Take-Home Exam 1
 4541.664A Program Analysis

TAs
\{msjin, pronto\}@ropas.snu.ac.kr Programming Research Lab

June 2, 2006

1 Problem 2.

1.1 Abstract Semantics

$$
\begin{aligned}
\hat{\mathcal{V}} n \hat{\Sigma} & =\alpha_{2}\{n\} \\
\hat{\mathcal{V}} x \hat{\Sigma} & =\alpha_{2}\left\{\sigma x \mid \sigma \in \gamma_{1}(\hat{\Sigma})\right\} \\
\hat{\mathcal{V}} E_{1}+E_{2} \hat{\Sigma} & =\left(\hat{\mathcal{V}} E_{1} \hat{\Sigma}\right) \hat{+}\left(\hat{\mathcal{V}} E_{2} \hat{\Sigma}\right) \\
\hat{\mathcal{V}}-E \hat{\Sigma} & =\hat{-}(\hat{\mathcal{V}} E \hat{\Sigma}) \\
\hat{\mathcal{V}} \text { let } x E_{1} E_{2} \hat{\Sigma} & =\hat{\mathcal{V}} E_{2}\left(\hat{\Sigma}\left\{x \mapsto \hat{\mapsto} \hat{\mathcal{V}} E_{1} \hat{\Sigma}\right\}\right) \\
\hat{\mathcal{V}} \text { if } E_{1} E_{2} E_{3} \hat{\Sigma} & =\left(\hat{\mathcal{V}} E_{2} \hat{\Sigma}\right) \sqcup\left(\hat{\mathcal{V}} E_{3} \hat{\Sigma}\right)
\end{aligned}
$$

Here,

$$
\begin{aligned}
\hat{+} & \in \hat{\mathbb{Z}} \times \hat{\mathbb{Z}} \rightarrow \hat{\mathbb{Z}} \\
\hat{-} & \in \hat{\mathbb{Z}} \rightarrow \hat{\mathbb{Z}} \\
\{x \hat{\mapsto} .\} & \in \hat{E n} v \times \hat{\mathbb{Z}} \rightarrow \hat{E n v}
\end{aligned}
$$

are safely abstracted from concrete materials,,$+-\{x \mapsto$.

1.2 Correctness Proof

To proof that the abstractions are correct, we have to show for all expression E

$$
\alpha(\mathcal{V} E) \sqsubseteq \hat{\mathcal{V}} E
$$

is hold. Here we assume α and γ is compositionally defined ${ }^{1}$:

$$
\begin{aligned}
\alpha & =\lambda f . \alpha_{2} \circ f \circ \gamma_{1} \\
\gamma & =\lambda \hat{f} . \gamma_{2} \circ \hat{f} \circ \alpha_{1}
\end{aligned}
$$

For convenience, we define the following pair abstraction,

$$
\begin{aligned}
\alpha_{a \times b} & =\lambda\langle A, B\rangle \cdot\left\langle\alpha_{a} A, \alpha_{b} B\right\rangle \\
\gamma_{a \times b} & =\lambda\langle A, B\rangle \cdot\left\langle\gamma_{a} A, \gamma_{b} B\right\rangle
\end{aligned}
$$

[^0]- $e \rightarrow n$

$$
\begin{aligned}
\alpha(\mathcal{V} n) \hat{\Sigma} & =\left(\alpha_{2} \circ \mathcal{V} n \circ \gamma_{1}\right) \hat{\Sigma} & & (\text { by def. of } \alpha) \\
& =\alpha_{2}\left(\mathcal{V} n\left(\gamma_{1} \hat{\Sigma}\right)\right) & & \\
& =\alpha_{2}\{n\} & & \\
& =\hat{\mathcal{V}} n \hat{\Sigma} & &
\end{aligned}
$$

- $e \rightarrow x$

$$
\begin{aligned}
\alpha(\mathcal{V} x) \hat{\Sigma} & \left.=\left(\alpha_{2} \circ \mathcal{V} x \circ \gamma_{1}\right) \hat{\Sigma} \quad \text { (by def. of } \alpha\right) \\
& =\alpha_{2}\left(\mathcal{V} x\left(\gamma_{1} \hat{\Sigma}\right)\right) \\
& =\alpha_{2}\left\{\sigma x \mid \sigma \in \gamma_{1} \hat{\Sigma}\right\} \quad(\text { by def. of } \mathcal{V}) \\
& =\hat{\mathcal{V}} x \hat{\Sigma}
\end{aligned}
$$

