Take-Home Exam 1 4541.664A Program Analysis

TAs {msjin,pronto}@ropas.snu.ac.kr Programming Research Lab

1 Problem 1

1.1 Abstract syntax of C---

$$\begin{array}{ccccc} E & \rightarrow & n & & (n \in \mathbb{Z}) \\ & \mid & x & & variable \\ & \mid & E+E & \\ & \mid & -E & \\ & \mid & \operatorname{let} x \ E \ E & local \ binding \\ & \mid & \operatorname{if} E \ E \ E \end{array}$$

1.2 Collecting Semantics

1.2.1 Domains

Collecting semantics of C---(V) is defined on the following domains

$$\begin{array}{cccc} \mathcal{V} & \in & Exp \rightarrow 2^{Env} \rightarrow 2^{\mathbb{Z}} \\ \Sigma & \in & 2^{Env} \\ \sigma & \in & Env = Var \stackrel{\text{fin}}{\rightarrow} \mathbb{Z} \end{array}$$

1.2.2 Collecting semantics

Collecting semantics (V) is defined compositionally:

$$\begin{array}{rcl} \mathcal{V} \ n \ \Sigma &=& \{n\} \\ \mathcal{V} \ x \ \Sigma &=& \{\sigma x \mid \sigma \in \Sigma\} \\ \mathcal{V} \ E_1 + E_2 \Sigma &=& \{z_1 + z_2 \mid z_i \in \mathcal{V} E_i \Sigma\} \\ \mathcal{V} - E \Sigma &=& \{-z \mid z \in \mathcal{V} E \Sigma\} \\ \end{array}$$

$$\mathcal{V} \ \text{let} \ x \ E_1 \ E_2 \ \Sigma &=& \mathcal{V} E_2 \{\sigma \{x \mapsto v\} \mid \sigma \in \Sigma, v \in \mathcal{V} E_1 \Sigma\} \\ \mathcal{V} \ \text{if} \ E_1 \ E_2 \ E_3 &=& \mathcal{V} E_2 (\mathcal{B} E_1 \Sigma) \cup \mathcal{V} E_3 (\neg \mathcal{B} E_1 \Sigma) \\ \mathcal{B} E \Sigma &=& \cup \{\Sigma' \mid 0 \notin \mathcal{V} E \Sigma', \Sigma' \subseteq \Sigma\} \\ \neg \mathcal{B} E \Sigma &=& \cup \{\Sigma' \mid \{0\} = \mathcal{V} E \Sigma', \Sigma' \subseteq \Sigma\} \end{array}$$

We can rewrite above definition using operators $\dot{+}, \dot{-}, \cdot \{x \mapsto \cdot\}$ for simplicity:

$$\begin{array}{rcl} \dot{+} & \in & 2^{\mathbb{Z}} \times 2^{\mathbb{Z}} \rightarrow 2^{\mathbb{Z}} \\ \dot{+} \langle Z_1, Z_2 \rangle & = & \{z_1 + z_2 \mid z_1 \in Z_1, z_2 \in Z_2\} \\ \\ \dot{-} & \in & 2^{\mathbb{Z}} \rightarrow 2^{\mathbb{Z}} \\ \dot{-} \langle Z \rangle & = & \{-z \mid z \in Z\} \\ \\ \cdot \{x \mapsto \cdot\} & \in & 2^{Env} \times 2^{\mathbb{Z}} \rightarrow 2^{Env} \\ \cdot \{x \mapsto \cdot\} \langle \Sigma, Z \rangle & = & \{\sigma\{x \mapsto v\} \mid \sigma \in \Sigma, v \in Z\} \\ \\ \mathcal{V} & n \Sigma & = & \{n\} \\ \mathcal{V} & x \Sigma & = & \{\sigma x \mid \sigma \in \Sigma\} \\ \mathcal{V} & E_1 + E_2 \Sigma & = & + \langle \mathcal{V} E_1 \Sigma, \mathcal{V} E_2 \Sigma \rangle \\ \mathcal{V} & -E \Sigma & = & - \langle \mathcal{V} E \Sigma \rangle \\ \\ \mathcal{V} & \text{let } x E_1 E_2 \Sigma & = & (\mathcal{V} E_2 \circ \cdot \{x \mapsto \cdot\}) \langle \Sigma, \mathcal{V} E_1 \Sigma \rangle \\ \mathcal{V} & \text{if } E_1 E_2 E_3 & = & \mathcal{V} E_2 (\mathcal{B} E_1 \Sigma) \cup \mathcal{V} E_3 (\neg \mathcal{B} E_1 \Sigma) \\ \mathcal{B} & \mathcal{E} \Sigma & = & \cup \{\Sigma' \mid 0 \notin \mathcal{V} E \Sigma', \Sigma' \subseteq \Sigma\} \\ \neg \mathcal{B} & E \Sigma & = & \cup \{\Sigma' \mid \{0\} = \mathcal{V} E \Sigma', \Sigma' \subseteq \Sigma\} \end{array}$$

