

Introduction

Abstract Interpretation:
a theory of approximation of mathematical structures, in particular
those involved in the semantic models of computer systems.
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Transition Systems

Transition Systems

Programs are formalized as transition systems τ:

τ = 〈Σ,Σi, t〉

I Σ : a set of states

I Σi ⊆ Σ : the set of initial states

I t ⊆ Σ× Σ : a transition relation between a state and its
possible successors.

Example, the transition system

〈Z, {0}, {〈x, x ′〉 | x ′ = x + 1}〉

of program x := 0; while true do x := x + 1.
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Partial Trace Semantics

Partial Trace Semantics

A finite partial execution trace : σ = s0s1 . . . sn

I s0 ∈ Σ

I For all i < n, 〈si, si+1〉 ∈ t

Partial traces of length 0 : φ

Partial traces of length 1 : Σ1
τ = {s | s ∈ Σ}

Partial traces of length n + 1 :

Σn+1
τ = {σss ′ | σs ∈ Σn

τ ∧ 〈s, s ′〉 ∈ t}

Collecting semantics of τ : all partial traces of all finite lengths

Σ
−→∗
τ =

⋃
n>0

Σn
τ
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Partial Trace Semantics

Partial Trace Semantics in Fixpoint Form

For the function F
−→∗
τ

F
−→∗
τ (X) = {s | s ∈ Σ} ∪ {σss ′ | σs ∈ X ∧ 〈s, s ′〉 ∈ t}

Σ
−→∗
τ is the least fixpoint of F

−→∗
τ , that is

I F
−→∗
τ (Σ

−→∗
τ ) = Σ

−→∗
τ

I For all X such that F
−→∗
τ (X) = X , Σ

−→∗
τ ⊆ X

Therefore,
Σ
−→∗
τ = lfpF

−→∗
τ =

⋃
n>0

F
−→∗
τ

n
(φ)
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Partial Trace Semantics

Partial Trace Semantics in Fixpoint Form - Proof I
F
−→∗
τ (Σ

−→∗
τ ) = Σ

−→∗
τ

The proof is as follows:

F
−→∗
τ (Σ

−→∗
τ ) = F

−→∗
τ (

⋃
n>0

Σn
τ ) def.Σ

−→∗
τ

= {s | s ∈ Σ} ∪ {σss ′ | σs ∈ (
⋃

n>0

Σn
τ ) ∧ 〈s, s ′〉 ∈ t} def. F

−→∗
τ

= {s | s ∈ Σ} ∪
⋃

n>0

{σss ′ | σs ∈ (Σn
τ ) ∧ 〈s, s ′〉 ∈ t} set theory

= Σ1
τ ∪

⋃
n>0

Σn+1
τ def. Σ1

τ and Σn+1
τ

=
⋃

n ′>1

Σn ′
τ =

⋃
n>0

Σn
τ

by letting n ′ = n + 1 and since Σn
τ = φ
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Partial Trace Semantics

Partial Trace Semantics in Fixpoint Form - Proof II

For all X such that F
−→∗
τ (X) = X , Σ

−→∗
τ ⊆ X

We prove by induction that ∀n > 0 : Σn
τ ⊆ X

1. Base Case : Σ0
τ = φ ⊆ X

2. Inductive Hypothesis : Σn
τ ⊆ X

Since σs ∈ Σn
τ → σs ∈ X,

{σss ′ | σs ∈ Σn
τ ∧ 〈s, s ′〉 ∈ t} ⊆ {σss ′ | σs ∈ X ∧ 〈s, s ′〉 ∈ t}

Therefore,

Σn+1
τ ⊆ F

−→∗
τ (Σn

τ ) ⊆ F
−→∗
τ (X) = X
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The Reflexive Transitive Closure Semantics

The Reflexive Transitive Closure Semantics as an
Abstraction

I Abstraction of the partial trace semantics

α∗(X) = {−→α (σ) | σ ∈ X} where −→α (s0s1 . . . sn) = 〈s0, sn〉

α∗(Σ
−→∗
τ ) is the reflexive transitive closure t∗ of the transition

relation t.