- $e \rightarrow E_{1}+E_{2}$
by I.H
$\alpha\left(\mathcal{V} E_{1}\right) \sqsubseteq \hat{\mathcal{V}} E_{1} \Rightarrow \alpha_{2}\left(\mathcal{V} E_{1}\left(\gamma_{1} \hat{\Sigma}\right)\right) \sqsubseteq\left(\hat{\mathcal{V}} E_{1}\right) \hat{\Sigma}$
$\alpha\left(\mathcal{V} E_{2}\right) \sqsubseteq \hat{\mathcal{V}} E_{2} \Rightarrow \alpha_{2}\left(\mathcal{V} E_{2}\left(\gamma_{1} \hat{\Sigma}\right)\right) \sqsubseteq\left(\hat{\mathcal{V}} E_{2}\right) \hat{\Sigma}$

Let $\dot{+}$ to be $\lambda\langle a, b\rangle .\left\{v_{1}+v_{2} \mid v_{1} \in a, v_{2} \in b\right\}$
Because $\hat{+}$ is sound operator, $i d \sqsubseteq \gamma_{2 \times 2} \circ \alpha_{2 \times 2}$ and $\alpha_{2} \circ \dot{+}$ is monotonic, following is true.

$$
\begin{aligned}
& \hat{+} \sqsupseteq \alpha_{2} \circ \dot{+} \gamma_{2 \times 2} \\
& \Rightarrow \quad \hat{+} \circ \alpha_{2 \times 2} \sqsupseteq \alpha_{2} \circ \dot{+} \\
& \alpha\left(\mathcal{V} E_{1}+E_{2}\right) \hat{\Sigma}=\left(\alpha_{2} \circ \mathcal{V} E_{1}+E_{2} \circ \gamma_{1}\right) \hat{\Sigma} \quad \text { (by def. of } \alpha \text {) } \\
& =\alpha_{2}\left(\mathcal{V} E_{1}+E_{2}\left(\gamma_{1} \hat{\Sigma}\right)\right) \\
& =\alpha_{2}\left\{z_{1}+z_{2} \mid z_{i} \in \mathcal{V} E_{i} \Sigma\right\} \quad \text { (by def. of } \mathcal{V} \text {) } \\
& =\left(\alpha_{2} \circ \dot{+}\right)\left\langle\mathcal{V} E_{1}\left(\gamma_{1} \hat{\Sigma}\right), \mathcal{V} E_{2}\left(\gamma_{1} \hat{\Sigma}\right)\right\rangle \\
& \sqsubseteq \quad\left(\hat{+} \circ \alpha_{2 \times 2}\right)\left\langle\mathcal{V} E_{1}\left(\gamma_{1} \hat{\Sigma}\right), \mathcal{V} E_{2}\left(\gamma_{1} \hat{\Sigma}\right)\right\rangle \quad(b y \quad(1)) \\
& =\hat{+}\left\langle\alpha_{2}\left(\mathcal{V} E_{1}\left(\gamma_{1} \hat{\Sigma}\right)\right), \alpha_{2}\left(\mathcal{V} E_{2}\left(\gamma_{1} \hat{\Sigma}\right)\right)\right\rangle \\
& \sqsubseteq \hat{+}\left\langle\hat{\mathcal{V}} E_{1} \hat{\Sigma}, \hat{\mathcal{V}} E_{2} \hat{\Sigma}\right\rangle \\
& =\left(\hat{\mathcal{V}} E_{1} \hat{\Sigma}\right) \hat{+}\left(\hat{\mathcal{V}} E_{2} \hat{\Sigma}\right) \\
& \left.=\hat{\mathcal{V}} E_{1}+E_{2} \hat{\Sigma} \quad \text { (by def. of } \hat{\mathcal{V}}\right)
\end{aligned}
$$

$\therefore \hat{\mathcal{V}} E_{1}+E_{2} \hat{\Sigma} \sqsupseteq \alpha\left(\mathcal{V} E_{1}+E_{2}\right) \hat{\Sigma}$

