
Principles of Programming, Fall 2009

Practice 3

More on Lists and Recursive Functions

Woosuk Lee, Suwon Jang, Sungkeun Cho
Programming Research Lab.@SNU

September 21, 2009

Primitive List operations In fact, list is regarded as primitive type. Scheme
standard offers some primitive operations for list management.

empty
(list 1 2 3)
(list? ’(1 2 3))
(length ’(1 2 3))
(append ’(1 2) ’(3 4))
(reverse ’(1 2 3))
(list-tail ’(1 2 3 4) 2)
(list-ref ’(1 2 3 4) 2)
(map (lambda (x) (+ x 1)) ’(1 2 3 4))
(for-each (lambda (x) (display x)) ’(1 2 3 4))

Exercise

1. We can represent a set as a list of distinct elements, and we can represent
the set of all subsets of the set as a list of lists. For example, if the set is
(1 2 3), then the set of all subsets is (() (3) (2) (2 3) (1) (1 3) (1 2) (1
2 3)). Complete the following defiition of a procedure that generates the
set of subsets of a set.

(define (subsets s)
(if (null? s)

(list null)
(let ((rest (subsets (cdr s))))

(append rest (map <??> rest)))))

2. Evaluating a polynomial in x at a given value of x can be formulated as
an accumulation. We evaluate the polynomial

anxn + an−1x
n−1 + · · · + a1x + a0

1



using a well-known algorithm called Horner’s rule, which structures the
computation as

(· · · (anx + an−1)x + · · · + a1)x + a0

In other words, we start with an, multiply by x, add an−1, multiply by
x, and so on, until we reach a0. Fill in the following template to produce
a procedure that evaluates a polynomial using Horner’s rule. Assume
that the coefficients of the polynomial are arranged in a sequence, from
a0 through an.

(define (horner-eval x coefficient-sequence)
(foldr (lambda (this-coeff higher-terms) <??>)

0
coefficient-sequence))

For example, to compute 1 + 3x + 5x3 + x5 at x = 2 you would evaluate

(horner-eval 2 (list 1 3 0 5 0 1))
;79

3. Define a procedure called my-reverse that takes a list as its argument and
returns a list of the same elements in reverse order.

4. Modify your my-reverse procedure to produce a deep-reverse procedure
that takes a list as argument and returns as its value the list with its
elements reverse and with all sublists deep-reverse as well. For example,

(define x (list (list 1 2) (list 3 (list 4 5))))

(reverse x)
;((3 (4 5)) (1 2))

(deep-reverse x)
;(((5 4) 3) (2 1))

5. Define a procedure called my-filter that takes a list and a predicate func-
tion as its arguments and produces a new list containing exactly those ele-
ments of the origianl list for which the given predicate returns the boolean
value true. (Do not use filter procedure.) For example,

(my-filter (list 1 3 2 4) (lambda (x) (> x 2)))
;(3 4)

(my-filter (list 1 3 2 4) (lambda (x) (= x 1)))
;(1)

2



6. Define a procedure my-append combines two lists. (Do not use append
procedure.) For example,

(my-append (list 1 2 3) (list 4 5 6))
;(1 2 3 4 5 6)

7. The procedures +, *, and list take arbitrary numbers of arguments. One
way to define such procedures is to use define with dotted-tail notation.
In a procedure definition, a parameter list that has a dot before the last
parameter name indicates that, when the procedure is called, the initial
parameters (if any) will have as values the initial arguments, as usual, but
the final parameter’s value will be a list of any remaining arguments.
For instance, given the definition

(define (f x y . z) <body>)

the procedure f can be called with two or more arguments. If we evaluate

(f 1 2 3 4 5 6)

then in the body of f, x will be 1, y will be 2, and z will be the list (3 4
5 6). Given the definition

(define (g . w) <body>)

the procedure g can be called with zero or more arguments. If we evaluate

(g 1 2 3 4 5 6)

then in the body of g, w will be the list (1 2 3 4 5 6).

Use this notation to write a procedure same-parity that takes one or more
integers and returns a list of all the arguments that have the same even-
odd parity as the first argument. For example,

(same-parity 1 2 3 4 5 6 7)
;(1 3 5 7)

(same-parity 2 3 4 5 6 7)
;(2 4 6)

And define more generic procedure append-many that combines arbitrary
number of lists by using the my-append procedure that you defined above.

(append-many ’(1 2 3) ’(4 5 6) ’(7 8 9))
;(1 2 3 4 5 6 7 8 9)

3


