
Principles of Programming, Spring 2006

Practice 5

Daejun Park, Heejong Lee
Programming Research Lab.@SNU

April 6, 2006

1. The procedure accumulate-n is similar to accumulate except that it
takes as its third argument a sequence of sequences, which are all as-
sumed to have the same number of elements. It applies the designated
accumulation procedure to combine all the first elements of the sequences,
all the second elements of the sequences, and so on, and returns a se-
quence of the results. For instance, if s is a sequence containing four
sequences, ((1 2 3) (4 5 6) (7 8 9) (10 11 12)), then the value of
(accumulate-n + 0 s) should be the sequence (22 26 30). Fill in the
missing expressions in the following definition of accumulate-n:

(define (accumulate-n op init seqs)
(if (null? (car seqs))

nil
(cons (accumulate op init <??>)

(accumulate-n op init <??>))))

2. Suppose we represent vectors v = (vi) as sequences of numbers, and ma-
trices m = (mij) as sequences of vectors (the rows of the matrix). For
example, the matrix




1 2 3 4
4 5 6 6
6 7 8 9




is represented as the sequence ((1 2 3 4) (4 5 6 6) (6 7 8 9)). With
this representation, we can use sequence operations to concisely express
the basic matrix and vector operations. These operations (which are de-
scribed in any book on matrix algebra) are the following:

(dot-product v w) returns the sum
∑

i viwi

(matrix-vector m v) returns the vector t, where ti =
∑

j mijvj

(matrix-matrix m n) returns the matrix p, where pij =
∑

k miknkj

(transpose m) returns the matrix n, where nij = mji

1



We can define the dot product as

(define (dot-product v w)
(accumulate + 0 (map * v w)))

Fill in the missing expressions in the following procedures for computing
the other matrix operations. (The procedure accumulate-n is defined in
practice 5.1.)

(define (matrix-vector m v)
(map <??> m))

(define (transpose m)
(accumulate-n <??> <??> m))

(define (matrix-matrix m n)
(let ((cols (transpose n)))

(map <??> m)))

3. The procedure prime-sum-pairs takes a positive integer n, and find all
ordered pairs of distinct positive integers i and j, where 1 5 j < i 5 n,
such that i + j is prime. For example, if n is 6, then the pairs are the
following:

((2 1 3) (3 2 5) (4 1 5) (4 3 7) (5 2 7) (6 1 7) (6 5 11))

Fill in the missing expressions in the following definition:

(define (prime-sum-pairs n)
(map make-pair-sum

(filter prime-sum?
(accumulate

append
null
(map <??>

(enumerate-interval 1 (+ n 1)))))))

4. The “eight-queens puzzle” asks how to place eight queens on a chessboard
so that no queen is in check from any other (i.e., no two queens are in the
same row, column, or diagonal). One possible solution is shown in figure
1. One way to solve the puzzle is to work across the board, placing a queen
in each column. Once we have placed k − 1 queens, we must place the
kth queen in a position where it does not check any of the queens already
on the board. We can formulate this approach recursively: Assume that
we have already generated the sequence of all possible ways to place k− 1
queens in the first k − 1 columns of the board. For each of these ways,
generate an extended set of positions by placing a queen in each row of

2



Figure 1: a solution to the eight-queens puzzle

the kth column. Now filter these, keeping only the positions for which the
queen in the kth column is safe with respect to the other queens. This
produces the sequence of all ways to place k queens in the first k columns.
By continuing this process, we will produce not only one solution, but all
solutions to the puzzle.

We implement this solution as a procedure queens, which returns a se-
quence of all solutions to the problem of placing n queens on an n × n
chessboard. queens has an internal procedure queen-cols that returns
the sequence of all ways to place queens in the first k columns of the board.

(define (queens bs)
(define (queen-cols k)

(if (< k 0)
(list empty-b)
(filter
(lambda (p) (safe? p))
(accumulate append

null
(map <??>

(queen-cols (- k 1)))))))
(queen-cols (- bs 1)))

In this procedure rest-of-queens is a way to place k − 1 queens in the
first k − 1 columns, new-row is a proposed row in which to place the
queen for the kth column, the procedure adjoin-position adjoins a new
row-column position to a set of positions, and empty-board represents
an empty set of positions. The procedure safe? determines for a set of
positions, whether the queen in the kth column is safe with respect to the
others. (Note that we need only check whether the new queen is safe –
the other queens are already guaranteed safe with respect to each other.)
Fill in the missing expressions in the above definition.

3