- $e \rightarrow-E$
by I.H
$\alpha(\mathcal{V} E) \sqsubseteq \hat{\mathcal{V}} E \Rightarrow \alpha_{2}\left(\mathcal{V} E\left(\gamma_{1} \hat{\Sigma}\right)\right) \sqsubseteq(\hat{\mathcal{V}} E) \hat{\Sigma}$

Let - to be $\lambda Z .\{-z \mid z \in Z\}$
$\hat{+}$ is sound operator, $i d \sqsubseteq \gamma \circ \alpha$ and $\alpha_{2} \circ \dot{+}$ is monotonic

$$
\begin{aligned}
& \hat{-} \sqsupseteq \alpha_{2} \circ \dot{-} \circ \gamma_{2} \\
& \Rightarrow \quad \hat{-} \circ \alpha_{2} \sqsupseteq \alpha_{2} \circ- \\
& \cdots
\end{aligned}
$$

$$
\begin{aligned}
& \alpha(\mathcal{V}-E) \hat{\Sigma}=\left(\alpha_{2} \circ(\mathcal{V}-E) \circ \gamma_{0}\right) \hat{\Sigma} \quad(\text { by def. of } \alpha) \\
& =\alpha_{2}\left(\mathcal{V}-E\left(\gamma_{1} \hat{\Sigma}\right)\right) \\
& =\alpha_{2}\{-z \mid z \in \mathcal{V} E \Sigma\} \quad \text { (by def. of } \mathcal{V} \text {) } \\
& =\left(\alpha_{2} \circ \dot{-}\right)\left(\mathcal{V} E\left(\gamma_{1} \hat{\Sigma}\right)\right) \quad(\text { by def. of } \dot{-}) \\
& \sqsubseteq\left(\hat{-} \circ \alpha_{2}\right)\left(\mathcal{V} E\left(\gamma_{1} \hat{\Sigma}\right)\right) \quad(\text { by }(1)) \\
& =\hat{-}\left(\alpha_{2}\left(\mathcal{V} E\left(\gamma_{1} \hat{\Sigma}\right)\right)\right) \\
& \sqsubseteq \hat{\mathcal{C}}(\hat{\mathcal{V}} E \hat{\Sigma}) \quad(\text { by I.H. and mono. of } \hat{\text { - }} \text {) } \\
& =\hat{\mathcal{V}}-E \hat{\Sigma} \quad(\text { by def. of } \hat{\mathcal{V}}) \\
& \therefore \hat{\mathcal{V}}-E \hat{\Sigma} \sqsupseteq \alpha(\mathcal{V}-E) \hat{\Sigma} \\
& \text { - } e \rightarrow \text { let } x E_{1} E_{2} \\
& \text { by I.H } \\
& \alpha\left(\mathcal{V} E_{1}\right) \sqsubseteq \hat{\mathcal{V}} E_{1} \Rightarrow \alpha_{2}\left(\mathcal{V} E_{1}\left(\gamma_{1} \hat{\Sigma}\right)\right) \sqsubseteq\left(\hat{\mathcal{V}} E_{1}\right) \hat{\Sigma} \\
& \alpha\left(\mathcal{V} E_{2}\right) \sqsubseteq \hat{\mathcal{V}} E_{2} \Rightarrow \alpha_{2}\left(\mathcal{V} E_{2}\left(\gamma_{1} \hat{\Sigma}\right)\right) \sqsubseteq\left(\hat{\mathcal{V}} E_{2}\right) \hat{\Sigma} \\
& \text { Let }\{\mathrm{x} \mapsto .\}=\lambda\langle\Sigma, V\rangle .\{\sigma\{x \mapsto v\} \mid \sigma \in \Sigma, v \in V\}
\end{aligned}
$$

