
Principles of Programming, Fall 2009

Practice 4

Managing Data Structure Using List

Woosuk Lee, Suwon Jang, Sungkeun Cho
Programming Research Lab.@SNU

September 28, 2009

1. In Practice 3-Exercise 1, we defined function subsets. For example, if
the argument of subsets is (1 2 3), then the obtained result will be (()
(3) (2) (2 3) (1) (1 3) (1 2) (1 2 3)). Now, we want to define function
ordered-subsets which is similar to subsets except that it gives us the
sorted subsets of a set. For instance,

(ordered-subsets ’(1 2 3))
;(() (1) (2) (3) (1 2) (1 3) (2 3) (1 2 3))

Complete the following definition of a procedure sort that sorts the set
of subsets of a set in ascending order.

(define (ordered-subsets s)
(if (null? s)

(list null)
(let ((rest (ordered-subsets (cdr s))))

(sort (append rest (map (lambda (x) (cons (car s) x))
rest))))))

(define (sort lst) ...)

2. (SICP 2.3.3) Consider the following set operators:

member? : element× set→ bool
adjoin : element× set→ set
union : set× set→ set

intersection : set× set→ set

1



member? is a predicate that determines whether a given element is a mem-
ber of a set. adjoin takes an object and a set as arguments and returns a
set that contains the elements of the original set and also the adjoined ele-
ment. union computes the union of two sets and intersection computes
the intersection of two sets.

One way to represent a set is as a list of its elements in which no element
appears more than once. Another way to speed up our set operations is to
change the representation so that the set elements are listed in increasing
order.

Define two kind of set operators, using unordered list and ordered list.

3. (SICP ex. 2.36) The procedure accumulate-n is similar to accumulate
except that it takes as its third argument a sequence of sequences, which
are all assumed to have the same number of elements. It applies the
designated accumulation procedure to combine all the first elements of the
sequences, all the second elements of the sequences, and so on, and returns
a sequence of the results. For instance, if s is a sequence containing four
sequences, ((1 2 3) (4 5 6) (7 8 9) (10 11 12)), then the value of
(accumulate-n + 0 s) should be the sequence (22 26 30). Fill in the
missing expressions in the following definition of accumulate-n:

(define (accumulate-n op init seqs)
(if (null? <??>)

nil
(cons (accumulate op init <??>)

(accumulate-n op init <??>))))

4. (SICP ex. 2.37) Suppose we represent vectors v = (vi) as sequences of
numbers, and matrices m = (mij) as sequences of vectors (the rows of the
matrix). For example, the matrix 1 2 3 4

4 5 6 6
6 7 8 9


is represented as the sequence ((1 2 3 4) (4 5 6 6) (6 7 8 9)). With
this representation, we can use sequence operations to concisely express
the basic matrix and vector operations. These operations (which are de-
scribed in any book on matrix algebra) are the following:

(dot-product v w) returns the sum
∑

i viwi

(matrix-vector m v) returns the vector t, where ti =
∑

j mijvj

(matrix-matrix m n) returns the matrix p, where pij =
∑

k miknkj

(transpose m) returns the matrix n, where nij = mji

We can define the dot product as

2



(define (dot-product v w)
(accumulate + 0 (map * v w)))

Fill in the missing expressions in the following procedures for computing
the other matrix operations. (The procedure accumulate-n is defined in
practice 5.2.)

(define (matrix-vector m v)
(map <??> m))

(define (transpose m)
(accumulate-n <??> <??> m))

(define (matrix-matrix m n)
(let ((cols (transpose n)))
(map <??> m)))

3


