
Principles of Programming, Spring 2006

Practice 6

Daejun Park, Heejong Lee
Programming Research Lab.@SNU

April 13, 2006

1. Consider the following set operators:

member? : element× set → bool
adjoin : element× set → set
union : set× set → set

intersection : set× set → set

member? is a predicate that determines whether a given element is a mem-
ber of a set. adjoin takes an object and a set as arguments and returns a
set that contains the elements of the original set and also the adjoined ele-
ment. union computes the union of two sets and intersection computes
the intersection of two sets.
One way to represent a set is as a list of its elements in which no element
appears more than once. Another way to speed up our set operations is to
change the representation so that the set elements are listed in increasing
order. We can do better than the ordered-list representation by arranging
the set elements in the form of a tree.
Define three kinds of the above set operators, unordered list, ordered list,
binary tree, respectively. Furthermore define the procedure list2tree
that convert a set as unordered list into the set as binary tree.

list2tree : setunordered list → setbinary tree

2. Consider the following procedures:

d ∈ digit → 0 | 1 | · · · | 9
s ∈ string → ε | d | d · s
c ∈ code → ε | d | c · c | c|c | c+

match : string × code → bool
matchs : string × code set → bool
first : code → digit set
rest : digit× code → code set

1

Informally, the matchs extends the match to code set, the first(c) means
a set of first digit of a string that matches with c, and the rest(d,c) means
a set of code representing the string s, such that d · s matches with c. The
following is the formal definitions of these procedures.

‖ ε ‖ .= {ε}
‖ d ‖ .= {d}

‖ c1 · c2 ‖ .= {s1 · s2 | s1 ∈ ‖ c1 ‖ ∧ s2 ∈ ‖ c2 ‖}
‖ c1|c2 ‖ .= ‖ c1 ‖ ∪ ‖ c2 ‖
‖ c+ ‖ .= ‖ c ‖ ∪ {s · s | s ∈ ‖ c ‖} ∪ {s · s · s | s ∈ ‖ c ‖} ∪ · · ·

match(s, c) .=
{

true, s ∈ ‖ c ‖
false, otherwise

matchs(s, C) .=
∨

c∈C match(s, c)
first(c) .= {d | d · s ∈ ‖ c ‖}
rest(d, c) .= {c′ | d · s ∈ ‖ c ‖ ∧ s ∈ ‖ c′ ‖}

By the above definitions, we can conclude the following equality.

‖ c ‖ = {d · s | d ∈ first(c) ∧ c′ ∈ rest(d, c) ∧ s ∈ ‖ c′ ‖}
However we cannot use the above definitions to implement the procedures,
since the size of ‖ c ‖ is infinite. Therefore we have to modify the definition
into a computable one. Compelete modified definitions in the following.

match(s, ε) .= s = ε
match(s, d) .= s = d

match(s, c1 · c2)
.= s = d · s′ ∧ d ∈ first(c1 · c2) ∧ matchs(s′, rest(d, c1 · c2))

match(s, c1|c2)
.= match(s, c1) ∨ match(s, c2)

match(s, c+) .=

matchs(s, φ) .=
matchs(s, C) .=

∨
c∈C match(s, c)

first(ε) .= {ε}
first(d) .= {d}

first(c1 · c2)
.=

first(c1|c2)
.=

first(c+) .=

rest(d, ε) .= φ

rest(d, d′) .=
{ {ε}, d = d′

φ, d 6= d′

rest(d, c1 · c2)
.= {c · c2 | c ∈ rest(d, c1)}†

rest(d, c1|c2)
.=

rest(d, c+) .= rest(d, c) ∪
†Note that if rest(d, c) = φ, then {c1 · c2 | c1 ∈ rest(d, c)} = φ.

2