I Concretization

γ∗(Y) = {σ | −→α (σ) ∈ Y} = {s0s1 . . . sn | 〈s0, sn〉 ∈ Y}

I X ⊆ γ∗(α∗(X))
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The Reflexive Transitive Closure Semantics

Answering Concrete Questions in the Abstract

Answering concrete question about X using a simpler abstract
question on α∗(X).
Example : s . . . s ′ . . . s ′′ ∈ X? → 〈s, s ′′〉 ∈ α∗(X)?
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The Reflexive Transitive Closure Semantics

Galois Connections

Given any set X of partial traces and Y of pair of states,

α∗(X) ⊆ Y ⇐⇒ X ⊆ γ∗(Y)

which is a characteristic property of Galois connections.
Proof.

α∗(X) ⊆ Y ⇐⇒ {−→α ∗(σ) | σ ∈ X} ⊆ Y def. α∗

⇐⇒ ∀σ ∈ X : −→α (σ) ∈ Y

⇐⇒ X ⊆ {σ | −→α (σ) ∈ Y} def. ⊆
⇐⇒ X ⊆ γ∗(Y) def. γ∗
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The Reflexive Transitive Closure Semantics

Galois Connections

Galois connections preserve joins.

α∗(
⋃
i∈I

Xi) =
⋃
i∈I

α∗(Xi)

Proof.

α∗(
⋃
i∈I

Xi) = {−→α ∗(σ) | σ ∈
⋃
i∈I

Xi}

=
⋃
i∈I

{−→α ∗(σ) | σ ∈ Xi}

=
⋃
i∈I

α∗(Xi)
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The Reflexive Transitive Closure Semantics

The Reflexive Transitive Closure Semantics in Fixpoint
Form

* General Principle in Abstract Interpretation.

1. The concrete(partial trace) semantics is expressed in fixpoint
form.

Σ
−→∗
τ = lfpF

−→∗
τ

2. The abstract(reflexive transitive closure) semantics is an
abstraction of the concrete semantics by a Galois connections
and it can be expressed in fixpoint form, too.

α∗(Σ
−→∗
τ ) = lfpF∗τ

3. 2 can be generalized to order theory, and is known as the
fixpoint transfer theorem.
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The Reflexive Transitive Closure Semantics

The Reflexive Transitive Closure Semantics in Fixpoint
Form - Propositions & Definitions

1. Proposition 1. α∗(φ) = φ

φ ⊆ γ∗(φ) ⇐⇒ α∗(φ) ⊆ φ. Therefore α∗(φ) = φ.
2. Propostion 2.

Commutation Property: α∗(F
−→∗
τ (X)) = F∗τ(α∗(X))

2.1 Definition 1. IΣ = {〈s, s〉 | s ∈ Σ}

2.2 Definition 2. F∗τ(Y) = IΣ ∪ Y ◦ t

α∗(F
−→∗
τ (X))

= α∗({s | s ∈ Σ} ∪ {σss ′ | σs ∈ X ∧ 〈s, s ′〉 ∈ t}) def. F
−→∗
τ

= {−→α (s) | s ∈ Σ} ∪ {−→α (σss ′) | σs ∈ X ∧ 〈s, s ′〉 ∈ t}) def. α∗

= {〈s, s〉 | s ∈ Σ} ∪ {〈σ0, s
′〉 | ∃s : σs ∈ X ∧ 〈s, s ′〉 ∈ t}) def. −→α

= IΣ ∪ {〈σ0, s
′〉 | ∃s : 〈σ0, s〉 ∈ α∗(X) ∧ 〈s, s ′〉 ∈ t}) def.IΣ,α∗

= IΣ ∪ α∗(X) ◦ t

= F∗τ(α∗(X))
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The Reflexive Transitive Closure Semantics

The Reflexive Transitive Closure Semantics in Fixpoint
Form - Proof

Showing
α∗(Σ

−→∗
τ ) = lfpF∗τ

is equivalent to prove that

α∗(
⋃

n>0

F
−→∗
τ

n
(φ)) =

⋃
n>0

F∗τ
n(φ)

Using induction on

∀n : α∗(F
−→∗
τ

n
(φ)) = F∗τ

n(φ)
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The Reflexive Transitive Closure Semantics

The Reflexive Transitive Closure Semantics in Fixpoint
Form - Proof

∀n : α∗(F
−→∗
τ

n
(φ)) = F∗τ

n(φ)

1. Base Case:
α∗(F

−→∗
τ

0
(φ)) = φ = F∗τ

0(φ)

2. Inductive Hypothesis: α∗(F
−→∗
τ

n
(φ)) = F∗τ

n(φ)

