
Principles of Programming, Spring 2006

Practice 4

Daejun Park, Heejong Lee
Programming Research Lab.@SNU

March 30, 2006

1. Below is some equivalence predicates. What is the result printed by the
interpreter in response to each expression? What is the result when you
change eq? into eqv? or equal?

(eq? ’a ’a)
(eq? "a" "a")
(eq? (cons 1 ()) (cons 1 ()))
(let ((a (cons 1 ())))
(eq? a a))

(let ((p (lambda (x) x)))
(eq? p p))

You will need the following reference. http://www.gnu.org/software/mit-
scheme/documentation/mit-scheme-ref/Equivalence-Predicates.html

2. Modify your reverse procedure of practice 3.2 to produce a deep-reverse
procedure that takes a list as argument and returns as its value the list
with its elements reversed and with all sublists deep-reversed as well. For
example,

(define x (list (list 1 2) (list 3 4)))

x
;((1 2) (3 4))

(reverse x)
;((3 4) (1 2))

(deep-reverse x)
;((4 3) (2 1))

3. Define a procedure square-tree analogous to the square-list procedure
of practice 3.4. That is, square-tree should behave as follows:

1



(square-tree
(list 1

(list 2 (list 3 4) 5)
(list 6 7)))

;(1 (4 (9 16) 25) (36 49))

Define square-tree both directly (i.e., without using any higher-order
procedures) and also by using map and recursion.

4. We can represent a set as a list of distinct elements, and we can represent
the set of all subsets of the set as a list of lists. For example, if the set
is (1 2 3), then the set of all subsets is (() (3) (2) (2 3) (1) (1 3)
(1 2) (1 2 3)). Complete the following definition of a procedure that
generates the set of subsets of a set and give a clear explanation of why it
works:

(define (subsets s)
(if (null? s)

(list nil)
(let ((rest (subsets (cdr s))))

(append rest (map <??> rest)))))

5. Evaluating a polynomial in x at a given value of x can be formulated as
an accumulation. We evaluate the polynomial

anxn + an−1x
n−1 + · · ·+ a1x + a0

using a well-known algorithm called Horner’s rule, which structures the
computation as

(· · · (anx + an−1)x + · · ·+ a1)x + a0

In other words, we start with an, multiply by x, add an−1, multiply by x,
and so on, until we reach a0. Fill in the following template to produce a
procedure that evaluates a polynomial using Horner’s rule. Assume that
the coefficients of the polynomial are arranged in a sequence, from a0

through an.

(define (horner-eval x coefficient-sequence)
(accumulate (lambda (this-coeff higher-terms) <??>)

0
coefficient-sequence))

For example, to compute 1 + 3x + 5x3 + x5 at x = 2 you would evaluate

(horner-eval 2 (list 1 3 0 5 0 1))
;79

2


