Program Analysis HW 1

김도형

Exercise 1

We use structural induction on e. $\llbracket e \rrbracket$ stands for the value of e.

(Base case) e = xThe variables are divisible by n by assumption, so $n \mid x \Rightarrow n \mid [\![e]\!]$.

(Inductive case 1) $e = e_1 + e_2$ $\llbracket e_1 \rrbracket = nk_1, \llbracket e_2 \rrbracket = nk_2 \text{ for some } k_1, k_2 \in \mathbb{Z}$ by the inductive hypothesis. Then $\llbracket e \rrbracket = n(k_1 + k_2) \Rightarrow n \mid \llbracket e \rrbracket$.

(Inductive case 2) $e = e_1 \cdot e_2$ $\llbracket e_1 \rrbracket = nk_1, \llbracket e_2 \rrbracket = nk_2$ for some $k_1, k_2 \in \mathbb{Z}$ by the inductive hypothesis. Then $\llbracket e \rrbracket = n(nk_1k_2) \Rightarrow n \mid \llbracket e \rrbracket$.

(Inductive case 3) $e = e_1 ? e_2 e_3$ By the inductive hypothesis, $n \mid [e_2]$ and $n \mid [e_3]$. Since [e] is either $[e_2]$ or $[e_3]$, $n \mid [e]$.

Exercise 2

Since $\forall P \in 2^A, \phi \subseteq P \Leftrightarrow \phi \sqsubseteq P, \phi$ is the bottom element.

Claim 1. For a given chain S, $\sqcup S$ is the least upper bound of S by

 $1. \ \forall S_i \in S, S_i \sqsubseteq \sqcup S$

2. If g is an upper bound of S, $\sqcup S \sqsubseteq g$

Proof.

- 1. Since $\forall S_i \in S, S_i \subseteq \sqcup S$, it is trivial.
- 2. By definition, $\forall S_i \in S, S_i \sqsubseteq g \Leftrightarrow S_i \subseteq g \Rightarrow \sqcup S \subseteq g \Leftrightarrow \sqcup S \sqsubseteq g$

-	_	-

Exercise 3

For each CPO A, B, we can get \bot_A, \bot_B , and by definition, $\forall \langle a, b \rangle \in A \times B, \langle \bot_A, \bot_B \rangle \sqsubseteq \langle a, b \rangle$, hence $\langle \bot_A, \bot_B \rangle$ is the bottom element.

Definition 1. For a given chain $S, S_A := \{a \mid \langle a, b \rangle \in S\}$ (Same applies to S_B)

It is trivial that S_A, S_B are a chain, since A and B are CPOs. Also for the same reason, we can get the least upper bound of S_A, S_B as l_A, l_B respectively.

Claim 2. For a given chain S, (l_A, l_B) is the least upper bound of S by

- 1. $\forall S_i \in S, S_i \sqsubseteq (l_A, l_B)$
- 2. If g is an upper bound of S, $(l_A, l_B) \sqsubseteq g$

Proof.

- 1. $\forall S_i = (a_i, b_i) \in S, a_i \sqsubseteq_A l_A, b_i \sqsubseteq_B l_B$. Hence, $S_i \sqsubseteq (l_A, l_B)$
- 2. For $g = (g_A, g_B)$, if $l_A \not\sqsubseteq_A g_A$, then as A is a CPO, $g_A \sqsubset_A l_A$. Since g is an upper bound of S, $\forall a_i \in S_A, a_i \sqsubseteq_A g_A$, which makes g_A an upper bound of S_A , and it contradicts with the assumption that l_A is the least upper bound of S_A . Hence, $l_A \sqsubseteq_A g_A$. (Same applies to l_B, g_B).

