Take-Home Exam 1
 4541.664A Program Analysis

TAs
\{msjin,pronto\}@ropas.snu.ac.kr
Programming Research Lab

1 Problem 1

1.1 Abstract syntax of C---

$E \rightarrow$| n | $(n \in \mathbb{Z})$ |
| :--- | :--- |
| \mid | x |
| | $E+E$ |
| | $-E$ |
| | variable |
| | let $x E E$ |
| if $E E E$ | |
| | |

1.2 Collecting Semantics

1.2.1 Domains

Collecting semantics of $\mathrm{C}--(\mathcal{V})$ is defined on the following domains

$$
\begin{aligned}
\mathcal{V} & \in \operatorname{Exp} \rightarrow 2^{E n v} \rightarrow 2^{\mathbb{Z}} \\
\Sigma & \in 2^{E n v} \\
\sigma & \in E n v=\operatorname{Var} \xrightarrow{\text { fin }} \mathbb{Z}
\end{aligned}
$$

1.2.2 Collecting semantics

Collecting semantics (\mathcal{V}) is defined compositionally:

$$
\begin{aligned}
\mathcal{V} n \Sigma & =\{n\} \\
\mathcal{V} x \Sigma & =\{\sigma x \mid \sigma \in \Sigma\} \\
\mathcal{V} E_{1}+E_{2} \Sigma & =\left\{z_{1}+z_{2} \mid z_{i} \in \mathcal{V} E_{i} \Sigma\right\} \\
\mathcal{V}-E \Sigma & =\{-z \mid z \in \mathcal{V} E \Sigma\} \\
\mathcal{V} \text { let } x E_{1} E_{2} \Sigma & =\mathcal{V} E_{2}\left\{\sigma\{x \mapsto v\} \mid \sigma \in \Sigma, v \in \mathcal{V} E_{1} \Sigma\right\} \\
\mathcal{V} \text { if } E_{1} E_{2} E_{3} & =\mathcal{V} E_{2}\left(\mathcal{B} E_{1} \Sigma\right) \cup \mathcal{V} E_{3}\left(\neg \mathcal{B} E_{1} \Sigma\right) \\
\mathcal{B} E \Sigma & =\cup\left\{\Sigma^{\prime} \mid 0 \notin \mathcal{V} E \Sigma^{\prime}, \Sigma^{\prime} \subseteq \Sigma\right\} \\
\neg \mathcal{B} E \Sigma & =\cup\left\{\Sigma^{\prime} \mid\{0\}=\mathcal{V} E \Sigma^{\prime}, \Sigma^{\prime} \subseteq \Sigma\right\}
\end{aligned}
$$

We can rewrite above definition using operators $\dot{+}, \dot{-}, \cdot\{x \mapsto \cdot\}$ for simplicity:

$$
\begin{aligned}
\dot{+} & \in 2^{\mathbb{Z}} \times 2^{\mathbb{Z}} \rightarrow 2^{\mathbb{Z}} \\
\dot{+}\left\langle Z_{1}, Z_{2}\right\rangle & =\left\{z_{1}+z_{2} \mid z_{1} \in Z_{1}, z_{2} \in Z_{2}\right\} \\
\dot{-} & \in 2^{\mathbb{Z}} \rightarrow 2^{\mathbb{Z}} \\
\dot{-}\langle Z\rangle & =\{-z \mid z \in Z\} \\
\cdot\{x \mapsto \cdot\} & \in 2^{E n v} \times 2^{\mathbb{Z}} \rightarrow 2^{E n v} \\
\cdot\{x \mapsto \cdot\}\langle\Sigma, Z\rangle & =\{\sigma\{x \mapsto v\} \mid \sigma \in \Sigma, v \in Z\} \\
\mathcal{V} n \Sigma & =\{n\} \\
\mathcal{V} x \Sigma & =\{\sigma x \mid \sigma \in \Sigma\} \\
\mathcal{V} E_{1}+E_{2} \Sigma & =\dot{+}\left\langle\mathcal{V} E_{1} \Sigma, \mathcal{V} E_{2} \Sigma\right\rangle \\
\mathcal{V}-E \Sigma & =\dot{-}\langle\mathcal{V} E \Sigma\rangle \\
\mathcal{V} \text { let } x E_{1} E_{2} \Sigma & =\left(\mathcal{V} E_{2} \circ\{x \mapsto \cdot\}\right)\left\langle\Sigma, \mathcal{V} E_{1} \Sigma\right\rangle \\
\mathcal{V} \text { if } E_{1} E_{2} E_{3} & =\mathcal{V} E_{2}\left(\mathcal{B} E_{1} \Sigma\right) \cup \mathcal{V} E_{3}\left(\neg \mathcal{B} E_{1} \Sigma\right) \\
\mathcal{B} E \Sigma & =\cup\left\{\Sigma^{\prime} \mid 0 \notin \mathcal{V} E \Sigma^{\prime}, \Sigma^{\prime} \subseteq \Sigma\right\} \\
\neg \mathcal{B} E \Sigma & =\cup\left\{\Sigma^{\prime} \mid\{0\}=\mathcal{V} E \Sigma^{\prime}, \Sigma^{\prime} \subseteq \Sigma\right\}
\end{aligned}
$$

