
Homework 2

SNU 4190.310, Fall 2014

Kwangkeun Yi

due: 10/07, 24:00

Exercise 1 “CheckMetroMap”

Consider the following datatype metro :

type metro = STATION of name

| AREA of name * metro

| CONNECT of metro * metro

and name = string

Define a function checkMetro that checks if a given metro is well-formed.:

checkMetro: metro -> bool

A metro is well-formed if and only if every metro station’s name (id in

STATION(id)) in the metro only occurs in metro area (m in AREA(id , m))

that encompasses the STATION(id) with a same id .

For example, well-formed metro values are:

• AREA("a", STATION "a")

• AREA("a", AREA("a", STATION "a"))

• AREA("a", AREA("b", CONNECT(STATION "a", STATION "b")))

1

• AREA("a", CONNECT(STATION "a", AREA("b", STATION "a")))

Ill-formed ones are:

• AREA("a", STATION "b")

• AREA("a", CONNECT(STATION "a", AREA("b", STATION "c")))

• AREA("a", AREA("b", CONNECT(STATION "a", STATION "c")))

2

Exercise 2 “Leftist heap”

“Priority queue” means the order between its elements is not an order of

entrance but the order of ability. Priority is not ranked based on the ranking

order of the elemtnts are entered, each element is assigned a unique priority.

Therefore priority queue must be specialized to find out the best element

among the elements in the heap. Heap is a typical example. Let’s implement

particular heap, leftist heap from them.

• Leftist heap: The priority of every left node is greater than or equal to

the right sibling node’s priority.

• Priority of a node: The count of going down the right child to countinue

to a leaf. ie. the length of right spine.

• Heap: This is binary tree structure. The value of every node having forked

road is less than or equal to the values of all the nodes after the split.

Leftist heap is defined in this way:

type heap = EMPTY | NODE of rank * value * heap * heap

and rank = int

and value = int

inserting, deleting functions are defined as follows:

exception EmptyHeap

let rank = function EMPTY -> -1

| NODE(r, , ,) -> r

let insert = function (x,h) -> merge(h, NODE(0,x,EMPTY,EMPTY))

let findMin = function EMPTY -> raise EmptyHeap

| NODE(,x, ,) -> x

2

let deleteMin = function EMPTY -> raise EmptyHeap

| NODE(,x,lh,rh) -> merge(lh,rh)

Implement the other function merge

merge: heap * heap -> heap

The complexity of computation of the merge you made should be O(log n) taking

advantage of leftist heap. (n is the number of nodes of a heap) (Note: The

number of nodes attached in right spine in a leftist heap is at most blog(n+1)c)
Use the following function when you make the merge:

let shake = function (x,lh,rh) ->

if (rank lh) >= (rank rh)

then NODE(rank rh + 1, x, lh, rh)

else NODE(rank lh + 1, x, rh, lh)

2

Exercise 3 “The zipper”

All trees can be implemented by your clothing’s “zipper”.

• We can represent trees in OCaml using values of the following datatype:

exception NOMOVE of string

type item = string

type tree = LEAF of item

| NODE of tree list

• Following zipper makes a tree torn or joined.

type zipper = TOP

| HAND of tree list * zipper * tree list

A HAND(l,z,r) contains its list l of elder siblings (starting with the

youngest), its father zipper z, and its list r of younger siblings (start-

ing with the eldest)

• A location in the tree addresses a subtree, together with the zipper

type location = LOC of tree * zipper

• Assume we consider the parse tree of arithmetic expressions, with string

items. The expression “a× b + c× d” parses as the tree.