Because operator $\cdot\{x \stackrel{\rightharpoonup}{\mapsto} \cdot\}$ is sound operator, $i d \sqsubseteq \gamma \circ \alpha$ and $\alpha_{1} \circ \cdot\{x \mapsto \cdot\}$ is monotonic

$$
\begin{aligned}
& \cdot\{x \stackrel{\wedge}{\mapsto} \cdot\} \sqsupseteq \alpha_{1} \circ \cdot\{x \mapsto \cdot\} \circ \gamma_{1 \times 2} \\
& \Rightarrow \quad \cdot\{x \stackrel{\wedge}{\mapsto} \cdot\} \circ \alpha_{1 \times 2} \sqsupseteq \alpha_{1} \circ \cdot\{x \mapsto \cdot\} \\
& \alpha\left(\mathcal{V} \text { let } x E_{1} E_{2}\right) \hat{\Sigma}=\left(\alpha_{2} \circ \mathcal{V} \text { let } x E_{1} E_{2}\right) \hat{\Sigma} \\
& =\alpha_{2}\left(\mathcal{V} \text { let } x E_{1} E_{2}\left(\gamma_{1} \hat{\Sigma}\right)\right) \\
& =\alpha_{2}\left(\mathcal{V} E_{2}\left\{\sigma\{x \mapsto v\} \mid \sigma \in \gamma_{1} \hat{\Sigma}, v \in \mathcal{V} E_{1}\left(\gamma_{1} \hat{\Sigma}\right)\right\}\right) \quad \text { (by def. of } \mathcal{V} \text {) } \\
& \left.=\left(\alpha_{2} \circ \mathcal{V} E_{2} \circ \cdot\{x \mapsto \cdot\}\right)\left(\gamma_{1} \hat{\Sigma}, \mathcal{V} E_{1} \gamma_{1} \hat{\Sigma}\right) \quad \text { (by def. of } \cdot\{x \mapsto \cdot\}\right) \\
& \sqsubseteq\left(\alpha_{2} \circ \gamma\left(\hat{\mathcal{V}} E_{2}\right) \circ \cdot\{x \mapsto \cdot\}\right)\left(\gamma_{1} \hat{\Sigma}, \mathcal{V} E_{1} \gamma_{1} \hat{\Sigma}\right) \\
& \text { (by I.H. \& mono. of } \alpha_{2} \text {) } \\
& =\left(\alpha_{2} \circ \gamma_{2} \circ \hat{\mathcal{V}} E_{2} \circ \alpha_{1} \circ \cdot\{x \mapsto \cdot\}\right)\left(\gamma_{1} \hat{\Sigma}, \mathcal{V} E_{1} \gamma_{1} \hat{\Sigma}\right) \quad(\text { by def. of } \gamma) \\
& \sqsubseteq\left(\hat{\mathcal{V}} E_{2} \circ \alpha_{1} \circ \cdot\{x \mapsto \cdot\}\right)\left(\gamma_{1} \hat{\Sigma}, \mathcal{V} E_{1} \gamma_{1} \hat{\Sigma}\right) \quad\left(\text { by } \alpha_{2} \circ \gamma_{2} \sqsubseteq i d\right. \text { \& } \\
& \text { assume } \hat{\mathcal{V}} E_{2} \text { is monotone) } \\
& \sqsubseteq\left(\hat{\mathcal{V}} E_{2} \circ \cdot\{x \stackrel{\hat{\mapsto}}{ } \cdot\} \circ \alpha_{1 \times 2}\right)\left(\gamma_{1} \hat{\Sigma}, \mathcal{V} E_{1} \gamma_{1} \hat{\Sigma}\right) \\
& \text { (by (1)) } \\
& =\hat{\mathcal{V}} E_{2}\left(\cdot\{x \stackrel{\rightharpoonup}{\mapsto} \cdot\}\left(\alpha_{1}\left(\gamma_{1} \hat{\Sigma}\right), \alpha_{2}\left(\mathcal{V} E_{1} \gamma_{1} \hat{\Sigma}\right)\right)\right) \\
& \left.\sqsubseteq \hat{\mathcal{V}} E_{2}\left(\cdot\{x \stackrel{\hat{\mapsto}}{ } \cdot\}\left(\hat{\Sigma}, \hat{\mathcal{V}} E_{1} \hat{\Sigma}\right)\right)\right) \quad\left(\text { by } \alpha_{1} \circ \gamma_{1} \sqsubseteq\right. \text { id \& I.H. } \\
& \text { \& } \hat{\mathcal{V}} E 2, \cdot\left\{x \hat{\mapsto}^{\wedge} \cdot\right\} \text { are monotone } \\
& =\hat{\mathcal{V}} E_{2}\left(\hat{\Sigma}\left\{x \stackrel{\hat{\rightharpoonup}}{\hat{\mathcal{V}}} E_{1} \hat{\Sigma}\right\}\right) \\
& =\hat{\mathcal{V}} \text { let } E_{1} E_{2} \hat{\Sigma} \\
& \text { (by def. of } \cdot\{x \hat{\mapsto} \cdot\} \text {) }
\end{aligned}
$$

