

inductive
semantic
definition

again,
and always,

inductive
semantic
definition

Note: Names which is not constant are in
constant are in program text(formula).
text(formula).

시작의 시작

how to program
this machine?

Refering behavior / machine-oriented language

Machine

= Memory
+ CPU
+ typewriter
+ screen

Program is a statement that instructs the machine.

Inference Rules
 추론 규칙

The semantic
definition will
be the form
of inference rules.

Inference rules
= methods to derive
 facts

E.G. friendship: the rules making friend(x,y)
 x, y in Animal

friend(x,x)

friend(x,y) friend(y,z)

friend(x,z)

friend(x,y)

knows(x,y) knows(y,x)

friend(철수,영희)

cool(x)
take310(x)=>cool(x)

snucse(x)=>take310(x)

take310(x)

snucse(x)

Executing program to make v

Program statement S
Machine/Memory state’s
change

Calculating program
expression E’s value

Program statement S
changes memory M to M’

Program expression E
evaluated as v in memory
M

Define the meaning of
these with these

Program structure,
representing text.

Program meaning,
Representing what you
want to say

We will define the meaning of a program
with elements of the following defined sets.

included-sets

Program statement S
Machine/Memory state’s
change

Calculating program
expression E’s value

Program statement S
changes memory M to M’

Program expression E
evaluated as v in memory
M

“자 이제 갑니다. 꼭 잡으시죠.”
Let’s go! Hold on tight.

Program expression E
evaluated as v in memory
M

(M, if 1=1 then x:=1 else x:=2, M’)

(M, 1=1, T) (M, x:=1, M’)

x := 1;
y := w+x;

x := 1;
y := x+2;
if x=y then w := x
 else w := y;
a := w-1;
b := a+w;
c := a-b;
write a+b+c+y

Program statement S
changes memory M to M’

(M,E1,v1)
(M,E2,v2)
v1 <= v2
(M[v1/x],S,M1)
(M1,for x:=v1+1 to E2 do S,M2)

(M,for x:=E1 to E2 do S,M2)

y := 2;
for x := 1 to y do
 y := y-1

x y
1 2

x y
2 1

x y
1 2

x y
2 1

x y
2 0

Therefore for-statement is not necessary.
It’s just for convenience sake

With

We can name the memory cells
in my program!

요기는 “a”
요기는 “b”
…
요기는 “c”
요기는 “node”
요기는 “buffer”

But…

What problems can we expect?

삐딱하게보기/불만스럽게처다보기/비판적인시각
개선을위한 원동력/The Critical Minds

-
-
-
-
-
-

R-value, L-value

Scope is global Variable Scope Whole program

One variable represent only one location,
One location have only one name.

Make variable have effective area, scope.
Being able to have different locations for a variable if
the scopes are different.

Scopes in a program text.

let
 x := E
in
 S

{
 int x = E;

 S
}

How to define scope of variable

New location is defined as x,
initial value is E, scope is S.

A variable can represent more than one
location, as long as the scopes are different.

For understand expression E or statement S, we
need to know a way to determine which
locations variables refer to.

A name can be bounded or free at a given
scope.

Naming code itself?

We can name memory addresses or program
values.

We call this range code
as “L”

Procedure is naming statements in imperative language

Somewhat generalized with arguments

We can see this as function.

Where do we declare procedures?

How about free variables in procedures?

Id in program is now
Variable referring an address
Name referring a procedure

The meaning of our language changes depending on
the meaning of procedure.

Variable’s substance is determined at the time of
procedure call

Variable’s substance is determined before procedure call

The problem of dynamic scoping is that it is hard to
predict a program’s behavior before running a program.

Program expression’s values are passed

We call it

Sometime, we want to pass memory address

Memory address?
Value in that address?

Is the passed thing through x

Let this be passing address of x.

We call it