Exercise 4

Definition 2. For $f, g \in A \xrightarrow{\text{cont}} B, f \sqsubseteq g \Leftrightarrow \forall x \in A, f(x) \sqsubseteq_B g(x)$

Claim 3. The five following claims hold:

1.
$$\forall f \in A \xrightarrow{cont} B, f \sqsubseteq f (Reflexivity)$$

2. $\forall f, g \in A \xrightarrow{cont} B, f \sqsubseteq g \land g \sqsubseteq f \Rightarrow f = g (Symmetry)$
3. $\forall f, g, h \in A \xrightarrow{cont} B, f \sqsubseteq g \land g \sqsubseteq h \Rightarrow f \sqsubseteq h (Transitivity)$
4. $\forall S \subseteq A \xrightarrow{cont} B, S : chain \Rightarrow \sqcup S \in A \xrightarrow{cont} B (Completeness)$
5. $\exists \bot \in A \xrightarrow{cont} B \ s.t \forall f \in A \xrightarrow{cont} B, \bot \sqsubseteq f (Existence \ of \ a \ bottom \ element)$

Proof. The proofs are straightforward:

1. Choose $f \in A \xrightarrow{\text{cont}} B$. We need to show pointwise reflexivity for f.

$$\forall x \in A, f(x) \sqsubseteq_B f(x) (::B \text{ is a CPO}) \Rightarrow f \sqsubseteq f (::definition of \sqsubseteq)$$

2. Choose $f, g \in A \xrightarrow{\text{cont}} B$. We need to show pointwise symmetry for f, g.

$$\begin{split} f &\sqsubseteq g \land g \sqsubseteq f \Rightarrow \forall x \in A, f(x) \sqsubseteq_B g(x) \land g(x) \sqsubseteq_B f(x) & (\because \text{ definition of } \sqsubseteq) \\ \Rightarrow \forall x \in A, f(x) = g(x) & (\because B \text{ is a CPO}) \\ \Rightarrow f &= g & (\because \text{ definition of function's equality}) \end{split}$$

3. Choose $f, g, h \in A \xrightarrow{\text{cont}} B$. We need to show pointwise transitivity for f, g, h.

$$\begin{split} f &\sqsubseteq g \land g \sqsubseteq h \Rightarrow \forall x \in A, f(x) \sqsubseteq_B g(x) \land g(x) \sqsubseteq_B h(x) & (::\text{definition of } \sqsubseteq) \\ \Rightarrow \forall x \in A, f(x) \sqsubseteq_B h(x) & (::B \text{ is a CPO}) \\ \Rightarrow f \sqsubseteq h & (::\text{definition of } \sqsubseteq) \end{split}$$

- 4. We want to prove: If $S \subseteq A \xrightarrow{\text{cont}} B$ is a chain,
 - (a) $\forall x \in A, S_x := \{f(x) | f \in S\} \subseteq B$ is a chain
 - (b) $F := \lambda x. \sqcup S_x$ is a continuous function from A to B
 - (c) F is the least upper bound of S

Proof.

- (a) Choose $y_1, y_2 \in S_x$. Then $y_1 = f_1(x), y_2 = f_2(x)$ for some $f_1, f_2 \in S$. Since S is a chain, either $f_1 \sqsubseteq f_2$ or $f_2 \sqsubseteq f_1$. Then by definition of \sqsubseteq , either $y_1 = f_1(x) \sqsubseteq_B f_2(x) = y_2$ or vice versa. Therefore, S_x is a chain.
- (b) Then λx. ⊔ S_x is a well-defined function from A to B, since B is a CPO and S_x is a chain in B, therefore ⊔S_x exists in B. The continuity of F is proven by first showing that F is monotonic, then showing that F maps the *l.u.b.* of a chain in A to the *l.u.b.* of the image of that chain. First, F is monotonic:

$$\begin{split} x_1 &\sqsubseteq_A x_2 \Rightarrow \forall f \in S, f(x_1) \sqsubseteq_B f(x_2) & (\because f : \text{continuous} \Rightarrow f : \text{monotonic}) \\ \Rightarrow &\forall f \in S, f(x_1) \sqsubseteq_B \sqcup S_{x_2} & (\because f(x_1) \sqsubseteq_B f(x_2) \sqsubseteq_B \bigsqcup_{g \in S} g(x_2) = \sqcup S_{x_2}) \\ \Rightarrow &\sqcup S_{x_1} \sqsubseteq_B S_{x_2} & (\because \sqcup S_{x_2} \text{ is an upper bound of } S_{x_1}) \\ \Rightarrow &F(x_1) \sqsubseteq_B F(x_2) & (\because \text{by definition of } F) \end{split}$$

Then if $A' \subseteq A$ is a chain, $F(A') \subseteq B$ is a chain, and $F(\sqcup A')$ is an upper bound of F(A').