1.3 Abstract Semantics

1.3.1 Domains

Abstract semantics of C—— $(\hat{\mathcal{V}})$ is defined on the following domains

$$\begin{array}{ccc} \hat{\mathcal{V}} & \in & Exp \to \hat{Env} \to \hat{\mathbb{Z}} \\ \hat{\Sigma} & \in & \hat{Env} \end{array}$$

1.3.2 Galois connection

We assume that two Galois connections - $2^{Env} \xleftarrow{\gamma_1}_{\alpha_1} \hat{Env}$, $2^{\mathbb{Z}} \xleftarrow{\gamma_2}_{\alpha_2} \hat{\mathbb{Z}}$ - are established. Thus the Galois connection $2^{Env} \to 2^{\mathbb{Z}} \xleftarrow{\gamma}_{\alpha} \hat{Env} \to \hat{\mathbb{Z}}$ can be defined compositionally with $\alpha_1, \gamma_1, \alpha_2, \gamma_2$.

$$\begin{array}{rcl}
\alpha(m) & = & \alpha_2 \circ m \circ \gamma_1 \\
\gamma(\hat{m}) & = & \gamma_2 \circ \hat{m} \circ \alpha_1
\end{array}$$

1.3.3 Abstract semantics

Abstract semantics of C--- is defined compositionally:

$$\begin{array}{rcl} \hat{\mathcal{V}}n\hat{\Sigma} &=& \alpha_2\{n\} \\ \hat{\mathcal{V}}x\;\hat{\Sigma} &=& \alpha_2\{\sigma x \mid \sigma \in \gamma_1\hat{\Sigma}\} \\ \hat{\mathcal{V}}\;E_1 + E_2\hat{\Sigma} &=& \alpha_2(\dot{+}\langle\gamma_2(\hat{\mathcal{V}}E_1\hat{\Sigma}),\;\gamma_2(\mathcal{V}E_2\hat{\Sigma})\rangle) \\ \hat{\mathcal{V}}\;-E\hat{\Sigma} &=& \alpha_2(\dot{-}\langle\gamma_2(\hat{\mathcal{V}}E\hat{\Sigma}\rangle) \\ \hat{\mathcal{V}}\;\text{let}\;x\;E_1\;E_2\;\hat{\Sigma} &=& (\hat{\mathcal{V}}E_2\circ\alpha_1\circ\cdot\{x\mapsto\cdot\})\langle\gamma_1\hat{\Sigma},\gamma_2(\hat{\mathcal{V}}E_1\hat{\Sigma})\rangle \\ \hat{\mathcal{V}}\;\text{if}\;E_1\;E_2\;E_3 &=& \hat{\mathcal{V}}E_2(\alpha_1(\mathcal{B}E_1(\gamma_1\hat{\Sigma}))) \sqcup \hat{\mathcal{V}}E_3(\alpha_1(\mathcal{B}E_1(\gamma_1\hat{\Sigma}))) \end{array}$$

1.4 Proof of correctness

To show the correctness of abstract semantics it's sufficient to show (1) in abstract interpretation framework.

$$\alpha(\mathcal{V}E) \sqsubseteq \hat{\mathcal{V}}E$$

1.4.1 Proof

 $\alpha(\mathcal{V}E) \sqsubseteq \hat{\mathcal{V}}E$ is proved by structural induction on E.

