Homework 1
 SNU 4190.310, Fall 2014
 Kwangkeun Yi
 Due: 9/22, 24:00

Exercise 1 "Sigma"
Define a function sigma that takes two integer bounds a, b, and the function f as arguments and returns a summation.

$$
\Sigma_{n=a}^{b} f(n)
$$

sigma's type is

$$
\text { sigma : int } * \text { int } * \text { (int }->\text { int) }->\text { int. }
$$

so that, sigma (a, b, f) means $\Sigma_{n=a}^{b} f(n)$.
Exercise 2 "Sum and Product"
We can represent the propositional logic boolean formulas, formula as follows:

```
type formula = TRUE
    | FALSE
    | NOT of formula
    | ANDALSO of formula * formula
    | ORELSE of formula * formula
    | IMPLY of formula * formula
    | LESS of expr * expr
and expr = NUM of int
```

```
| PLUS of expr * expr
| MINUS of expr * expr
```

Define a function eval that takes formula as an argument and returns true or false.

$$
\text { eval : formula } \rightarrow \text { bool }
$$

Exercise 3 "Natural Numbers"
We can represent natural numbers, nat as follows:

```
type nat = ZERO | SUCC of nat
```

Define functions that adds and multiplies two natural numbers.

```
natadd : nat * nat -> nat
natmul : nat * nat -> nat
```

