
Homework 5

SNU 4190.210 Fall 2011

Kwangkeun Yi

due: 11/02(Wed) 24:00

The purpose of this homework are

• practicing what we’ve learned about principles of programming

• making components for term-project

Exercise 1 “Prefix-free Variable-length Code”
Let’s design a code for expressing sentence. Sentence is a sequence of fi-

nite words. For example, we can use only 4 words for a sentence; “ba”, “na”,
“lize” and “tion”. We can make various sentense such as “nabananalizenation”,
“lizebationalizebabanalize” or etc.

Let’s make a rule for expressing these sentence by using 0 and 1. We can
assign a code which consists of sequence of 0/1 for each words, then sentence is
a list of that code. There are two ways to assign codes to the words.

1. Fixed-length encoding: Because we have only four words, we can assign
two bits for each words: 00(ba), 01(na), 10(lize), and 11(tion). Then “na-
bananalizenation” is encoded into 01000101100111. Decoding is quite easy.
We can split the code by 2bits and translate it to mapped word. This way
needs 14 bits.

2. Variable-length encoding: When we use shorter bits for more frequently
used words, we can reduce the code size.

In the case of the sentence, “na” is the most frequent word. “ba”, “lize”
and “nation” have same frequency. We can assign variable length code:
0(“na”), 11(“ba”), 100(“lize”) and 101(“tion”). Then “nabananalizena-
tion” is encoded into 011001000101, 14bits. By varaible-length ecoding
rather that fixed-length encoding, we can reduce 2bits.

Decoding the variable-length encoding is also easy. we can decode the code
to read the bit sequentially: when we read 0, the word is “na”. Nothing
ambigous. Second bit is 1 but there’s no mapped word for that bit, so
we read the bit once again. Third bit is 1, and composited bit is 11 that
stands for “ba”.

1

What is the reason that decoding the variable-length code is easy? That is be-
cause every encoded codes have “prefix-free” property. It is a limitation that
every code used in the encoding should not have same prefix bit. We can dis-
tinguish each code by looking only a prefix in the code. This encoding method
is what JPEG, MPEG and ZIP used.

The assignment is to make vlencode that creates variable-length codes
which have “prefix-free” property. This function takes list of pair of word and
frequency as inputs and returns list of pair of word and code. A word has string
type, a frequency is integer, a code is 0/1 list.

This way is suggested by David Huffman, a student of MIT, in 1951. it
was a project report of “Information Theory”. Robert Fano was the professor
of the class. He thought over optimized way of encoding with his colleague
Claude Shannon. Fano made it as a challenge of his class project and his student
Huffman solved this problem. As this result, Huffman stand high above his
professor. He got A in the class of course and became famous. You can do as
well as Huffman. The hint below is enough for doing assigment. Try to solve
without googling.

• vlencode can be implemented by using binary tree. Every leafs of tree
structure has the word value and every node has · · · omission· · · . As a
result, “prefix-free” codes are assigned each word. This is because only
leafs can have the word.

For tree structure, define functions below:

leaf : string × value → tree
node : tree × value × tree → tree
isleaf? : tree → bool
leftsub : tree → tree
righsub : tree → tree
leafval : tree → value
leafstr : tree → string
rootval : tree → value

• To make tree structure against frequency of words is a key for assigning
optimized prefix-free code to word. Start making the tree structure with
a rare word · · · omission· · · you can compose the tree like that way.2

Exercise 2 “Turing Machine: Value & Object”
Let’s read the paragraph below and implement Turing Machine.

“Designing Turing Machine”
ropas.snu.ac.kr/~kwang/paper/cs-ch1.pdf

Submit the functions described below. You must submit two versions of the
function: value-oriented (applicative) and object-oriented (imperative) way. The
type of functions are not changed between two versions except empty-ruletable.

2

empty-ruletable : ruletable

is the value-oriented case, and in the case of object-oriented version

empty-ruletable : void → ruletable.

• Functions for making and using tapes:

init-tape : symbol list → tape
read-tape : tape → symbol
write-tape : tape × symbol → tape
move-tape-left : tape → tape
move-tape-right : tape → tape
print-tape : tape → void

symbol written on tape is a string. To move head for read and write to
right/left, we use the function move-tape-left/move-tape-right respec-
tively.

• Functions for making and using ruletables:

empty-ruletable : ruletable
add-rule : rule × ruletable → ruletable
make-rule : state × symbol × todo ×move × state → rule
match-rule : state × symbol × ruletable → todo ×move × state

state which represent Turing Machine’s state is a string. todo is one of
these value: ’erase, pair of ’write symbol made by cons. move is ’left,
’right, or ’stay.

• Functions for Turing Machine:

make-tm : symbol list × state list × state × ruletable → tm
run-tm : tm → tm
print-tm : tm → void

Function make-tm initialize Turing Machine using given symbols as input,
locate head to first symbol on the tape, set up the machine state with
given initial state and let Turing Machine have given ruletable.

Function run-tm execute the given Turing Machine as input. It follows
Turing Machine’s ruletable. When the execution ends, print the contents
of the tape and exit. 2

Exercise 3 “SKI Solution Reactor”
Let’s imagine “SKI” solution. SKI solution react itself in the normal tem-

perature and as a result its components are changed. A solution doesn’t change
anymore after some time or react itself and change their component eternally.
It depends on the initial combination of the solution.

3

A way to make SKI solution E is one of these five.

E → S | K | I

| x variables
| (E E)

An example of SKI solution is

K, (I x), (S ((K x) y)), (((S K) K) x)

.
A rule of SKI solution is described below. When there are some matches in

the solution, left side of the rules, it replace right side of the rules.

(I E) → E
((K E) E′) → E

(((S E) E′) E′′) → ((E E′′) (E′ E′′))

For example, SKI solution (((S K) I) x) is react like following :

(((S K) I) x)→ ((K x) (I x))→ x

Let’s make a functions react that take SKI solution as an input and print final
shape of the solution.

react : solution→ void

FYI, There can be several matches in the solutions. For example, ((K x) (I y))
is possible to be changed into one of solution:

((K x) (I x))→ x

or
((K x) (I x))→ ((K x) x)→ x.

If there are multiple ways to change, your react just choose one of them.
Implement these functions to make and use SKI solution:

S : solution
K : solution
I : solution
v : string → solution (* Make solution using variable name *)
a : solution× solution→ solution (* Compose two solution with parenthesis *)
isS? : solution→ bool
isK? : solution→ bool
isI? : solution→ bool
isv? : solution→ bool
isa? : solution→ bool
var : solution→ string (* get variable name of the solution made by v*)
al : solution→ solution (* left solution of the composed solution*)
ar : solution→ solution (* right solution of the composed solution*)
pprint : solution→ void (* pretty printer *)

The action of pprint is noticed by TA. 2

4

