Principles of Programming, Fall 2009
 Practice 3
 More on Lists and Recursive Functions

Woosuk Lee, Suwon Jang, Sungkeun Cho
Programming Research Lab.@SNU

September 21, 2009

Primitive List operations In fact, list is regarded as primitive type. Scheme standard offers some primitive operations for list management.

```
empty
(list 1 2 3)
(list? '(1 2 3))
(length '(1 2 3))
(append '(1 2) '(3 4))
(reverse '(1 2 3))
(list-tail '(1 2 3 4) 2)
(list-ref '(1 2 3 4) 2)
(map (lambda (x) (+ x 1)) '(1 2 3 4))
(for-each (lambda (x) (display x)) '(1 2 3 4))
```


Exercise

1. We can represent a set as a list of distinct elements, and we can represent the set of all subsets of the set as a list of lists. For example, if the set is (1 2 3), then the set of all subsets is (() (3) (2) (2 3) (1) (13) (1 2) (1 23)). Complete the following defiition of a procedure that generates the set of subsets of a set.
```
(define (subsets s)
    (if (null? s)
            (list null)
            (let ((rest (subsets (cdr s))))
                    (append rest (map <??> rest)))))
```

2. Evaluating a polynomial in x at a given value of x can be formulated as an accumulation. We evaluate the polynomial

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

using a well-known algorithm called Horner's rule, which structures the computation as

$$
\left(\cdots\left(a_{n} x+a_{n-1}\right) x+\cdots+a_{1}\right) x+a_{0}
$$

In other words, we start with a_{n}, multiply by x, add a_{n-1}, multiply by x, and so on, until we reach a_{0}. Fill in the following template to produce a procedure that evaluates a polynomial using Horner's rule. Assume that the coefficients of the polynomial are arranged in a sequence, from a_{0} through a_{n}.

```
(define (horner-eval x coefficient-sequence)
    (foldr (lambda (this-coeff higher-terms) <??>)
        0
        coefficient-sequence))
```

For example, to compute $1+3 x+5 x^{3}+x^{5}$ at $x=2$ you would evaluate
(horner-eval 2 (list 13050 1))
;79
3. Define a procedure called $m y$-reverse that takes a list as its argument and returns a list of the same elements in reverse order.
4. Modify your my-reverse procedure to produce a deep-reverse procedure that takes a list as argument and returns as its value the list with its elements reverse and with all sublists deep-reverse as well. For example,

```
(define x (list (list 1 2) (list 3 (list 4 5))))
(reverse x)
;((3 (4 5)) (1 2))
(deep-reverse x)
;(((5 4) 3) (2 1))
```

5. Define a procedure called $m y$-filter that takes a list and a predicate function as its arguments and produces a new list containing exactly those elements of the origianl list for which the given predicate returns the boolean value true. (Do not use filter procedure.) For example,
(my-filter (list 1324) (lambda (x) (> x 2)))
; (3 4)
(my-filter (list 1324) (lambda (x) (= x 1)))
; (1)
6. Define a procedure my-append combines two lists. (Do not use append procedure.) For example,
(my-append (list 12 3) (list 45 6))
; (1 23456)
7. The procedures + , *, and list take arbitrary numbers of arguments. One way to define such procedures is to use define with dotted-tail notation. In a procedure definition, a parameter list that has a dot before the last parameter name indicates that, when the procedure is called, the initial parameters (if any) will have as values the initial arguments, as usual, but the final parameter's value will be a list of any remaining arguments. For instance, given the definition
```
(define (f x y . z) <body>)
```

the procedure f can be called with two or more arguments. If we evaluate

$\left(\begin{array}{llllll}f & 1 & 2 & 3 & 4 & 5\end{array}\right)$

then in the body of f, x will be 1 , y will be 2 , and z will be the list (3 4 56). Given the definition
(define (g . w) <body>)
the procedure g can be called with zero or more arguments. If we evaluate
$\left(\begin{array}{lllllll}g & 1 & 2 & 3 & 4 & 5 & 6\end{array}\right)$
then in the body of g , w will be the list ($\left.\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}\right)$.
Use this notation to write a procedure same-parity that takes one or more integers and returns a list of all the arguments that have the same evenodd parity as the first argument. For example,
(same-parity 1234567)
; (1 35 7)
(same-parity 234567)
; (2 4 6)

And define more generic procedure append-many that combines arbitrary number of lists by using the my-append procedure that you defined above.
(append-many '(1 2 3) '(4 5 6) '(7 8 9))
; (1 23456789)

