
Principles of Programming, Spring 2006

Practice 8

Modeling with Mutable Data

Daejun Park, Heejong Lee
Programming Research Lab.@SNU

May 4, 2006

1. A queue is a sequence in which items are inserted at one end (called
the rear of the queue) and deleted from the other end (the front). A
ordered-queue is, however, a sequence in which items are inserted at one
end and deleted from the least element, where items are ordered numer-
ically. For each implementation of queue and ordered-queue, we need the
following procedures. Define all the procedures.

make-queue : unit → queue
insert-queue! : queue× number → queue
delete-queue! : queue → queue

make-ordered-queue : unit → queue
insert-ordered-queue! : queue× number → queue
delete-ordered-queue! : queue → queue

For examples,

(define q (make-queue))
(insert-queue! q 2)
(insert-queue! q 1)
(delete-queue! q)
; 2
(delete-queue! q)
; 1
(define q (make-ordered-queue))
(insert-ordered-queue! q 2)
(insert-ordered-queue! q 1)
(delete-ordered-queue! q)
; 1
(delete-ordered-queue! q)
; 2

1



2. You have implemented dictionary in Exercise 5 of Homework 2. The
dictionary was not a mutable data structure. That is, even though you
changed the dictionary using dictInsert or dictDelete, the original
dictionary was not changed, but a new dictionary was created. From now
on, implement a mutable dictionary data structure. Define the following
procedures.

make-dict : unit → dict
lookup : key × dict → value

insert! : key × value× dict → unit
delete! : key × dict → unit

For examples,

(define d (make-dict))
(insert! 1 10 d)
(insert! 2 20 d)
(lookup 1 d)
; 10
(insert! 1 30 d)
(lookup 1 d)
; 30
(delete! 2 d)
(lookup 2 d)
; #f

2


