
Principles of Programming 2011 Fall - Practice 9

Signature, Module, Module Functor

ROPAS

Seungjung Lee, Youngseok Lee

2011/11/21

Purposes of this practice:

• Using the signature and with expression

• Using the module of the OCaml

• Composing the module with module functor

1. Number Module

Let’s make a module that has definition of the number type and operation function.

NUMBER signature represent contents that the number module should have.

module type NUMBER = sig

type t

val zero: t

val add: t -> t -> t

val mul: t -> t -> t

val print: t -> unit

val make: string -> t

end

Let’s make a module Integer with type is integer and operation is integer operation.

This module follows NUMBER signature.

module Integer : NUMBER = struct

type t = int

let zero = ???

let add x y = ???

let mul x y = ???

let print x = print_int x

let make s = int_of_string s

end

Let’s make a module FloatingPoint. It uses a number type as a float. This module

also follows NUMBER signature.

1



module FloatingPoint : NUMBER = struct

type t = float

...

end

2. Integer Vector with 3 dimension

Let’s make a module IntVector3. It collects 3 dimensional int vector type and its

operation. This module follows VECTOR signature.

A module type VECTOR which represents vector is following.

module type VECTOR = sig

type t

type elemType

exception InvalidInput

val make: elemType list -> t

val add: t -> t -> t

val mul: t -> elemType -> t

val dot: t -> t -> elemType

val print: t -> unit

val to_list: t -> elemType list

end

t is a type of the user defined vector type. elemType is a user-defined type of the

vector’s element. For extension later, we decide the type t of the IntVector3 is int

list.

module IntVector3: VECTOR = struct

type t = int list

type elemType = int

exception InvalidInput

...

end

Due to signature VECTOR doens’t expose concrete type of elemType, we can’t put an

argument into mul’s second argument which has a type elemType. In this case, we

can use with expression to expose type elemType outside of the module.

module IntVector3: VECTOR with type elemType = int = struct

type t = int list

type elemType = int

exception InvalidInput

2



...

end

3. Number Vector with 3 dimension

Let’s make a module Vector3 which collects 3 dimension number vector’s type and

functions. This module is a kind of module functor. So this module takes an number

module as an input and make a various kind of the modules. The modules have a

same functions but number types are different.

Let’s make Vector3 module to copy the definition of IntVector3 module and modify.

module Vector3 (Number: NUMBER) : VECTOR = struct

Also, we must expose elemType outside of the module using with expression.

module Vector3 (Number: NUMBER) : VECTOR with type elemType = Number.t = struct

4. Number Vector with N dimension

Let’s make a functor module Vector which collects N dimension number vector’s

type and operation functions. This module functor takes two arguments. The one

is the number module which follows NUMBER signature. and the second represents

Vector’s character, in this case it has only dimension information, and it follows

TRAIT signature.

module type TRAIT =

sig

val dim: int

end

module VectorN (Number: NUMBER) (Trait: TRAIT)

: VECTOR with type elemType = Number.t = struct

...

end

Now we can make 5 dimension floating point vector by using module functor and

number module.

module FloatVector5 = VectorN (FloatingPoint) (struct let dim = 5 end)

let strList = ["1.37"; "2.90"; "3.22"; "33.22";"33.33"]

let numList = List.map (FloatingPoint.make) strList

let a = FloatVector5.make numList

...

3


