
Principles of Programming, Fall 2011

Practice 8

String, Mutual recursion, Exception catch

Programming Research Lab,@SNU

Seungjung Lee, Youngseok Lee

November 14, 2011

The Objectives of this practice:

• Learn to print basic types of Ocaml in screen.

• Learn to handle a string.

• Learn to handle an exception.

1. Print basic types in screen.

In Ocaml, a prefix of functions which print a string in screen is print .

let a =

print_string "print string.";

print_newline();

print_int 4;

7

Let’s compile the above code and execute it. print newline has no arguments. But

in order to represent a function execution, you must attach () which implies unit.

Three functions that start with print return unit type. ; executes instructions which

return unit in turn and returns a value which is a result of the last instruction. So a

value of a would be 7.

2. Handling string

ˆ concatenates two strings. The following string is “s = 4 means that s equals 4”.

"s = " ^ (string_of_int 4) ^ " means that s equals 4"

3. Exception catch

In case of an exception, not terminate but catch the exeption and execute relevant

instructions. Compile the following code and input b as 0.

1

let s = try

string_of_int(

let a=read_int() in

let b=read_int() in

a/b)

with Division_by_zero -> "error"

let _ = print_string (s^"\n")

Exercise

1. Let’s make a function string of intlist that changes an int list to a string.

string of intlist : int list→ string

This function takes an integer list and outputs a string like the folloing format.

(1, 3, 7)

Using pattern matching and ˆ, you can easily make this function.

match ilist with

|[] -> ... (* If there is no element *)

|[hd] -> ... (* If there is only one element *)

|hd::tl -> ... (* If there are two or more elements *)

2. Mutual recursive function

Mutual recursion is a form of recursion where two functions are defined in terms of

each other. At then, you have to use and instead of let rec while defining second

function. Define two functions which are isEven and is Odd. Do not mod procedure

and make as mutual recursive function.

let rec isEven num =

...

and isOdd num =

...

let _ =

print_string(string_of_bool (isEven 3)) (* print false in screen *)

3. Simple caculator

Make a function calc which takes the following type exp and returns string including

the relevent expression and the answer.

2

calc : exp→ string

type exp = NUM of int

|ADD of exp * exp

|MUL of exp * exp

|DIV of exp * exp

In case of division by 0, catch the exception and return “Div by zero”.

let _ = print_string (calc (ADD ((NUM 1),(MUL ((NUM 1), (NUM 4))))))

(1 + (1 * 4)) = 5

let _ = print_string (calc (DIV ((NUM 2),(NUM 0))))

Div by zero

3