α∗(F
−→∗
τ

n+1
(φ)) = α∗(F

−→∗
τ (F

−→∗
τ

n
(φ)))

= F∗τ(α∗(F
−→∗
τ

n
(φ))) commutative

= F∗τF∗τ
n(φ) inductive hypothesis

= F∗τ
n+1(φ)
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The Reachability Semantics

The Reachability Semantics as an Abstraction

The reachability semantics of the transition system τ = 〈Σ,Σi, t〉

{s ′ | ∃s ∈ Σi : 〈s, s ′〉 ∈ t∗}

is the set of states that are reachable from the initial states Σi.
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The Reachability Semantics

The Reachability Semantics as an Abstraction

Definition post[r]Z: The right-image of the set Z by relation r

post[r]Z = {s ′ | ∃s ∈ Z : 〈s, s ′〉 ∈ r}
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The Reachability Semantics

The Reachability Semantics as an Abstraction

Abstraction of the reflexive transitive closure semantics Y is
defined as

α•(Y) = {s ′ | ∃s ∈ Σi : 〈s, s ′〉 ∈ Y}

= post[Y]Σi

Concretization of the reachability semantics Z is defined as

γ•(Z) = {〈s, s ′〉 | s ∈ Σi =⇒ s ′ ∈ Z}
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The Reachability Semantics

Galois Connection

We have the Galois Connection:

α•(Y) ⊆ Z ⇐⇒ Y ⊆ γ•(Z)

Proof.

α•(Y) ⊆ Z ⇐⇒ {s ′ | ∃s ∈ Σi : 〈s, s ′〉 ∈ Y} ⊆ Z def. α•

⇐⇒ ∀s ′ : ∀s ∈ Σi : 〈s, s ′〉 ∈ Y =⇒ s ′ ∈ Z def. ⊆
⇐⇒ ∀〈s, s ′〉 ∈ Y : s ∈ Σi =⇒ s ′ ∈ Z} def. =⇒
⇐⇒ Y ⊆ {〈s, s ′〉 | s ∈ Σi =⇒ s ′ ∈ Z} def. ⊆
⇐⇒ Y ⊆ γ•(Z) def. γ•
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The Reachability Semantics

The Reachability Semantics in fixpoint form

1. Define F•τ(Z) = Σi ∪ post[t]Z.

2. Establish commutation property α•(F∗τ(Y)) = α•(F•τ(Y))

α•(F∗τ(Y))

= {s ′ | ∃s ∈ Σi : 〈s, s ′〉 ∈ (IΣ ∪ Y ◦ t)} def. α•&F∗τ

= {s ′ | ∃s ∈ Σi : s ′ = s}∪
{s ′ | ∃s ∈ Σi : ∃s ′′ : 〈s, s ′′〉 ∈ Y ∧ 〈s ′′, s ′〉 ∈ t} def. IΣ&◦

= Σi ∪ {s ′ | ∃s ′′ ∈ α•(Y) ∧ 〈s ′′, s ′〉 ∈ t} def. α•

= α•(F•τ(Y)) def F•τ(Z)

3. By the fixpoint transfer theorem,

α•(t∗) = α•(lfpF∗τ) = lfpF•τ
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The Interval Semantics

The Interval Semantics as an Abstraction

The set of states of a transtion system τ = 〈Σ,Σi, t〉 is totally
ordered 〈Σ,<〉 with extrema −∞ and +∞, the interval semantics
αH(α•(t∗)) of τ provides bounds on its reachable states α•(t∗):

αH(Z) = [min Z,max Z]

min(φ) = ∞ max(φ) = −∞
Concretization:

γH([l,h]) = {s ∈ Σ | l 6 s 6 h}

Abstract implication:

[l,h] v [l ′,h ′] ⇐⇒ (l ′ 6 l ∧ h 6 h ′)
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The Interval Semantics

Galois Connection
I We have the Galois Connection:

αH(Z) v [l,h] ⇐⇒ Z ⊆ γH([l,h])

Proof.

