Principles of Programming, Fall 2011
Practive 2*

Recursive Fuction, Data Abstraction

Programming Research Lab,@QSNU

Seungjung Lee, Youngseok Lee

September 26, 2011

1. Pair
Pair can be implemented by cons. Function car returns first element of pair , and

cdr returns second element of one.

(define p (cons 1 2))
(car p)
(cdr p)

2. List
Actually, list is structure that is represented by weaved pair like chain. Pair which is

made by cons can implement list.

(a) List made by cons, List made by list

(cons 1)

(list 1)

(cons 1 (cons 2 (cons 3 (cons 4 (0))))
(1ist 1 2 3 4)

(equal? (list 1 2) (coms 1 (cons 2 ())))

(b) Is it list?

(list? O)

(list? (list ’a ’b ’c))
(1ist? (cons 1 0)))
(list? 123)

(1ist? (comns 1 2))

*translated by Youngseok Lee.

3. Function about list

(null?)

(length (1 2 3 4))

(append ’(1 2) ’(3 4 5))

(reverse ’(1 2 3))

(list-ref (1 2 3 4 5) 2)

(list-ref ’(1 2 3 4 5) 5)

(1ist-tail ’(1 2 3 4 5) 2)

(map (lambda (x) (* x x)) (1 2 3 4))
(map car *((1 2) (3 4) (5 6)))
(filter odd? (1 2 3 4 5))

(for-each (lambda (x) (display x)) (1 2 3 4))

Practice

1. Define a procedure called my-filter that is identical to filter. (Do not use filter

procedure above.)

2. Define a procedure called my-reverse that is identical to reverse. (Do not use

reverse and append procedure above.)

3. Assume that you have three pegs and a set of disks, all of different diameters, with
holes in them (so that they can slide onto the pegs). Start with all the disks on a
single peg, in order of size (with the smallest on top). The object of the puzzle! is to
move the pile of disks to a specified peg, by moving one disk at a time. A legal move
consists of taking the top disk from any peg and putting it on either of the other two

pegs; but a disk may never be placed on top of a disk that is smaller than itself.

We will write a procedure move-tower that takes four arguments - the number of
disks in the pile, the peg the disks are on, the peg the disks should be moved to, and
the extra peg - and prints the sequence of moves. For example, consider moving three

disks from peg 1 to peg 3 by evaluating (move-tower 3 1 3 2). This should print:

move top disk from 1 to

move top disk from 1 to

N N W

move top disk from 3 to

move top disk from 1 to 3

I This puzzle is well known by ‘Hanoi tower problem’

move top disk from 2 to 1
move top disk from 2 to 3

move top disk from 1 to 3

You can use following procedure that takes two arguments - the peg the disks are on,

the peg the disk should be moved to - and prints one step of moves.

(define (print-move from to)
(newline)
(display "move top disk from ") (display from)
(display " to ") (display to))

. Make structure which can handle set. It is one of the easiest method that list of
distinctive elements represents set. Now define a function make-set which takes list
of elements and produces set. Using equal? procedure, compare between elements.

For examples,

(make-set (1 1 231 2 3))

(12 3)
(make-set ’())
O

(make-set (list ’these ’are ’symbols))

(these are symbols)

(make-set (list (list 1 2) (list 2 3 4) (list 1 2)))
(12 (234)

If you made set, you should need a procedure called is-member? which takes element

and set and returns a boolean value. For examples,

(is-member? 1 (make-set ’(1 2 3)))

#t

(is-member? (1 2) (make-set (list (list 1 2) (list 3 4 5))))
#t

Now define basic operations. Define two fuctions union-set and intersection-set.

These functions take two sets and output union and intersection. For examples,

(union-set (make-set (1 2 3)) (make-set ’(2 3 4)))

(1234

(intersection-set (make-set (list ’a ’b ’c)) (make-set (1 2 3)))
O

And then, define a little more complicated procedure called cartesian-product.
This procedure takes two sets and outputs product set. Product set means set of

pairs which contains elements of each input set. For examples,

(cartesian-product (make-set ’()) (make-set ’(1 2)))

O

(cartesian-product (make-set ’(1 2)) (make-set (’black ’white)))
((1 . black) (1 . white) (2 . black) (2 . white))