(:: F(A')) is a chain because for two elements $y_1, y_2 \in F(A')$, $y_1 = F(x_1), y_2 = F(x_2)$ for some $x_1, x_2 \in A'$, and since A' is a chain, either $x_1 \sqsubseteq_A x_2$ or $x_2 \sqsubseteq_A x_1$. Then the monotonicity of F leads to the conclusion that either $y_1 \sqsubseteq_B y_2$ or vice versa. $F(\sqcup A')$ is the upper bound of F(A'), since $\sqcup A'$ is bigger than any element of A', and F preserves this ordering.)

Now, to show that $F(\sqcup A')$ is the least upper bound of F(A'), we must show that if y is an upper bound of F(A'), then y must be at least $F(\sqcup A')$.

$$\begin{array}{l} y \text{ is an upper bound of } F(A') \\ \Rightarrow \forall x \in A', F(x) = \bigsqcup_{f \in S} f(x) \sqsubseteq_B y \\ \Rightarrow \forall x \in A', f \in S, f(x) \sqsubseteq_B y \\ \Rightarrow \forall f \in S, \sqcup f(A') \sqsubseteq_B y \\ \Rightarrow \forall f \in S, f(\sqcup A') \sqsubseteq_B y \\ \Rightarrow \forall f \in S, f(\sqcup A') \sqsubseteq_B y \\ \Rightarrow \forall f \in S, f(\sqcup A') \sqsubseteq_B y \\ \Rightarrow \forall f \in S, f(\sqcup A') \sqsubseteq_B y \\ \Rightarrow \forall f \in S, f(\sqcup A') \sqsubseteq_B y \\ \Rightarrow \downarrow_{f \in S} f(\sqcup A') \sqsubseteq_B y \\ \Rightarrow F(\sqcup A') \sqsubseteq_B y \\ \Rightarrow F(\sqcup A') \sqsubseteq_B y \end{array}$$
 (:vy is an upper bound of $\{f(x) | f \in S\}$)
(:vy is an upper bound of $f(A')$, which is a chain by continuity of f , so $\exists \sqcup f(A') \sqsubseteq_B y$)
(:vy is an upper bound of $S_{\sqcup A'}$)
(:vy is an upper bound of $S_{\sqcup A'}$)
(:vy is an upper bound of $S_{\sqcup A'}$)
(:vy is an upper bound of $S_{\sqcup A'}$)

Thus we have shown that F preserves chains and their *l.u.b.s*, so $F \in A \xrightarrow{\text{cont}} B$.

(c) We want to show that (1) ∀f ∈ S, f ⊑ F and (2) If g is an upper bound of S, then F ⊑ g.
(1) ∀f ∈ S, ∀x ∈ A, f(x) ⊑_B ⊔_{g∈S} g(x) = ⊔S_x = F(x) ⇒ ∀f ∈ S, f ⊑ F.
(2) For all f ∈ S,

$$\begin{split} f &\sqsubseteq g \Rightarrow \forall f \in S, \forall x \in A, f(x) \sqsubseteq_B g(x) & (\because \text{definition of } \sqsubseteq) \\ \Rightarrow &\forall x \in A, \sqcup S_x \sqsubseteq_B g(x) & (\because g(x) \text{ is an upper bound of } S_x) \\ \Rightarrow &\forall x \in A, F(x) \sqsubseteq_B g(x) & (\because \text{definition of } F) \\ \Rightarrow &F \sqsubseteq g & (\because \text{definition of } \sqsubseteq) \end{split}$$

$$\therefore F = \sqcup S \text{ is in } A \xrightarrow{\text{cont}} B.$$

5. Define $\perp := \lambda x \perp_B$. Then \perp is continuous, since it maps a chain to the <u>chain</u> $\{\perp_B\}$ (: by reflexivity of \sqsubseteq_B), and it maps the chain's *l.u.b.* to \perp_B , which is the *l.u.b.* of $\{\perp_B\}$.

Since $\forall f \in A \xrightarrow{\text{cont}} B, x \in A, \bot(x) = \bot_B \sqsubseteq_B f(x) \Rightarrow \forall f \in A \xrightarrow{\text{cont}} B, \bot \sqsubseteq f$, we proved the existence of a bottom element in $A \xrightarrow{\text{cont}} B$.

