
Principles of Programming 2011 Fall

Practice 6

HW5, Remind recursion and iteration

ROPAS

Seungjung Lee, Youngseok Lee

2011/10/31

1. Verification of “prefix-free” character.

Everytime we finish the homework, we concern if this homework is right or not. So

let’s make a function which verify our homework is doing fine.

Let’s make is-prefix-free-list? function. This function take a list of the codes

and check it follows “prefix-free”. The code is the list of 0 or 1. Before make this

function, first thing we should do is that making a function of checking the single

code “prefix-free” with other codes. The function is-prefix-free-list? uses that

function for each code in the list.

It is not necessary to make a function with following way.

(define (is-prefix-free? path path_list)

... )

(define (is-prefix-free-list? path_list)

... )

2. Let’s check following two functions to calcuate n! and think what is the difference of

them.

(define (factorial n)

(if (= n 1)

1

(* n (factorial (- n 1)))))

(define (factorial n)

(define (iter x count)

(if (> count n)

x

(iter (* count x) (+ count 1))))

(iter 1 1))

1



3. As we seen before, recusion functions which have several calls themselves has a prob-

lem that do the same calculation everytime.

The following function calcuates fibonacci sequence.

(define (fib n)

(cond ((= n 0) 0)

((= n 1) 1)

(else (+ (fib (- n 1)) (fib (- n 2))))))

> (fib 35)

9227465

> (fib 100)

...

Let’s make a function which has a same operation with iteration fill the <??> part.

(define (fib n)

(define (iter a b count)

(if (= count <??>)

<??>

(iter <??> (+ count 1)))

(iter <??>))

> (fib 35)

9227465

> (fib 100)

...

4. Let’s make enumerate-pair function. This function takes two natural numbers a와

b (a < b) as inputs and returns a list of pair (i, j) where i and j is more or equal than

a, less or equal than b.

> (enumerate-pair 0 2)

((0 . 0) (0 . 1) (0 . 2) (1 . 0) (1 . 1) (1 . 2) (2 . 0) (2 . 1) (2 . 2))

And also, make a function enumerate-pair2 that follow i < j

> (enumerate-pair2 0 2)

((0 . 1) (0 . 2) (1 . 2))

5. Let’s make function triple-sum. It takes two integer n and s as an input. If there is

three different number i, j, k(i < j < k), it returns a list of these three numbers when

the sum of the numbers are same with s.

> (triple-sum 7 12)

((1 4 7) (1 5 6) (2 3 7) (2 4 6) (3 4 5))

2


