
Principles of Programming, Fall 2011

Practice 4

Programming with interface, Recursive

Programming

Programming Research Lab,@SNU

Seungjung Lee, Youngseok Lee

Oct 14, 2011

The purpose of this practice:

• Tagging type into the data and using it

• Programming inner implementation of the data

• Programming inner implementation in various ways

• Programming only using interface even if there are several implementation

• Practicing to make a recursive program

1. Complex Number (SICP 2.4.1)

Let’s make complex number type. Complex number can be represented
as two ways. One is (x, y) rectangular coordinate and another one is (r, θ)
polar representation .

Both representation has same shape of data. The implementation is more
easier when you put a tag in the data to figure out which representation
the data use. Putting ’rect, ’polar tag with your data is one of the
example.

Let’s make a complex number type which uses rectangular representation.
A function c-rect-make takes two numbers: real part and imaginary part.

is-c-rect? : α → bool

c-rect-make : number× number → c-rect

c-rect-real : c-rect → number

c-rect-imaginary : c-rect → number

1



Let’s make a complex number type which uses polar representation. A
function c-polar-make takes two numbers: angle and radius.

is-c-polar? : α → bool

c-polar-make : number× number → c-polar

c-polar-angle : c-polar → number

c-polar-radius : c-polar → number

Now, we can make general functions that takes complex type as any input.
The function doesn’t depend on inner implementation. These functions
are must be only made by above 8 functions.

c-real : complex → number

c-imaginary : complex → number

c-angle : complex → number

c-radius : complex → number

c-add : complex × complex → complex

c-mul : complex × complex → complex

c-conjugate : complext → complex

As a default, result of these functions are the complex number type of
rectangular representation.

2. (SICP ex. 2.42) The “eight-queens puzzle” asks how to place eight queens
on a chessboard so that no queen is in check from any other (i.e., no two
queens are in the same row, column, or diagonal). One possible solution is
shown in figure 1. One way to solve the puzzle is to work across the board,
placing a queen in each column. Once we have placed k − 1 queens, we
must place the kth queen in a position where it does not check any of the
queens already on the board. We can formulate this approach recursively:
Assume that we have already generated the sequence of all possible ways
to place k − 1 queens in the first k − 1 columns of the board. For each
of these ways, generate an extended set of positions by placing a queen in
each row of the kth column. Now filter these, keeping only the positions
for which the queen in the kth column is safe with respect to the other
queens. This produces the sequence of all ways to place k queens in the
first k columns. By continuing this process, we will produce not only one
solution, but all solutions to the puzzle.

We implement this solution as a procedure queens, which returns a se-
quence of all solutions to the problem of placing n queens on an n × n

chessboard. queens has an internal procedure queen-cols that returns
the sequence of all ways to place queens in the first k columns of the board.

(define (queens bs)

(define (queen-cols k)

(if (< k 0)

(list empty-b)

2



Figure 1: a solution to the eight-queens puzzle

(filter

(lambda (p) (safe? p))

(accumulate append

null

(map <??>

(queen-cols (- k 1)))))))

(queen-cols (- bs 1)))

In this procedure empty-b represents an empty set of positions. The
procedure safe? determines for a set of positions, whether the queen in
the kth column is safe with respect to the others. (Note that we need
only check whether the new queen is safe – the other queens are already
guaranteed safe with respect to each other.) Fill in the missing expressions
in the above definition.

3