Exercise 5

- 1. The fixpoint x_0 must satisfy $x_0 = 1$, so the only fixpoint is 1.
- 2. The fixpoint x_0 must satisfy $x_0 = x_0$, so the fixpoints are $x \ (x \in \mathbb{N})$.
- 3. The fixpoint x_0 must satisfy $x_0 = x_0 + 1$, so the unique fixpoint must be ∞ .
- 4. The fixpoint f_0 must satisfy $f_0 = \lambda x \text{.if } x = 0?0 : x + f_0(x-1)$. We can prove that

$$f_0(x) = \frac{x(x+1)}{2}$$

by mathematical induction. This also means that the fixpoint is unique.

Proof. For x = 0, $f_0(0) = 0$. Assuming that the equation holds for some $x \ge 0$,

$$f_0(x+1)=x+1+f_0(x)=x+1+\frac{x(x+1)}{2}=\frac{(x+1)(x+2)}{2}$$

Therefore the equation holds for all $x \in \mathbb{N}$.

We can confirm that $f_0 = \lambda x \cdot \frac{x(x+1)}{2}$ is indeed the fixpoint by calculation.

5. The fixpoint X_0 must satisfy $X_0 = \{\epsilon\} \cup \{\star x \mid x \in X_0\}$. Similar to the case above, we can prove that $\forall i \ge 0, \star^i \in X_0$, so $S \subseteq X_0 \subseteq S \Rightarrow X_0 = S$ by mathematical induction.

Proof. For $i = 0, \star^0 = \epsilon \in \{\epsilon\} \subseteq \{\epsilon\} \subseteq \{\epsilon\} \cup \{\star x \mid x \in X_0\} = X_0$. Assuming that the equation holds for some $i \ge 0, \star^{i+1} \in \{\star x \mid x \in \{\star^i\}\} \subseteq \{\star x \mid x \in X_0\} \subseteq X_0$ by the inductive hypothesis, so the equation also holds for all $i \ge 0$.

We can confirm that S is indeed the fixpoint by calculation.

Exercise 6

Claim 1. For a finite collection $\{A_i\}_{0 \le i \le n}$ of subsets of S, $f\left(\bigcup_{0 \le i \le n} A_i\right) = \bigcup_{0 \le i \le n} f(A_i)$.

Proof. We prove by mathematical induction on n.

When n = 0, the equality is trivial by $f(A_0) = f(A_0)$.

When we assume that the claim holds for some $n \geq 0$,

$$f\left(\bigcup_{0\leq i\leq n+1}A_i\right) = f\left(\bigcup_{0\leq i\leq n}A_i\cup A_{n+1}\right) = f\left(\bigcup_{0\leq i\leq n}A_i\right)\cup f(A_{n+1}) = \bigcup_{0\leq i\leq n}f(A_i)\cup f(A_{n+1}) = \bigcup_{0\leq i\leq n+1}f(A_i).$$

The second equality holds because of $f(x \cup y) = f(x) \cup f(y)$, and the third equality holds because of the inductive hypothesis. Since the claim holds also for n + 1, the claim holds for all $n \ge 0$.

Claim 2. For a countable collection $\{A_i\}_{i\geq 0}$ of subsets of S, $f\left(\bigcup_{i\geq 0}A_i\right) = \bigcup_{i\geq 0}f(A_i)$.

Proof. We first define $B_i := \bigcup_{0 \le j \le i} A_i$ for $i \ge 0$. Then $\{B_i\}_{i\ge 0}$ is a chain in 2^S , since $i \le j \Rightarrow B_i \subseteq B_j$, so for any two elements of the chain we can compare the elements.

Since f is continuous, $f\left(\bigcup_{i\geq 0} B_i\right) = \bigcup_{i\geq 0} f(B_i)$. But $\bigcup_{i\geq 0} B_i = \bigcup_{i\geq 0} \bigcup_{0\leq j\leq i} A_j = \bigcup_{i\geq 0} A_i$. Due to Claim 1, we have: $f(B_i) = \bigcup_{0\leq j\leq i} f(A_j)$, so $\bigcup_{i\geq 0} f(B_i) = \bigcup_{i\geq 0} \bigcup_{0\leq j\leq i} f(A_j) = \bigcup_{i\geq 0} f(A_i)$. Hence, $f\left(\bigcup_{i\geq 0} A_i\right) = \bigcup_{i\geq 0} f(A_i)$.

