
Principles of Programming, Spring 2006

Practice 3

Daejun Park, Heejong Lee
Programming Research Lab.@SNU

March 23, 2006

1. Define a precedure last-pair that returns the list that contains only the
last element of a given (nonempty) list.

(last-pair (list 23 72 149 34))
;(34)

2. Define a procedure reverse that takes a list as argument and returns a
list of the same elements in reverse order.

(reverse (list 1 4 9 16 25))
;(25 16 9 4 1)

3. The procedures +, *, and list take arbitrary numbers of arguments. One
way to define such procedures is to use define with dotted-tail notation.
In a procedure definition, a parameter list that has a dot before the last
parameter name indicates that, when the procedure is called, the initial
parameters (if any) will have as values the initial arguments, as usual, but
the final parameter’s value will be a list of any remaining arguments. For
instance, given the definition

(define (f x y . z) <body>)

the procedure f can be called with two or more arguments. If we evaluate

(f 1 2 3 4 5 6)

then in the body of f, x will be 1, y will be 2, and z will be the list (3 4
5 6). Given the definition

(define (g . w) <body>)

1



the procedure g can be called with zero or more arguments. If we evaluate

(g 1 2 3 4 5 6)

then in the body of g, w will be the list (1 2 3 4 5 6).

Use this notation to write a procedure same-parity that takes one or
more integers and returns a list of all the arguments that have the same
even-odd parity as the first argument. For example,

(same-parity 1 2 3 4 5 6 7)
;(1 3 5 7)

(same-parity 2 3 4 5 6 7)
;(2 4 6)

4. The procedure square-list takes a list of numbers as argument and
returns a list of the squares of those numbers.

(square-list (list 1 2 3 4))
;(1 4 9 16)

Complete the procedure by filling in the missing expressions.

(define (square-list items)
(if (null? items)

nil
(cons <??> <??>)))

5. We can make the procedure square-list easily by using the map proce-
dure.

(define (square-list items))
(map square items))

Define a procedure myMap that acts like map.

(myMap square (list 1 2 3 4))
;(1 4 9 16)

(myMap abs (list -1 -2 -3 -4))
;(1 2 3 4)

2