1.3 Abstract Semantics

1.3.1 Domains

Abstract semantics of $\mathrm{C}---(\hat{\mathcal{V}})$ is defined on the following domains

$$
\begin{aligned}
& \hat{\mathcal{V}} \in \hat{E x p} \rightarrow \hat{E n v} \rightarrow \hat{\mathbb{Z}} \\
& \hat{\Sigma} \in \hat{E n v}
\end{aligned}
$$

1.3.2 Galois connection

We assume that two Galois connections - $2^{E n v} \stackrel{\gamma_{1}}{\stackrel{\alpha_{1}}{\leftrightarrows}} \hat{E n v}, 2^{\mathbb{Z}} \underset{\alpha_{2}}{\stackrel{\gamma_{2}}{\leftrightarrows}} \hat{\mathbb{Z}}$ - are established. Thus the Galois connection $2^{E n v} \rightarrow 2^{\mathbb{Z}} \stackrel{\gamma}{\stackrel{\gamma}{E n} v} \rightarrow \hat{\mathbb{Z}}$ can be defined compositionally with $\alpha_{1}, \gamma_{1}, \alpha_{2}, \gamma_{2}$.

$$
\begin{aligned}
\alpha(m) & =\alpha_{2} \circ m \circ \gamma_{1} \\
\gamma(\hat{m}) & =\gamma_{2} \circ \hat{m} \circ \alpha_{1}
\end{aligned}
$$

1.3.3 Abstract semantics

Abstract semantics of C--- is defined compositionally:

$$
\begin{aligned}
\hat{\mathcal{V}} n \hat{\Sigma} & =\alpha_{2}\{n\} \\
\hat{\mathcal{V}} x \hat{\Sigma} & =\alpha_{2}\left\{\sigma x \mid \sigma \in \gamma_{1} \hat{\Sigma}\right\} \\
\hat{\mathcal{V}} E_{1}+E_{2} \hat{\Sigma} & =\alpha_{2}\left(\dot{+}\left\langle\gamma_{2}\left(\hat{\mathcal{V}} E_{1} \hat{\Sigma}\right), \gamma_{2}\left(\mathcal{V} E_{2} \hat{\Sigma}\right)\right\rangle\right) \\
\hat{\mathcal{V}}-E \hat{\Sigma} & =\alpha_{2}\left(\dot{-}\left\langle\gamma_{2}(\hat{\mathcal{V}} E \hat{\Sigma}\rangle\right)\right. \\
\hat{\mathcal{V}} \text { let } x E_{1} E_{2} \hat{\Sigma} & =\left(\hat{\mathcal{V}} E_{2} \circ \alpha_{1} \circ \cdot\{x \mapsto \cdot\}\right)\left\langle\gamma_{1} \hat{\Sigma}, \gamma_{2}\left(\hat{\mathcal{V}} E_{1} \hat{\Sigma}\right)\right\rangle \\
\hat{\mathcal{V}} \text { if } E_{1} E_{2} E_{3} & =\hat{\mathcal{V}} E_{2}\left(\alpha_{1}\left(\mathcal{B} E_{1}\left(\gamma_{1} \hat{\Sigma}\right)\right)\right) \sqcup \hat{\mathcal{V}} E_{3}\left(\alpha_{1}\left(\mathcal{B} E_{1}\left(\gamma_{1} \hat{\Sigma}\right)\right)\right)
\end{aligned}
$$

1.4 Proof of correctness

To show the correctness of abstract semantics it's sufficient to show (1) in abstract interpretation framework.

$$
\alpha(\mathcal{V} E) \sqsubseteq \hat{\mathcal{V}} E
$$

1.4.1 Proof

$\alpha(\mathcal{V} E) \sqsubseteq \hat{\mathcal{V}} E$ is proved by structural induction on E.
Throughout the proof, two forms of induction hypothesis are used

$$
\begin{array}{rlll}
\mathcal{V} E & \sqsubseteq \gamma(\hat{\mathcal{V}} E) & \text { (i.h.1) } \\
\mathcal{V} E\left(\gamma_{1} \hat{\Sigma}\right) & \sqsubseteq \gamma_{2}(\hat{\mathcal{V}} E \hat{\Sigma}) & \text { (i.h.2) }
\end{array}
$$