Now we can prove the main claim.

Claim 3. $lfp(\lambda x.A \cup f(x)) = \bigcup_{i \ge 0} f^i(A) =: \alpha, \text{ that is:}$

- 1. α is a fixpoint of $\lambda x.A \cup f(x)$
- 2. If x_0 is a fixpoint of $\lambda x.A \cup f(x)$, then $\alpha \subseteq x_0$

Proof.

1. Plugging in α to the fixpoint equation leads to:

$$\begin{split} (\lambda x.A \cup f(x))\alpha &= A \cup f(\alpha) \\ &= A \cup f\left(\bigcup_{i \ge 0} f^i(A)\right) \\ &= A \cup \bigcup_{i \ge 0} f(f^i(A)) \\ &= f^0(A) \cup \bigcup_{i \ge 0} f^{i+1}(A) \\ &= \bigcup_{i \ge 0} f^i(A) = \alpha \end{split}$$
 (: Claim 2)

2. We first prove that $\forall i \geq 0, f^i(A) \subseteq x_0$ by mathematical induction.

For i = 0, $f^0(A) = A \subseteq A \cup f(x_0) = x_0$.

Assuming that the claim holds for some $i \ge 0$, $f^{i+1}(A) = f(f^i(A)) \subseteq f(x_0) \subseteq A \cup f(x_0) = x_0$. $f(f^i(A)) \subseteq f(x_0)$ holds, since $f^i(A) \subseteq x_0$ by the inductive hypothesis and f is continuous. Then since f is monotonic, f preserves the order between $f^i(A)$ and x_0 . o ei(1) Ν

Now, since
$$\forall i \ge 0, f^i(A) \subseteq x_0$$
, we have: $\alpha = \bigcup_{i \ge 0} f^i(A) \subseteq x_0$.

Exercise 7

- 1. We already showed in Exercise 5 that the only fixpoint is $x_0 = 1$, so it is the least fixpoint.
- 2. $(\lambda x.x) \bot = \bot$, and $\forall x \in \mathbb{N}_{\bot}, \bot \subseteq x$, so \bot is the least fixpoint.
- 3. If f_0 is a fixpoint, then $f_0 = \lambda x$. if x = 0? $0 : x + f_0(x 1)$. Then $f_0(\bot) = \bot + f_0(\bot 1) = \bot$, and $f_0(x) = \frac{x(x+1)}{2}$ when $x \in \mathbb{N}$ by mathematical induction exactly as in Exercise 5. Thus $f_0 = \lambda x$.if $x = \lambda x$. $\perp?\perp:\frac{x(x+1)}{2} \text{ is a fixpoint, since } \forall x \in \mathbb{N}_{\perp}, f_0(x) = (\lambda x'.\texttt{if } x' = 0 ? 0 : x' + f_0(x'-1)) x \text{ holds. Since } x' + f_0(x'-1) x \text{ holds. } x' = 0 ? 0 : x' =$ the fixpoint is unique, f_0 must be the least fixpoint.
- 4. We already showed in Exercise 5 that the only fixpoint is S, so it is the least fixpoint.

Exercise 8

- 1. Definition of $\llbracket \cdot \rrbracket : \mathsf{Pgm} \to (2^G \to 2^G)$ $[\![\mathsf{init}(\mathcal{R})]\!]A \coloneqq \mathcal{R}$ $\llbracket translation(u, v) \rrbracket A := \{ trans(p, (u, v)) \mid p \in A \}$ $\llbracket \mathsf{rotation}(u, v, \theta) \rrbracket A := \{\mathsf{rotate}(p, (u, v, \theta)) \mid p \in A\}$ $[\![p_1;p_2]\!]A := [\![p_2]\!]([\![p_1]\!]A), \text{ that is, } [\![p_1;p_2]\!] := [\![p_2]\!] \circ [\![p_1]\!].$ $\llbracket \{p_1\} \text{ or } \{p_2\} \rrbracket A \coloneqq \llbracket p_1 \rrbracket A \cup \llbracket p_2 \rrbracket A, \text{ that is, } \llbracket \{p_1\} \text{ or } \{p_2\} \rrbracket \coloneqq \llbracket p_1 \rrbracket \cup \llbracket p_2 \rrbracket, \text{ when } \cup \text{ means pointwise union.}$ $[\![\operatorname{iter}\{p\}]\!]A \coloneqq \bigcup_{i \ge 0} [\![p]\!]^i A, \text{ that is, } [\![\operatorname{iter}\{p\}]\!] \coloneqq \bigcup_{i \ge 0} [\![p]\!]^i.$
- 2. Calculation of the given program