Throughout the proof, two forms of induction hypothesis are used

$$\begin{array}{cccc} \mathcal{V}E &\sqsubseteq & \gamma(\hat{\mathcal{V}}E) & (i.h.1) \\ \mathcal{V}E(\gamma_1\hat{\Sigma}) &\sqsubseteq & \gamma_2(\hat{\mathcal{V}}E\hat{\Sigma}) & (i.h.2) \end{array}$$

(i.h.1) is obtained by the Galois connection of α, γ .

$$\alpha(\mathcal{V}E) \sqsubseteq \hat{\mathcal{V}}E \Leftrightarrow \mathcal{V}E \sqsubseteq \gamma(\hat{\mathcal{V}}E)$$

(i.h.2) is obtained by the following equivalents.

$$\alpha(\mathcal{V}E) \sqsubseteq \hat{\mathcal{V}}E \Leftrightarrow \alpha_2 \circ \mathcal{V}E \circ \gamma_1 \sqsubseteq \hat{\mathcal{V}}E \qquad (by \ def. \ of \ \alpha)$$
 (1)

Because of (1), we can show the correctness by showing that, for all $\hat{\Sigma}$, the following is hold:

$$\alpha_2(\mathcal{V}E(\gamma_1\hat{\Sigma})) \sqsubseteq \hat{\mathcal{V}}E\hat{\Sigma} \tag{2}$$

From (2) the following is hold by Galois connection

$$\alpha_2(\mathcal{V}E(\gamma_1\hat{\Sigma})) \sqsubseteq \hat{\mathcal{V}}E\hat{\Sigma} \Leftrightarrow \mathcal{V}E(\gamma_1\hat{\Sigma}) \sqsubseteq \gamma_2(\hat{\mathcal{V}}E\hat{\Sigma})$$

 $E \rightarrow n$,

$$\begin{array}{rcl} \alpha(\mathcal{V}n)\hat{\Sigma} & = & (\alpha_2 \circ \mathcal{V}n \circ \gamma_1)\hat{\Sigma} & (\textit{by def. }\alpha) \\ & = & \alpha_2(\mathcal{V}n(\gamma_1\hat{\Sigma})) \\ & = & \alpha_2\{n\} & (\textit{by def. }\mathcal{V}) \\ & = & \hat{\mathcal{V}}n\hat{\Sigma} & (\textit{by def. }\hat{\mathcal{V}}) \end{array}$$

 $\underline{E \to x}$,

$$\begin{array}{rcl} \alpha(\mathcal{V}x)\hat{\Sigma} & = & (\alpha_2 \circ \mathcal{V}x \circ \gamma_1)\hat{\Sigma} & (\textit{by def. }\alpha) \\ & = & \alpha_2(\mathcal{V}x(\gamma_1\hat{\Sigma})) \\ & = & \alpha_2\{\sigma x \mid \sigma \in \gamma_1\hat{\Sigma}\} & (\textit{by def. }\mathcal{V}) \\ & = & \hat{\mathcal{V}}x\hat{\Sigma} & (\textit{by def. }\hat{\mathcal{V}}) \end{array}$$

$E \rightarrow E_1 + E_2$,

$$\alpha(\mathcal{V}E_1+E_2)\hat{\Sigma} = (\alpha_2 \circ \mathcal{V}E_1+E_2 \circ \gamma_1)\hat{\Sigma} \qquad (by \ def. \ \alpha)$$

$$= \alpha_2(\mathcal{V}E_1+E_2(\gamma_1\hat{\Sigma}))$$

$$= \alpha_2(\dot{+}\langle\mathcal{V}E_1(\gamma_1\hat{\Sigma}),\mathcal{V}E_1(\gamma_1\hat{\Sigma})\rangle) \qquad (by \ def. \ \mathcal{V})$$

$$\sqsubseteq \alpha_2(\dot{+}\langle\gamma_2(\hat{\mathcal{V}}E_1\hat{\Sigma}),\gamma_2(\hat{\mathcal{V}}E_1\hat{\Sigma})\rangle) \qquad (by \ monotonicity \ of \ \alpha_2,\dot{+} \ and \ i.h.2)$$

$$= \hat{\mathcal{V}}E_1+E_2\hat{\Sigma} \qquad (by \ def. \ \hat{\mathcal{V}})$$