$\therefore \hat{\mathcal{V}}$ let $E_{1} E_{2} \hat{\Sigma} \sqsupseteq \alpha\left(\mathcal{V}\right.$ let $\left.E_{1} E_{2}\right) \hat{\Sigma}$

- $e \rightarrow$ if $E_{1} E_{2} E_{3}$
by I.H

$$
\begin{aligned}
& \alpha\left(\mathcal{V} E_{1}\right) \sqsubseteq \hat{\mathcal{V}} E_{1} \Rightarrow \alpha_{2}\left(\mathcal{V} E_{1}\left(\gamma_{1} \hat{\Sigma}\right)\right) \sqsubseteq\left(\hat{\mathcal{V}} E_{1}\right) \hat{\Sigma} \\
& \alpha\left(\mathcal{V} E_{2}\right) \sqsubseteq \hat{\mathcal{V}} E_{2} \Rightarrow \alpha_{2}\left(\mathcal{V} E_{2}\left(\gamma_{1} \hat{\Sigma}\right)\right) \sqsubseteq\left(\hat{\mathcal{V}} E_{2}\right) \hat{\Sigma} \\
& \alpha\left(\mathcal{V} E_{3}\right) \sqsubseteq \hat{\mathcal{V}} E_{3} \Rightarrow \alpha_{3}\left(\mathcal{V} E_{3}\left(\gamma_{1} \hat{\Sigma}\right)\right) \sqsubseteq\left(\hat{\mathcal{V}} E_{3}\right) \hat{\Sigma}
\end{aligned}
$$

$$
\begin{aligned}
\alpha\left(\mathcal{V} \text { if } E_{1} E_{2} E_{3}\right) \hat{\Sigma} & =\left(\alpha_{2} \circ \mathcal{V} \text { if } E_{1} E_{2} E_{3} \circ \gamma_{1}\right) \hat{\Sigma} & & \text { (by def. of } \alpha) \\
& =\alpha_{2}\left(\mathcal{V} \text { if } E_{1} E_{2} E_{3}\left(\gamma_{1} \hat{\Sigma}\right)\right) & & \\
& =\alpha_{2}\left(\mathcal{V} E_{2}\left(\mathcal{B} E_{1} \gamma_{1} \hat{\Sigma}\right) \cup \mathcal{V} E_{3}\left(\neg \mathcal{B} E_{1} \gamma_{1} \hat{\Sigma}\right)\right) & & \\
& =\alpha_{2}\left(\mathcal{V} E_{2}\left(\mathcal{B} E_{1} \gamma_{1} \hat{\Sigma}\right)\right) \sqcup \alpha_{2}\left(\mathcal{V} E_{3}\left(\neg \mathcal{B} E_{1} \gamma_{1} \hat{\Sigma}\right)\right) & & \text { (} \alpha_{2} \text { is cont.) } \\
& \sqsubseteq \alpha_{2}\left(\mathcal{V} E_{2}\left(\gamma_{1} \hat{\Sigma}\right)\right) \sqcup \alpha_{2}\left(\mathcal{V} E_{3}\left(\gamma_{1} \hat{\Sigma}\right)\right) & & \text { (by def. of } \mathcal{B}) \\
& \sqsubseteq\left(\hat{\mathcal{V}} E_{2} \hat{\Sigma}\right) \sqcup\left(\hat{\mathcal{V}} E_{3} \hat{\Sigma}\right) & & \text { (by I.H.) }
\end{aligned}
$$

$\therefore \hat{\mathcal{V}}$ if $E_{1} E_{2} E_{3} \hat{\Sigma} \sqsupseteq \alpha\left(\mathcal{V}\right.$ if $\left.E_{1} E_{2} E_{3}\right) \hat{\Sigma}$

[^0]: ${ }^{1}$ Just soundness condition of α and γ is not enough for correctness proof, think of $\alpha(\mathcal{V} E)=\lambda \hat{\Sigma}$. \top, which is sound abstraction but we cannot prove the correctness with given abstract semantics.