$$\begin{split} & [[iter{\{translation(1,0)\} or \{translation(1,1)\}}]([[init{(0,0),(0,1)}]]A) & (\because p_1;p_2) \\ & = [[iter{\{translation(1,0)\} or \{translation(1,1)\}}]\{(0,0),(0,1)\} & (\because init) \\ & = \bigcup_{i \ge 0} [[\{translation(1,0)\} or \{translation(1,1)\}]^i \{(0,0),(0,1)\} & (\because iter) \\ & = \bigcup_{i \ge 0} \bigcup_{j=0}^{i} ([[translation(1,0)]]^j [[translation(1,1)]]^{i-j} \{(0,0),(0,1)\}) \\ & (\because translation commute over + 1) \end{split}$$

ation commute over \cup)

$$\begin{split} &= \bigcup_{i \ge 0} \bigcup_{j=0}^{i} ([\![\text{translation}(i, i-j)]\!] \{(0,0), (0,1)\}) \\ &= \bigcup_{0 \le j \le i} \{(i,j), (i,j+1)\} \\ &= \{(i,j) \in \mathbb{Z}^2 \mid i \ge 0, 0 \le j \le i+1\} \end{split}$$

So $\llbracket p \rrbracket$ is the constant function $\lambda A.\{(i, j) \in \mathbb{Z}^2 \mid i \ge 0, 0 \le j \le i+1\}.$

Exercise 9

Claim 1. $\gamma(x) \dotplus \gamma(y) = \gamma(x + \# y)$

Proof. Since the abstract domain is finite, we can exhaustively check all cases for (x, y).

- $\begin{aligned} (\bot,_) &: \gamma(x) \dotplus \gamma(y) = \emptyset \dotplus \gamma(y) = \{x' + y' \mid x' \in \emptyset, y' \in \gamma(y)\} = \emptyset = \gamma(\bot) = \gamma(\bot + {}^{\#}y) = \gamma(x + {}^{\#}y) \\ (\top,_) &: \gamma(x) \dotplus \gamma(y) = \mathbb{Z} \dotplus \gamma(y) = \mathbb{Z} = \gamma(\top) = \gamma(\top + {}^{\#}y) = \gamma(x + {}^{\#}y) \\ (0,0) &: \gamma(x) \dotplus \gamma(y) = 2\mathbb{Z} \dotplus 2\mathbb{Z} = \{x' + y' \mid x' \in 2\mathbb{Z}, y' \in 2\mathbb{Z}\} = \{2(x'' + y'') \mid x'' \in \mathbb{Z}, y'' \in \mathbb{Z}\} = 2\mathbb{Z} \end{aligned}$
- $= \gamma(0) = \gamma(0 + \# 0) = \gamma(x + \# y)$
- $(1,1): \gamma(x) \dotplus \gamma(y) = (2\mathbb{Z}+1) \dotplus (2\mathbb{Z}+1) = \{x'+y' \mid x' \in 2\mathbb{Z}+1, y' \in 2\mathbb{Z}+1\}$
- $= \{2(x'' + y'' + 1) \mid x'' \in \mathbb{Z}, y'' \in \mathbb{Z}\} = 2\mathbb{Z} = \gamma(0) = \gamma(1 + \# 1) = \gamma(x + \# y)$
- $(0,1): \gamma(x) \dotplus \gamma(y) = 2\mathbb{Z} \dotplus (2\mathbb{Z}+1) = \{x'+y' \mid x' \in 2\mathbb{Z}, y' \in 2\mathbb{Z}+1\} = \{2(x''+y'')+1 \mid x'' \in \mathbb{Z}, y'' \in \mathbb{Z}\}$ $= 2\mathbb{Z} + 1 = \gamma(1) = \gamma(0 + \# 1) = \gamma(x + \# y)$

Other cases are covered by the commutativity of +[#].

