Principles of Programming, Fall 2009
Practice 6
Patterns in Function Definition and Type System

Woosuk Lee, Suwon Jang, Sungkeun Cho
Programming Research Lab.@QSNU

October 19, 2009

1. Define a procedure reverse that takes a list as argument and returns a
list of the same elements in reverse order.

> let x = reverse [1; 2; 3; 4];;
val x: int list = [4; 3; 2; 1]

2. Mergesort is an O(nlogn) sorting algorithm invented by John von Neu-
mann in 1945. Conceptually, mergesort works as follows:!

(a) Divide the unsorted list into two sublists of about half the size.

(b) Divide each of thw two sublists recursively until we have list sizes of
length 1, in which case the list itself is returned.

(c) Merge the two sorted sublists back into one sorted list.

Consider the mergeSort procedure in the following. Define the sub pro-
cedures, split and merge, in order to run mergeSort well.

let rec mergeSort = function [] -> []

| [a]l -> [al

[1>
let (m, n) = split 1 in
let m’ = mergeSort m in
let n’ = mergeSort n
in

merge m’ n’
3. The diff procedure takes a polynomial as its argument and differentiates

the given polynomial. Fill in the missing expressions in the following
definition of diff.

IThe description of mergesort algorithms is excerpted from Wikipedia.

= Add of poly * poly
| Term of coef * expo
= int

type poly

and coef
and expo = int

let rec diff : poly -> poly =
function Add (p, q) —-> <77>
| Term (c, 0) -> <?77>
| Term (c, e) -> <?77>

If diff has been completed correctly, it will have a result such as the
following.

> let z = diff Add (Add (Term (1, 3), Term (4, 1)), Term (-5, 0)) ;;
val z: poly = Add (Add (Term (3, 2), Term (4, 0)), Term (0, 0))

. Define a procedure eval that evaluates a polynomial in x at a given value
of x. It takes a polynomial and integer as its argument.

> let p = Add (Add (Term (1, 3), Term (4, 1)), Term (-5, 0)) ;;
val p : poly = Add (Add (Term (1, 3), Term (4, 1)), Term (-5, 0))
> eval p 3 ;;

- : int = 34

. Define a procedure add which can be the addition operator of four types
of values. add plays four different parts.

Integer addition.

e Floating-point addition.
e List concatenation.

e String concatenation.

You can use the operators +, +., @, ~ in order to define a procedure add
The types of add can be described as follows.

val add : ’a value -> ’a value -> ’a value

type ’a value = INT of int
| FLOAT of float
| LIST of ’a list
| STRING of string