αH(Z) v [l,h] ⇐⇒ [min Z,max Z] v [l,h] def. αH

⇐⇒ l 6 min Z ∧ max Z 6 h def. v
⇐⇒ Z ⊆ {s ∈ Σ | l 6 s 6 h} def. min&max

⇐⇒ Z ⊆ γH([l,h]) def. γH

I By defining ⊔
i∈I

[li,hi] = [mini∈I li,maxi∈I hi]

, Galois connection preserves least upper bounds

αH(
⋃
ı∈I

Zi) =
⊔
i∈I

(Zi)
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The Interval Semantics

The Interval Semantics in Fixpoint Form

1. Define [min Σi,max Σi] ∪ αH ◦ post[t] ◦ γH(I) v FH
τ (I)

2. Establish semi-commutation property

αH(F•τ(Z)) v FH
τ (αH(Z))

αH(F•τ(Z)) = αH(Σi ∪ post[t]Z) def F•τ

= αH(Σi) ∪ αH(post[t][Z]) Galois Connection

v [min Σi,max Σi] ∪ αH(post[t](γH(αH(Z))))

v FH
τ (αH(Z))

3. By the fixpoint approximation:

αH(F•τ(t∗)) = αH(lfpF•τ) v lfpFH
τ
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Convergence Acceleration

Convergence Acceleration

In general, lfpFH
τ =

⊔
n>0 FH

τ (φ = [+∞,−∞]) diverge.
Example, the transition system

〈Z, {0}, {〈x, x ′〉 | x ′ = x + 1}〉

of program x := 0; while true do x := x + 1.

FH
τ ([l,h]) = [0, 0] ∪ [l + 1,h + 1]

It diverges: [+∞, −∞], [0, 0], [0, 1], [0, 2], . . .
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Convergence Acceleration

Widening

To accelerate convergence, introduce a widening 5 such that,

(X v X5 Y) ∧ (Y v X5 Y)

I0 = φ = [+∞,−∞]

In+1 = In if FH
τ (In) v In

= In 5 FH
τ (In) otherwise.

limit Iλ is finite(λ ∈ N) and is a fixpoint overapproximation

lfpFH
τ v Iλ
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Convergence Acceleration

Example of Widening

An example of interval widening

1. choosing finite sequence

−∞ = r0 < r1 < · · · < rk = +∞
2.

[+∞,−∞]5 [l,h] = [l,h]

[l,h]5 [l ′,h ′] = [if l > l ′ then max{ri|ri 6 l ′} else l,

if h < h ′ then min{ri|h
′ 6 ri} else h]
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Convergence Acceleration

Example of Widening

Example, the transition system

〈Z, {0}, {〈x, x ′〉 | x ′ = x + 1}〉

of program x := 0; while x < 100 do x := x + 1.

FH
τ ([l,h]) = [0, 0] ∪ [l + 1,min(99,h) + 1]

1. Sequence r = −∞ < −1 < 0 < 1 < ∞
2.

I0 = [+∞,−∞]

I1 = [0, 0] t [1, 1] = [0, 1]

I2 = [0, 1] t [0, 2] = [0,+∞]

I3 = [0,+∞]
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Convergence Acceleration

Narrowing

The limit of an iteration with widening can be improved by a
narrowing 4, such that

X v Y =⇒ X v (X4 Y) v Y

All terms in the iterates with narrowing

J0 = Iλ

Jn+1 = Jn 4 FH
τ (J0)

improve the result obtained by widening.

lfpFH
τ v Jn v Iλ
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Convergence Acceleration

Example of Narrowing

[l,h]4[l ′,h ′] = [if ∃i : l = ri then l ′ else l, if ∃j : h = rj then h ′ else h]

Example, the transition system

〈Z, {0}, {〈x, x ′〉 | x ′ = x + 1}〉

of program x := 0; while x < 100 do x := x + 1.

J0 = [0,+∞]

J1 = [0,+∞]4 [0, 100] = [0, 100]

J2 = [0, 100]4 [0, 100] = [0, 100]
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Conclusion

Composition of Abstractions

The design of three abstractions of the partial trace semantics Σ
−→∗
τ

of a transition system τ was compositional. Composition of Galois
connections is a Galois connection so the successive arguments on
sound approximation do compose nicely.

αH ◦ α• ◦ α∗,γ∗ ◦ γ• ◦ γH
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Conclusion

Hierarchy of Semantics

The four semantics of a transition system τ = 〈Σ,Σi, t〉 form a
hierarchy

1. Partial traces Σ
−→∗
τ

2. Reflexive transitive closure α∗(Σ
−→∗
τ )

3. Reachability α• ◦ α∗(Σ
−→∗
τ )

4. Interval semantics αH ◦ α• ◦ α∗(Σ
−→∗
τ )
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Conclusion

Thanks

Thank you for listening.
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