Claim 2. $\gamma(x) = -\gamma(x)$

Proof. Since the abstract domain is finite, we can exhaustively check all cases for x.

$$\begin{array}{l} \bot: \gamma(\bot) = \emptyset = \{-s \mid s \in \emptyset\} = \div \emptyset = \div \gamma(\bot) \\ \top: \gamma(\top) = \mathbb{Z} = \{z \mid z \in \mathbb{Z}\} = \{-(-z) \mid z \in \mathbb{Z}\} = \{-w \mid w \in \mathbb{Z}\} = \div \mathbb{Z} = \div \gamma(\top) \\ 0: \gamma(0) = 2\mathbb{Z} = \{2z \mid z \in \mathbb{Z}\} = \{-2(-z) \mid z \in \mathbb{Z}\} = \{-2w \mid w \in \mathbb{Z}\} = \div 2\mathbb{Z} = \div \gamma(0) \\ 1: \gamma(1) = 2\mathbb{Z} + 1 = \{2z + 1 \mid z \in \mathbb{Z}\} = \{-(2(-z-1)+1) \mid z \in \mathbb{Z}\} = \{-(2w+1) \mid w \in \mathbb{Z}\} = \div (2\mathbb{Z}+1) = \div \gamma(1) \quad \Box \end{array}$$

Claim 3. $\gamma(x) \cup \gamma(y) = \gamma(x \cup \# y)$

Proof. Since the abstract domain is finite, we can exhaustively check all cases for (x, y).

 $(\bot,_): \gamma(\bot\cup^{\#} y) = \gamma(y) = \emptyset \cup \gamma(y) = \gamma(\bot) \cup \gamma(y)$ $(\top, _): \gamma(\top \cup^{\#} y) = \gamma(\top) = \mathbb{Z} = \mathbb{Z} \cup \gamma(y) = \gamma(\top) \cup \gamma(y)$ $(y \neq \bot)$ $(x,x): \ \gamma(x\cup^{\#} x) = \gamma(x) = \gamma(x) \cup \gamma(x)$ $(0,1): \ \gamma(0 \cup^{\#} 1) = \gamma(\top) = \mathbb{Z} = 2\mathbb{Z} \cup (2\mathbb{Z} + 1) = \gamma(0) \cup \gamma(1)$ Other cases are covered by the commutativity of $\cup^{\#}$.

Now we can prove our main claim.

Claim 4. For any program $C, S \subseteq \gamma(s^{\#}) \Rightarrow \llbracket C \rrbracket S \subseteq \gamma(\llbracket C \rrbracket^{\#} s^{\#})$

Proof. We use structural induction on C.

(Base case 1) C = store ETo prove $S \subset \gamma(s^{\#}) \Rightarrow \llbracket E \rrbracket S \subset \gamma(\llbracket E \rrbracket \# s^{\#})$, we use structural induction on E.

(Base case 1) E = n $\llbracket E \rrbracket S = \{n\}, \text{ and } \llbracket E \rrbracket^{\#} s^{\#} = n \mod 2 \Rightarrow \gamma(\llbracket E \rrbracket^{\#} s^{\#}) = \{m \mid n \equiv m \pmod{2}\}.$ Since $n \equiv n \pmod{2}$, $\llbracket E \rrbracket S \subseteq \gamma(\llbracket E \rrbracket \# s \#)$.

(Base case 2) $E = \mathsf{load}$

 $\llbracket E \rrbracket S = S$, and $\llbracket E \rrbracket \# s \# = s \#$, so directly we can see that $\llbracket E \rrbracket S = S \subseteq \gamma(s^{\#}) = \gamma(\llbracket E \rrbracket \# s \#)$. (Inductive case 1) $E = E_1 + E_2$

$$\begin{split} \llbracket E \rrbracket S &= \llbracket E_1 \rrbracket S \dotplus \llbracket E_2 \rrbracket S \\ &\subseteq \gamma(\llbracket E_1 \rrbracket^\# s^\#) \dotplus \gamma(\llbracket E_2 \rrbracket^\# s^\#) \qquad (\because \llbracket E_i \rrbracket S \subseteq \gamma(\llbracket E_i \rrbracket^\# s^\#) \text{ by the inductive hypothesis,} \\ &= \gamma(\llbracket E_1 \rrbracket^\# s^\# + \# \llbracket E_2 \rrbracket^\# s^\#) \qquad (\because \llbracket E_i \rrbracket S \subseteq \gamma(\llbracket E_i \rrbracket^\# s^\#) \text{ by the inductive hypothesis,} \\ &= \gamma(\llbracket E_1 \rrbracket^\# s^\# + \# \llbracket E_2 \rrbracket^\# s^\#) \qquad (\because \text{ Claim 1}) \\ &= \gamma(\llbracket E_1 + E_2 \rrbracket^\# s^\#) \end{split}$$