(i.h.1) is obtained by the Galois connection of α, γ.

$$
\alpha(\mathcal{V} E) \sqsubseteq \hat{\mathcal{V}} E \Leftrightarrow \mathcal{V} E \sqsubseteq \gamma(\hat{\mathcal{V}} E)
$$

(i.h.2) is obtained by the following equivalents.

$$
\begin{equation*}
\alpha(\mathcal{V} E) \sqsubseteq \hat{\mathcal{V}} E \Leftrightarrow \alpha_{2} \circ \mathcal{V} E \circ \gamma_{1} \sqsubseteq \hat{\mathcal{V}} E \quad \text { (by def. of } \alpha \text {) } \tag{1}
\end{equation*}
$$

Because of (1), we can show the correctness by showing that, for all $\hat{\Sigma}$, the following is hold:

$$
\begin{equation*}
\alpha_{2}\left(\mathcal{V} E\left(\gamma_{1} \hat{\Sigma}\right)\right) \sqsubseteq \hat{\mathcal{V}} E \hat{\Sigma} \tag{2}
\end{equation*}
$$

From (2) the following is hold by Galois connection

$$
\alpha_{2}\left(\mathcal{V} E\left(\gamma_{1} \hat{\Sigma}\right)\right) \sqsubseteq \hat{\mathcal{V}} E \hat{\Sigma} \Leftrightarrow \mathcal{V} E\left(\gamma_{1} \hat{\Sigma}\right) \sqsubseteq \gamma_{2}(\hat{\mathcal{V}} E \hat{\Sigma})
$$

$E \rightarrow n$,

$$
\begin{aligned}
\alpha(\mathcal{V} n) \hat{\Sigma} & =\left(\alpha_{2} \circ \mathcal{V} n \circ \gamma_{1}\right) \hat{\Sigma} & & (\text { by def. } \alpha) \\
& =\alpha_{2}\left(\mathcal{V} n\left(\gamma_{1} \hat{\Sigma}\right)\right) & & \\
& =\alpha_{2}\{n\} & & (\text { by def. } \mathcal{V}) \\
& =\hat{\mathcal{V}} n \hat{\Sigma} & & \text { (by def. } \hat{\mathcal{V}})
\end{aligned}
$$

$E \rightarrow x$,

$$
\begin{aligned}
\alpha(\mathcal{V} x) \hat{\Sigma} & =\left(\alpha_{2} \circ \mathcal{V} x \circ \gamma_{1}\right) \hat{\Sigma} & & \text { (by def. } \alpha) \\
& =\alpha_{2}\left(\mathcal{V} x\left(\gamma_{1} \hat{\Sigma}\right)\right) & & \\
& =\alpha_{2}\left\{\sigma x \mid \sigma \in \gamma_{1} \hat{\Sigma}\right\} & & \text { by def. } \mathcal{V}) \\
& =\hat{\mathcal{V}} x \hat{\Sigma} & & \text { (by def. } \hat{\mathcal{V}})
\end{aligned}
$$

$$
\underline{E \rightarrow E_{1}+E_{2}},
$$

$$
\begin{array}{rlr}
\alpha\left(\mathcal{V} E_{1}+E_{2}\right) \hat{\Sigma} & =\left(\alpha_{2} \circ \mathcal{V} E_{1}+E_{2} \circ \gamma_{1}\right) \hat{\Sigma} & \text { (by def. } \alpha \text {) } \\
& =\alpha_{2}\left(\mathcal{V} E_{1}+E_{2}\left(\gamma_{1} \hat{\Sigma}\right)\right) \\
& =\alpha_{2}\left(\dot{+}\left\langle\mathcal{V} E_{1}\left(\gamma_{1} \hat{\Sigma}\right), \mathcal{V} E_{1}\left(\gamma_{1} \hat{\Sigma}\right)\right\rangle\right) & \\
& \sqsubseteq \alpha_{2}\left(\dot{+}\left\langle\gamma_{2}\left(\hat{\mathcal{V}} E_{1} \hat{\Sigma}\right), \gamma_{2}\left(\hat{\mathcal{V}} E_{1} \hat{\Sigma}\right)\right\rangle\right) & \text { (by monotonicity of } \alpha_{2}, \dot{+} \text { and i.h.2) } \\
& =\hat{\mathcal{V}} E_{1}+E_{2} \hat{\Sigma} & \text { (by def. } \hat{\mathcal{V}})
\end{array}
$$

