
Principles of Programming, Fall 2009

Practice 10

OCaml functors

Woosuk Lee, Suwon Jang, Sungkeun Cho
Programming Research Lab.@SNU

November 16, 2009

We will define a functor for manipulating two-dimensional vectors (pairs of
(x,y) coordinates) that can be instantiated with different types for the coordi-
nates.1

Arguments have the following type.

type arg = Rational of int * int
| Float of float
| Complex of float * float

Numbers have the following signature.

module type NUMBER =
sig
type num
val create : arg -> num
val add : num -> num -> num
val string_of : num -> string

end

1. Define three structures Rational, Float and Complex implementing the
signature NUMBER.

e.g.

module Complex : NUMBER =
struct
type num = float * float (* e.g. 2.0 + 3.0i *)
let create = ...
let add = ...
let string_of = ...

end
1Emmanuel Chailloux et al., Developing Applications With Objective Caml, p431, O’Reilly,

Paris, 2000.

1



2. Vectors have following signature VECTOR.

module type VECTOR =
sig
type atom (* Vector atom type *)
type vector
val create : atom list -> vector
val add : vector -> vector -> vector
val string_of : vector -> string

end

Define the functor MakeVector, parameterized by a module of signature
NUMBER and output structure has signature VECTOR.

e.g.

module MakeVector(Number : NUMBER) : VECTOR
with type atom = Number.num =

struct
...

end
module ComplexVector = MakeVector(Complex)

3. Use these structures to define(by functor application) three modules for
vectors of rationals, reals and complex.

2


