
Principles of Programming, Fall 2009

Practice 8

OCaml Basic Module System and Standard

Library

Woosuk Lee, Suwon Jang, Sungkeun Cho
Programming Research Lab.@SNU

November 2, 2009

1. In OCaml, Module is a set of declarations. To learn more about module
system, our first step is implementing simplest module which is called
‘MyQueue’. We will show you an example module ‘MyStack’. Write your
own module ‘MyQueue’.

module MyStack =
struct
type t = int list
exception Empty
let empty = []
let push x t = x :: t
let pop t =
match t with
[] -> raise Empty

| h::t -> (h, t)
let first t =
match t with
[] -> raise Empty

| h::t -> h
end

2. OCaml has an information hiding feature, signature. Signatures are in-
terfaces for structures. You can define ‘module type’ as an interface to
module structure. Write signiture ‘MYQUEUE’ to hide internal implementa-
tion of ‘MyQueue’. Sample signiture for ‘MyStack’ is provided.

module type MYSTACK =
sig

1

type t
exception Empty
val empty : t
val push : int -> t -> t
val pop : t -> int * t

end

And, confirm that restricting the Queue structure by this signature results
in another view of the Queue structure where the first function is not
accessible and the actual representation of queues is hidden. An example
for MyStack is given as follow.

module AbstractStack = (MyStack : MYSTACK);;
module AbstractStack : MYSTACK
AbstractStack.first [1;2;3] ;;
Unbound value AbstractStack.first

3. Phone Book.

A phone book contains names of people and phone number set correspond-
ing to each person. You can usually add a pair of name and phone num-
ber into your phone book, delete informations, and lookup the specific
information which you need. Implement a module PhoneBook of which
signature can be defined as follow. Actually, this exercise is for getting
used to Ocaml standard library. You’d better make use of some standard
library : { Set, Map, String, List}

module type PHONEBOOK =
sig
type t

type name = string
type number = string

exception Empty
val empty : t
val add : name * number -> t -> t
val del : name * number -> t -> t

val lookup : name -> t -> number list
val pprint : t -> unit
end

An usage example of your PhoneBook can be represented as follow.

let _ =
let book = PhoneBook.add ("kim", "4732938") (PhoneBook.empty) in
let book = PhoneBook.add ("kim", "4128947") book in
let book = PhoneBook.add ("lee", "4524438") book in

2

let book = PhoneBook.add ("lee", "4137438") book in
let book = PhoneBook.del ("lee", "4137438") book in
PhoneBook.pprint book

kim ::
412-8947
473-2938

lee ::
452-4438

3