$\underline{E} \rightarrow-E$,

$$
\begin{array}{rlr}
\alpha(\mathcal{V}-E) \hat{\Sigma} & =\left(\alpha_{2} \circ \mathcal{V}-E \circ \gamma_{1}\right) \hat{\Sigma} & (\text { by def. } \alpha) \\
& =\alpha_{2}\left(\mathcal{V}-E\left(\gamma_{1} \hat{\Sigma}\right)\right) \\
& =\alpha_{2}\left(\dot{-}\left\langle\mathcal{V} E\left(\gamma_{1} \hat{\Sigma}\right)\right\rangle\right) & \\
& \sqsubseteq \alpha_{2}\left(\dot{-}\left\langle\gamma_{2}(\hat{\mathcal{V}} E \hat{\Sigma})\right\rangle\right) & \text { (by monotonicity of } \left.\alpha_{2}, \dot{-} \text { and i.h. } 2\right) \\
& =\hat{\mathcal{V}}-E \hat{\Sigma} & (\text { by def. } \hat{\mathcal{V}})
\end{array}
$$

$\underline{E \rightarrow \text { let } x E_{1} E_{2}}$,

$$
\begin{aligned}
& \alpha\left(\mathcal{V} \text { let } x E_{1} E_{2}\right) \hat{\Sigma}=\left(\alpha_{2} \circ \mathcal{V} \text { let } x E_{1} E_{2} \circ \gamma_{1}\right) \hat{\Sigma} \\
& =\alpha_{2}\left(\mathcal{V} \operatorname{let} x E_{1} E_{2}\left(\gamma_{1} \hat{\Sigma}\right)\right) \\
& =\alpha_{2}\left(\left(\mathcal{V} E_{2} \circ \cdot\{x \mapsto \cdot\}\right)\left\langle\gamma_{1} \hat{\Sigma}, \mathcal{V} E_{1}\left(\gamma_{1} \hat{\Sigma}\right)\right\rangle\right) \\
& \sqsubseteq \alpha_{2}\left(\left(\mathcal{V} E_{2} \circ \cdot\{x \mapsto \cdot\}\right)\left\langle\gamma_{1} \hat{\Sigma}, \gamma_{2}\left(\hat{\mathcal{V}} E_{1} \hat{\Sigma}\right)\right\rangle\right) \\
& \text { (by monotonicity of } \alpha_{2}, \mathcal{V} E, \cdot\{x \mapsto \cdot\} \text { and i.h.2) } \\
& \sqsubseteq \alpha_{2}\left(\left(\gamma\left(\hat{\mathcal{V}} E_{2}\right) \circ \cdot\{x \mapsto \cdot\}\right)\left\langle\gamma_{1} \hat{\Sigma}, \gamma_{2}\left(\hat{\mathcal{V}} E_{1} \hat{\Sigma}\right)\right\rangle\right) \\
& \text { (by monotonicity of } \alpha_{2} \text { and i.h.1) } \\
& \left.=\alpha_{2}\left(\left(\gamma_{2} \circ \hat{\mathcal{V}} E_{2} \circ \alpha_{1}\right) \circ \cdot\{x \mapsto \cdot\}\right)\left\langle\gamma_{1} \hat{\Sigma}, \gamma_{2}\left(\hat{\mathcal{V}} E_{1} \hat{\Sigma}\right)\right\rangle\right) \\
& \left.=\left(\alpha_{2} \circ \gamma_{2} \circ \hat{\mathcal{V}} E_{2} \circ \alpha_{1} \circ \cdot\{x \mapsto \cdot\}\right)\left\langle\gamma_{1} \hat{\Sigma}, \gamma_{2}\left(\hat{\mathcal{V}} E_{1} \hat{\Sigma}\right)\right\rangle\right) \\
& \left.\sqsubseteq\left(\hat{\mathcal{V}} E_{2} \circ \alpha_{1} \circ \cdot\{x \mapsto \cdot\}\right)\left\langle\gamma_{1} \hat{\Sigma}, \gamma_{2}\left(\hat{\mathcal{V}} E_{1} \hat{\Sigma}\right)\right\rangle\right) \quad\left(\text { by } \alpha_{2} \circ \gamma_{2} \sqsubseteq i d\right) \\
& =\hat{\mathcal{V}} \text { let } x E_{1} E_{2} \hat{\Sigma} \\
& \text { (by def. } \mathcal{V} \text {) } \\
& \text { (by def. } \mathcal{V} \text {) } \\