(Inductive case 2) $E = -E_1$

$$\begin{split} \llbracket E \rrbracket S &= \llbracket -E_1 \rrbracket S \\ &= \div \llbracket E_1 \rrbracket S \\ &\subseteq \div \gamma(\llbracket E_1 \rrbracket^\# s^\#) \\ &= \gamma(\llbracket E_1 \rrbracket^\# s^\#) \end{split} \qquad \begin{array}{l} (\because \llbracket E_i \rrbracket S \subseteq \gamma(\llbracket E_i \rrbracket^\# s^\#) \text{ by the inductive hypothesis, and} \\ &A \subseteq B \Rightarrow \div A \subseteq \div B \\ &= \gamma(\llbracket E_1 \rrbracket^\# s^\#) \\ &= \gamma(\llbracket -E_1 \rrbracket^\# s^\#) \end{array} \qquad (\because \text{ Claim 2}) \end{split}$$

$$\therefore S \subseteq \gamma(s^{\#}) \Rightarrow \llbracket C \rrbracket S = \llbracket E \rrbracket S \subseteq \gamma(\llbracket E \rrbracket^{\#} s^{\#}) = \gamma(\llbracket C \rrbracket^{\#} s^{\#})$$

(Base case 2) $C = \mathsf{skip}$ $\llbracket C \rrbracket S = S \subseteq \gamma(s^\#) = \gamma(\llbracket C \rrbracket^\# s^\#)$

(Inductive case 1)
$$C = C_1$$
 or C_2

$$\begin{split} \llbracket C \rrbracket S &= \llbracket C_1 \rrbracket S \cup \llbracket C_2 \rrbracket S \\ &\subseteq \gamma(\llbracket C_1 \rrbracket^\# s^\#) \cup \gamma(\llbracket C_2 \rrbracket^\# s^\#) \qquad (\because \llbracket C_i \rrbracket S \subseteq \gamma(\llbracket C_i \rrbracket^\# s^\#) \text{ by the inductive hypothesis}) \\ &= \gamma(\llbracket C_1 \rrbracket^\# s^\# \cup \# \llbracket C_2 \rrbracket^\# s^\#) \qquad (\because \llbracket C_i \rrbracket S \subseteq \gamma(\llbracket C_i \rrbracket^\# s^\#) \text{ by the inductive hypothesis}) \\ &= \gamma(\llbracket C_1 \text{ or } C_2 \rrbracket^\# s^\#) \\ &= \gamma(\llbracket C_1 \P^\# s^\#) \end{split}$$

(Inductive case 2) $C = C_1; C_2$ $[\![C]\!]S = [\![C_2]\!]([\![C_1]\!]S)$. Let $S_1 = [\![C_1]\!]S$, and $s_1^{\#} = [\![C_1]\!]^{\#}s^{\#}$, so that we may write $[\![C]\!]S = [\![C_2]\!]S_1$ and $[\![C]\!]^{\#}s^{\#} = [\![C_2]\!]^{\#}s_1^{\#}$.

Now,

$$\begin{split} S &\subseteq \gamma(s^{\#}) \Rightarrow S_1 \subseteq \gamma(s_1^{\#}) \\ &\Rightarrow \llbracket C_2 \rrbracket S_1 \subseteq \gamma(\llbracket C_2 \rrbracket^{\#} s_1^{\#}) \\ &\Rightarrow \llbracket C \rrbracket S \subseteq \gamma(\llbracket C \rrbracket^{\#} s^{\#}) \end{split}$$

(: by the inductive hypothesis for $C_1)$ (: by the inductive hypothesis for C_2) (: by definition of $S_1,s_1^{\#})$