
Principles of Programming, Fall 2009

Practice 2

Recursive Fuction, First Class Function, Pair and

List

Woosuk Lee, Suwon Jang, Sungkeun Cho
Programming Research Lab.@SNU

September 14, 2009

Recursive function Write down the substitution process of the procdedure.
Does it work what you expect?

(define sum (lambda (x) (if (= x 1) 1 (+ x (sum (- x 1))))))
(sum 1)
(sum 5)
(sum 0)

Function as Argument Try

(define apply5 (lambda (f) (f 5)))
(apply5 square)

Pair and list Try

(cons 1 2)
(car (cons 1 2))
(cdr (cons 1 2))
(car (cons (cons 1 2) 3))
(cdr (cons (cons 1 2) 3))
(car (cons 1 (cons 2 3)))
(cdr (cons 1 (cons 2 3)))
()
null
(cons ’foo ())

1



(cons ’foo (cons ’bar ()))
(list)
(list ’foo)
(list ’foo ’bar)
’(foo bar)
(list 1 2 3)
’(1 2 3)
(null? ())
(null? ’(1 2 3))

Exercise

1. Define the factorial fuction called fact that takes a number as its argument
and computes factorials. For examples,

(fact 3)
6

(fact 0)
1

2. Define a procedure called combination that takes two numbers as its ar-
gument, namely n, m, and computes nCm. For examples,

(combination 4 2)
6

(combination 9 4)
126

Write two definitions of combination - one that uses above fact fuction and
one that does not use multiplication(×) or division(/).1

3. Define a procedure called sigma that takes two numbers and a fuction as
its arguments, namely a, b, f respectively, and computes the following.

b∑
n=a

f(n) = f(a) + f(a + 1) + · · ·+ f(b)

For example,

(define (f n) (* n n))
(sigma 1 3 f)
14

1Hint. Consider Pascal’s triangle.

2



4. Let f and g be two one-argument functions. The composition f after g is
defined to be the function x 7→ f(g(x)). Define a procedure compose that
implements composition. For example,

(define (square x) (* x x))
(define (inc x) (+ x 1))
((compose square inc) 6)
49

5. Using cond, car, cdr primitives, define a procedure called nth that takes a
integer and list as its argument returning nth element of list. For example

(nth 0 (list 1 2 3))
;1

(nth 10 (list 1 2 3))
;error : out of bound!

6. The procedure square-list takes a list of numbers as argument and
returns a list of the squares of those numbers.

(square-list (list 1 2 3 4))
;(1 4 9 16)

7. We can make the procedure square-list easily by using the map proce-
dure.

(define (square-list items))
(map square items))

Define a procedure my-map that acts like map.

(my-map square (list 1 2 3 4))
;(1 4 9 16)

(my-map abs (list -1 -2 -3 -4))
;(1 2 3 4)

8. Define a procedure fold that takes a list, a function and an arbitary value
as its arguments, and computes following.

(fold f c ′()) = c

(fold f c ′(a1 · · · an)) = (f(f(f c a1) a2) · · · an)

For examples,

3



(fold + 0 (1 2 3 4 5))
;15

9. (Optional) Assume that you have three pegs and a set of disks, all of
different diameters, with holes in them (so that they can slide onto the
pegs). Start with all the disks on a single peg, in order of size (with the
smallest on top). The object of the puzzle2 is to move the pile of disks
to a specified peg, by moving one disk at a time. A legal move consists
of taking the top disk from any peg and putting it on either of the other
two pegs; but a disk may never be placed on top of a disk that is smaller
than itself.

We will write a procedure move-tower that takes four arguments - the
number of disks in the pile, the peg the disks are on, the peg the disks
should be moved to, and the extra peg - and prints the sequence of moves.
For example, consider moving three disks from peg 1 to peg 3 by evaluating
(move-tower 3 1 3 2). This should print:

move top disk from 1 to 3
move top disk from 1 to 2
move top disk from 3 to 2
move top disk from 1 to 3
move top disk from 2 to 1
move top disk from 2 to 3
move top disk from 1 to 3

You can use following procedure that takes two arguments - the peg the
disks are on, the peg the disk should be moved to - and prints one step of
moves.

(define (print-move from to)
(newline)
(display "move top disk from ") (display from)
(display " to ") (display to))

2This puzzle is well known by ‘Hanoi tower problem’

4