$E \rightarrow -E$

$$\begin{array}{lll} \alpha(\mathcal{V}\text{-}E)\hat{\Sigma} & = & (\alpha_2 \circ \mathcal{V}\text{-}E \circ \gamma_1)\hat{\Sigma} & (\textit{by def. }\alpha) \\ & = & \alpha_2(\mathcal{V}\text{-}E(\gamma_1\hat{\Sigma})) \\ & = & \alpha_2(\dot{-}\langle\mathcal{V}E(\gamma_1\hat{\Sigma})\rangle) & (\textit{by def. }\mathcal{V}) \\ & \sqsubseteq & \alpha_2(\dot{-}\langle\gamma_2(\hat{\mathcal{V}}E\hat{\Sigma})\rangle) & (\textit{by monotonicity of }\alpha_2,\dot{-}\textit{ and i.h.2}) \\ & = & \hat{\mathcal{V}}\text{-}E\hat{\Sigma} & (\textit{by def. }\hat{\mathcal{V}}) \end{array}$$

$E \rightarrow \text{let } x E_1 E_2$,

$$\alpha(\mathcal{V}\mathsf{let}\ x\ E_1\ E_2)\hat{\Sigma} \ = \ (\alpha_2\circ\mathcal{V}\mathsf{let}\ x\ E_1\ E_2\circ\gamma_1)\hat{\Sigma} \qquad (by\ def.\ \mathcal{V})$$

$$= \ \alpha_2(\mathcal{V}\mathsf{let}\ x\ E_1\ E_2(\gamma_1\hat{\Sigma}))$$

$$= \ \alpha_2((\mathcal{V}E_2\circ\cdot\{x\mapsto\cdot\})\langle\gamma_1\hat{\Sigma},\mathcal{V}E_1(\gamma_1\hat{\Sigma})\rangle) \qquad (by\ def.\ \mathcal{V})$$

$$\sqsubseteq \ \alpha_2((\mathcal{V}E_2\circ\cdot\{x\mapsto\cdot\})\langle\gamma_1\hat{\Sigma},\gamma_2(\hat{\mathcal{V}}E_1\hat{\Sigma})\rangle)$$

$$= \ \alpha_2(((\mathcal{V}E_2\circ\cdot\{x\mapsto\cdot\})\langle\gamma_1\hat{\Sigma},\gamma_2(\hat{\mathcal{V}}E_1\hat{\Sigma})\rangle)$$

$$= \ \alpha_2(((\mathcal{V}\hat{\mathcal{V}}E_2)\circ\cdot\{x\mapsto\cdot\})\langle\gamma_1\hat{\Sigma},\gamma_2(\hat{\mathcal{V}}E_1\hat{\Sigma})\rangle)$$

$$= \ \alpha_2(((\mathcal{V}\hat{\mathcal{V}}E_2)\circ\cdot\{x\mapsto\cdot\})\langle\gamma_1\hat{\Sigma},\gamma_2(\hat{\mathcal{V}}E_1\hat{\Sigma})\rangle)$$

$$= \ \alpha_2(((\mathcal{V}_2\circ\hat{\mathcal{V}}E_2\circ\alpha_1)\circ\cdot\{x\mapsto\cdot\})\langle\gamma_1\hat{\Sigma},\gamma_2(\hat{\mathcal{V}}E_1\hat{\Sigma})\rangle)$$

$$= \ (\alpha_2\circ\gamma_2\circ\hat{\mathcal{V}}E_2\circ\alpha_1\circ\cdot\{x\mapsto\cdot\})\langle\gamma_1\hat{\Sigma},\gamma_2(\hat{\mathcal{V}}E_1\hat{\Sigma})\rangle)$$

$$\sqsubseteq \ (\hat{\mathcal{V}}E_2\circ\alpha_1\circ\cdot\{x\mapsto\cdot\})\langle\gamma_1\hat{\Sigma},\gamma_2(\hat{\mathcal{V}}E_1\hat{\Sigma})\rangle)$$

$$= \ (\hat{\mathcal{V}}E_2\circ\alpha_1\circ\{x\mapsto\cdot\})\langle\gamma_1\hat{\Sigma},\gamma_2(\hat{\mathcal{V}}E_1\hat{\Sigma})\rangle)$$

