
Homework 2∗

SNU 4190.210, Fall 2011

Kwangkeun Yi

due: 9/30(Mon), 24:00

The objectives of this homework :

• Be familier with recursive program.

• Learn to make program using recursive data producing functions.

• Learn to make program with checking types.

Exercise 1 “Tree structure data”

Computer science always deals with trees, may it be a deep dark forest, large tree or

spread branches.

A tree structure can be defined as :

• a basic tree structure: One leaf is a tree.

• a tree with subtrees: A point containing one or more subtrees is considered as a

tree structure.

Above two conditions decide two methods of creating a tree structure. Making a basic

tree (base case) and making a new tree using the existing ones (inductive case). Define

the following two functions that build a tree structure:

leaf : α→ tree

node : tree list→ tree

leaf makes a leaf tree with a arbitrary type (let’s say “α”). In other words, (leaf 1)

would make a leaf tree with an interger 1, (leaf ’a) would make a leaf tree with a

symbol a, and (leaf ’(1 2)) would make a leaf tree with a list (1 2). node receives

a list from the tree and makes a new tree that suspends the received lists in order. If

node receives an emty list, it will create an empty tree.

For example, the below tree structures each

∗translated by Youngseok Lee

1



shows a structures of a tree made from (leaf ’(1 2)), (node (list (leaf 1))),

(node (list (leaf 1) (leaf 2))), and (node (list (node (list (leaf 1)))

(leaf 2))).

Define the following four functions that use a tree:

is-empty-tree? : tree→ bool

is-leaf? : tree→ bool

leaf-val : tree→ α

nth-child : tree× nat→ tree

is-empty-tree? function determines whether a given tree is empty or not. is-leaf?

determines whether a given tree is a leaf tree or not. leaf-val retrieves a value that

a leaf has. nth-child receives a tree and a natural number n ≥ 0 and returns a n-th

subtree of the given tree. 2

Exercise 2 “Measuring the weight of a mobile”

Let’s think of a mobile that is hanging from the ceiling, balanced. A normal forked

mobile would be defined as following:

• A single model is a mobile structure.

• Mobile with sub-mobiles: from a single balance point with sub-mobiles on the

left/right sides hanging down would also be a mobile.

For example, the following diagram is one of the forked mobile:

Define the following three functions that makes a mobile structure. However, you

must use the functions defined in Exercise 1:

2



model : nat→ mobil

make-branch : nat×mobil→ branch

make-mobil : branch× branch→ mobil

model receives a natural number and makes a mobile structure with that much

weight. make-branch receives a length and a hanged mobile and creates one branch.

make-mobile receives a branch from left/right and creates a single mobile.

Define the following two functions that uses mobile:

is-balanced : mobil→ bool

weight : mobil→ nat

is-balanced? determines whether a given mobile structure “is balanced”. A single

mobile is said “balanced” if the torque(length × weight) of each left and right branch

of it is equal, and the total mobile’s weight is the sum of the weight of the left and

the right branch. If all the sub-mobiles of a single mobile is balanced, then it will be

said to be balanced. weight gives out the total weight of a mobile. 2

Exercise 3 “Logic circuit”

Boolean circuit can be defined inductively as followings. All the boolean circuit con-

tains one or more input and a single output.

• base: A circuit with a value 0 is a boolean circuit.

• base: A circuit with a value 1 is a boolean circuit.

• induction: You can make a new circuit with a boolean circuit by using not

• induction: You can make a new circuit with a boolean circuit by using and

• induction: You can make a new circuit with a boolean circuit by using or

Define the above five methods to make a boolean circuit:

zero : circuit

one : circuit

not-circuit : circuit→ circuit

and-circuit : circuit× circuit→ circuit

or-circuit : circuit× circuit→ circuit

While defining the above methods, be sure to use the functions defined in Exercise 1

only. Also define the following six functions that use the boolean circuit:

is-zero? : circuit→ bool

is-one? : circuit→ bool

is-not? : circuit→ bool

is-and? : circuit→ bool

is-or? : circuit→ bool

sub-circuit : circuit× nat→ circuit

sub-circuit receives a natural number n ≥ 0 and returns the n-th sub-circuit. 2

3



Exercise 4 “Calculation of the logic circuit”

Define the following function which calculates the final output value from the boolean

circuit implemented in Exercise 3:

output : circuit→0,1

The final outcome from the boolean circuit can be defined inductively as following.

depending on how the circuit has been implemented. zero would output a 0. one

would output a 1. (not B) would give 0 if the circuit B’s output is 1, and vise-versa.

(and B1 B2) would give out 1 only when both circuit B1 and B2 has an output of

1, and 0 otherwise. (or B1 B2) would give out 0 only when both circuit B1 and B2

has an output of 0, and 1 otherwise. 2

4