& \text { (by def. } \gamma \text {) } \\
& \left(b y \alpha_{2} \circ \gamma_{2} \sqsubseteq i d\right) \\
& \text { (by def. } \hat{\mathcal{V}} \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& E \rightarrow \text { if } E_{1} E_{2} E_{3}, \\
& \alpha\left(\mathcal{V}_{\text {if }} E_{1} E_{2} E_{3}\right) \hat{\Sigma}=\left(\alpha_{2} \circ \mathcal{V}_{\text {if }} E_{1} E_{2} E_{3} \circ \gamma_{1}\right) \hat{\Sigma} \\
& =\alpha_{2}\left(\mathcal{V} \text { if } E_{1} E_{2} E_{3}\left(\gamma_{1} \hat{\Sigma}\right)\right) \\
& =\alpha_{2}\left(\mathcal{V} E_{2}\left(\mathcal{B} E_{1}\left(\gamma_{1} \hat{\Sigma}\right)\right) \cup \mathcal{V} E_{3}\left(\neg \mathcal{B} E_{1}\left(\gamma_{1} \hat{\Sigma}\right)\right)\right. \\
& =\alpha_{2}\left(\mathcal{V} E_{2}\left(\mathcal{B} E_{1}\left(\gamma_{1} \hat{\Sigma}\right)\right)\right) \sqcup \alpha_{2}\left(\mathcal{V} E_{3}\left(\neg \mathcal{B} E_{1}\left(\gamma_{1} \hat{\Sigma}\right)\right)\right. \\
& \text { (by def. } \mathcal{V}) \\
& \sqsubseteq \alpha_{2}\left(\left(\gamma\left(\hat{\mathcal{V}} E_{2}\right)\right)\left(\mathcal{B} E_{1}\left(\gamma_{1} \hat{\Sigma}\right)\right)\right) \sqcup \alpha_{2}\left(\left(\gamma\left(\hat{\mathcal{V}} E_{3}\right)\right)\left(\neg \mathcal{B} E_{1}\left(\gamma_{1} \hat{\Sigma}\right)\right)\right) \\
& \text { (by monotonicity of } \alpha_{2} \text { and i.h.1) } \\
& =\left(\alpha_{2} \circ\left(\gamma\left(\hat{\mathcal{V}} E_{2}\right)\right)\right)\left(\mathcal{B} E_{1}\left(\gamma_{1} \hat{\Sigma}\right)\right) \\
& \sqcup\left(\alpha_{2} \circ\left(\gamma\left(\hat{\mathcal{V}} E_{3}\right)\right)\right)\left(\neg \mathcal{B} E_{1}\left(\gamma_{1} \hat{\Sigma}\right)\right) \\
& =\left(\alpha_{2} \circ \gamma_{2} \circ \hat{\mathcal{V}} E_{2} \circ \alpha_{1}\right)\left(\mathcal{B} E_{1}\left(\gamma_{1} \hat{\Sigma}\right)\right) \\
& \sqcup\left(\alpha_{2} \circ \gamma_{2} \circ \hat{\mathcal{V}} E_{3} \circ \alpha_{1}\right)\left(\neg \mathcal{B} E_{1}\left(\gamma_{1} \hat{\Sigma}\right)\right) \\
& \text { (by def. } \gamma \text {) } \\
& \sqsubseteq\left(\hat{\mathcal{V}} E_{2} \circ \alpha_{1}\right)\left(\mathcal{B} E_{1}\left(\gamma_{1} \hat{\Sigma}\right)\right) \sqcup\left(\hat{\mathcal{V}} E_{3} \circ \alpha_{1}\right)\left(\neg \mathcal{B} E_{1}\left(\gamma_{1} \hat{\Sigma}\right)\right) \quad\left(\because \alpha_{2} \circ \gamma_{2} \sqsubseteq i d\right) \\
& =\hat{\mathcal{V}} E_{2}\left(\alpha_{1}\left(\mathcal{B} E_{1}\left(\gamma_{1} \hat{\Sigma}\right)\right)\right) \sqcup \hat{\mathcal{V}} E_{3}\left(\alpha_{1}\left(\neg \mathcal{B} E_{1}\left(\gamma_{1} \hat{\Sigma}\right)\right)\right) \\
& =\hat{\mathcal{V}} \text { if } E_{1} E_{2} E_{3} \hat{\Sigma} \\
& \text { (by def. } \hat{\mathcal{V}} \text {) }
\end{aligned}
$$