3

NODE [NODE [LEAF a; LEAF *; LEAF b];

LEAF +;

NODE [LEAF c; LEAF *; LEAF d]

]

The location of the second multiplication sign in the tree is as follows:

LOC (LEAF *,

HAND([LEAF c],

HAND([LEAF +; NODE [LEAF a; LEAF *; LEAF b]],

TOP,

[]),

[LEAF d]))

• Now we can navigate. For example, when you want to move left from your

location, it could be done as follows.

let goLeft loc = match loc with

LOC(t, TOP) -> raise (NOMOVE "left of top")

| LOC(t, HAND(l::left, up, right)) -> LOC(l, HAND(left, up, t::right))

| LOC(t, HAND([],up,right)) -> raise (NOMOVE "left of first)"

• Define other navigating functions:

goRight: location -> location

goUp: location -> location

goDown: location -> location

goDown go down the left-most child node.

2

Exercise 4 (10pts) “Galculator”

Make following calculator,

galculator: exp -> float

exception FreeVariable

type exp = X

| INT of int

4

| REAL of float

| ADD of exp * exp

| SUB of exp * exp

| MUL of exp * exp

| DIV of exp * exp

| SIGMA of exp * exp * exp

| INTEGRAL of exp * exp * exp

The following are examples of representing expressions as a exp:∑10
x=1(x ∗ x− 1) SIGMA(INT 1, INT 10, SUB(MUL(X, X), INT 1))∫ 10.0

x=1.0
(x ∗ x− 1)dx INTEGRAL(REAL 1.0, REAL 10.0, SUB(MUL(X, X), INT 1))

Use the rectangle method with the top-left corner approximation to evaluate

an integral value. (See http://en.wikipedia.org/wiki/Rectangle method)

Keep the length of subintervals(dx) as 0.1. Raise exception Error whenever an

expression is invalid.

• Evaluating SIGMA(a,b,f), return 0 when a > b.

• Evaluating INTEGRAL(a,b,f), evaluate -INTEGRAL(b,a,f) when a > b.

• Cast float values of a,b to integer using int of float evaluating SIGMA

• Use float of int for type casting.

• Do not worry about that some abmbiguous situations occur because of

type casting, if those the situations are not mentioned.

• Evaluating INTEGRAL, the height of rectangle should be the function value

of left-position.([a,b] -> f(a))

• Variables are the nearest bound. (Raise exception FreeVariable evaluat-

ing an no bound variable.)

2

Exercise 5 (20pts) “Calculator interpreter”

Implement module Zexpr following next signature.

5

signature ZEXPR =

sig

exception Error of string

type id = string

type expr = NUM of int

| PLUS of expr * expr

| MINUS of expr * expr

| MULT of expr * expr

| DIVIDE of expr * expr

| MAX of expr list

| VAR of id

| LET of id * expr * expr

type environment

type value

val emptyEnv: environment

val eval: environment * expr -> value

val int of value : value -> int

end

module Zexpr:ZEXPR = (*remove ‘‘:ZEXPR’’ when you submit*)

struct

(*Implement here*)

end

Let E be an expression of the type ZEXPR.expr,

Zexpr.eval (Zexpr.emptyEnv, E)

is evaluating E and printing final value in the successful execution. VAR ‘‘x’’

means the value named x.

Expression defining name and limiting the effective range, scope is LET(‘‘x’’,

E1, E2). In this case, we name the evaluated value of E1 as x, and the scope

is limited to E2. Any name not in the current environment is meaningless. For

example,

The result of

LET("x", NUM 1,

PLUS (LET("x", NUM 2, PLUS(VAR "x", VAR "x")),

VAR "x")

6

)

is 5.

The result of

LET("x", NUM 1,

PLUS (LET("y", NUM 2, PLUS(VAR "x", VAR "y")),

VAR "x")

)

is 4.

LET("x", NUM 1,

PLUS (LET("y", NUM 2, PLUS(VAR "y", VAR "x")),

VAR "y")

)

is meaningless. y for outer PLUS expression is not defined in its environment.

MAX is integer expression for finding out the maximum integer in the list

That is, the result of MAX [NUM 1, NUM 3, NUM 2] is 3. The result of MAX

taking empty list is 0. 2

• You don’t have to print really using print function.

• If you meet free variable then raise FreeVariable exception.(you sould

declare this exception FreeVariable)

• PLUS, MULT, DIVIDE follow integer arithmetic.

7

