
Principles of Programming, Fall 2011

Practice 3

User defined type, Implementation of data in various

methods

Programming Research Lab,@SNU

Seungjung Lee, Youngseok Lee

October 10, 2011

The Objectives of this practice:

• Indicate the type of data and use it.

• Program the implementation of data.

• Program in various ways of the implementation of data.

• Learn to program only with the interface of data without knowing the implementation

WARNING Let get into a habit of keeping in mind of the types while programming

the exercise problems. Also make sure you handle the error correctly for wrong parameter

input, all the time.

Exercise

1. User defined type - fixed point

Let’s make a fixed point types that can express numbers to the hundredth only. Fixed

point express real number in its integer part and decimal part separately. Since we

can’t express the decimals indefinitely, we restrain its size. Assume that the decimal

parts are of integer from 0 to 99. in case of negative numbers, adjust the integer part

of the number so that the decimals are of integer from 0 to 99.

We need storage to save two integer to express the fixed point. There can be lots of

ways to save two integers. For example, 3.04 can be expressed as a pair (cons 3 4),

or as a list ’(3 0 4). It can also be expressed as a list of pairs that has indications to

1



each number such as (list (cons ’r 3) (cons ’d2 4)). It’s up to you to decide

the inner parts.

(a) Making a fixed point

Let’s make a function fixed-make that receives two numbers, a integer part and

a fixed decimal part, and returns the value in the fixed point type. The following

is two examples of fixed-make. (The function quotient returns the quotient

of the two numbers, and remainder function returns the remainder of the two

numbers.)

(define (fixed-make r d)

(list r (quotient d 100)

(quotient (remainder d 100) 10)

(remainder d 10)))

(define (fixed-make r d)

(cons r d))

...

(define a (fixed-make 4 14))

(define b (fixed-make -7 0))

(b) Displaying the fixed point

Not, let’s provide some functions that can deal with the fixed point. Define a

functions fixed-display that displays a single received fixed point in form of

xx.xx. (Just use display to print on the screen, and use begin in form of (begin

(..) (..) (..)) to run multiple lines.)

(fixed-display a)

(c) Arithmetic operations of the fixed point

Let’s make two functions fixed-add fixed-multiply. In case of multiply, re-

turn the value which is rounded off to three decimal places.

(fixed-add a b)

(fixed-multiply a b)

(d) Comparison of the fixed point

Implement a function fixed-equal that returns #t if two given fixed point are

equal.

(fixed-equal a b)

2



2. 2-dimensional fixed point vector (pair)

Convert the 2-dimensional fixed point vector into a pair of x-coordinate and y-

coordinate.

make-vect2-pair : fixed× fixed→ pair(fixed, fixed)

nth-vect2-pair : pair(fixed, fixed)× int→ fixed

equal-vect2-pair : pair(fixed, fixed)× pair(fixed, fixed)→ bool

add-vect2-pair : pair(fixed, fixed)× pair(fixed, fixed)→ pair(fixed, fixed)

scale-vect2-pair : pair(fixed, fixed)× fixed→ pair(fixed, fixed)

dot-product-vect2-pair : pair(fixed, fixed)× pair(fixed, fixed)→ fixed

is-vect2-pair? : pair(fixed, fixed)→ bool

make-vect2-pair receives x-coordinate and y-coordinate and produces a vector.

nth-vect2-pair receives the vector and an integer and returns the appropriate coor-

dinate. It returns the x-coordinate for 0, and y-coordinate for 1. eqaul-vect2-pair

consider equal only when both coordinates are equal. Implement other functions so

that it works as normal vector operations.

3. Fixed point vector

Implement a n-dimensional fixed point vector type vect. It can simply be implemented

by a fixed point list of lennth n as long as it works the same way as the one defined

in exercise 1. Be careful for undefined inputs.

make-vect : fixed list→ vect

nth-vect : vect× int→ fixed

equal-vect : vect× vect→ bool

add-vect : vect× vect→ vect

scale-vect : vect× fixed→ vect

dot-product-vect : vect× vect→ fixed

is-vect? : vect→ bool

4. 2-dimensional fixed point vector implemented in two different methods

We have learned two ways to make the 2-dimensional fixed point vector from exercise

2 and 3. Implement the following functions that works just fine for and 2-dimensional

fixed point vector makde from either of the two methods. Define the return of a vector

as the return of a pair. Be aware of undefined inputs.

3



nth-vect2 : vect2× int→ fixed

equal-vect2 : vect2× vect2→ bool

add-vect2 : vect2× vect2→ vect2

scale-vect2 : vect2× fixed→ vect2

dot-product-vect2 : vect2× vect2→ fixed

4