$E \rightarrow \text{if } E_1 \ E_2 \ E_3,$

```
\alpha(\mathcal{V}if E_1 \ E_2 \ E_3)\hat{\Sigma} = (\alpha_2 \circ \mathcal{V}if E_1 \ E_2 \ E_3 \circ \gamma_1)\hat{\Sigma}
                                                                                                                                                                                                                                                 (by def. \alpha)
                                                        = \alpha_2(\mathcal{V}if E_1 E_2 E_3(\gamma_1 \hat{\Sigma}))
                                                        = \alpha_2(\mathcal{V}E_2(\mathcal{B}E_1(\gamma_1\hat{\Sigma})) \cup \mathcal{V}E_3(\neg \mathcal{B}E_1(\gamma_1\hat{\Sigma}))
                                                                                                                                                                                                                                                 (by def. V)
                                                         = \alpha_2(\mathcal{V}E_2(\mathcal{B}E_1(\gamma_1\hat{\Sigma}))) \sqcup \alpha_2(\mathcal{V}E_3(\neg \mathcal{B}E_1(\gamma_1\hat{\Sigma})))
                                                                                                                                                                                                                        (:: \alpha_2 \text{ is continuous})
                                                        \sqsubseteq \alpha_2((\gamma(\hat{\mathcal{V}}E_2))(\mathcal{B}E_1(\gamma_1\hat{\Sigma}))) \sqcup \alpha_2((\gamma(\hat{\mathcal{V}}E_3))(\neg \mathcal{B}E_1(\gamma_1\hat{\Sigma})))
                                                                             (by monotonicity of \alpha_2 and i.h.1)
                                                         = (\alpha_2 \circ (\gamma(\hat{\mathcal{V}}E_2)))(\mathcal{B}E_1(\gamma_1\hat{\Sigma}))
                                                                  \sqcup (\alpha_2 \circ (\gamma(\hat{\mathcal{V}}E_3)))(\neg \mathcal{B}E_1(\gamma_1\hat{\Sigma}))
                                                         = (\alpha_2 \circ \gamma_2 \circ \hat{\mathcal{V}} E_2 \circ \alpha_1) (\mathcal{B} E_1(\gamma_1 \hat{\Sigma}))
                                                                 \sqcup (\alpha_2 \circ \gamma_2 \circ \hat{\mathcal{V}} E_3 \circ \alpha_1) (\neg \mathcal{B} E_1(\gamma_1 \hat{\Sigma}))
                                                                                                                                                                                                                                                 (by def. \gamma)
                                                         \sqsubseteq (\hat{\mathcal{V}}E_2 \circ \alpha_1)(\mathcal{B}E_1(\gamma_1\hat{\Sigma})) \sqcup (\hat{\mathcal{V}}E_3 \circ \alpha_1)(\neg \mathcal{B}E_1(\gamma_1\hat{\Sigma}))
                                                                                                                                                                                                                            (:: \alpha_2 \circ \gamma_2 \sqsubseteq id)
                                                         = \hat{\mathcal{V}}E_2(\alpha_1(\mathcal{B}E_1(\gamma_1\hat{\Sigma}))) \sqcup \hat{\mathcal{V}}E_3(\alpha_1(\neg \mathcal{B}E_1(\gamma_1\hat{\Sigma})))
                                                                                                                                                                                                                                                 (by def. \hat{\mathcal{V}})
                                                        = \hat{\mathcal{V}}if E_1 E_2 E_3\hat{\Sigma}
```