
Program Analysis HW 1
김도형

Exercise 1
We use structural induction on 𝑒. ⟦𝑒⟧ stands for the value of 𝑒.
(Base case) 𝑒 = 𝑥

The variables are divisible by 𝑛 by assumption, so 𝑛 | 𝑥 ⇒ 𝑛 | ⟦𝑒⟧.
(Inductive case 1) 𝑒 = 𝑒1 + 𝑒2

⟦𝑒1⟧ = 𝑛𝑘1, ⟦𝑒2⟧ = 𝑛𝑘2 for some 𝑘1, 𝑘2 ∈ ℤ by the inductive hypothesis.
Then ⟦𝑒⟧ = 𝑛(𝑘1 + 𝑘2) ⇒ 𝑛 | ⟦𝑒⟧.

(Inductive case 2) 𝑒 = 𝑒1 ⋅ 𝑒2
⟦𝑒1⟧ = 𝑛𝑘1, ⟦𝑒2⟧ = 𝑛𝑘2 for some 𝑘1, 𝑘2 ∈ ℤ by the inductive hypothesis.
Then ⟦𝑒⟧ = 𝑛(𝑛𝑘1𝑘2) ⇒ 𝑛 | ⟦𝑒⟧.

(Inductive case 3) 𝑒 = 𝑒1 ? 𝑒2 𝑒3
By the inductive hypothesis, 𝑛 | ⟦𝑒2⟧ and 𝑛 | ⟦𝑒3⟧.
Since ⟦𝑒⟧ is either ⟦𝑒2⟧ or ⟦𝑒3⟧, 𝑛 | ⟦𝑒⟧.

Exercise 2
Since ∀𝑃 ∈ 2𝐴, 𝜙 ⊆ 𝑃 ⇔ 𝜙 ⊑ 𝑃 , 𝜙 is the bottom element.
Claim 1. For a given chain 𝑆, ⊔𝑆 is the least upper bound of 𝑆 by

1. ∀𝑆𝑖 ∈ 𝑆, 𝑆𝑖 ⊑ ⊔𝑆
2. If 𝑔 is an upper bound of 𝑆, ⊔𝑆 ⊑ 𝑔

Proof.
1. Since ∀𝑆𝑖 ∈ 𝑆, 𝑆𝑖 ⊆ ⊔𝑆, it is trivial.

2. By definition, ∀𝑆𝑖 ∈ 𝑆, 𝑆𝑖 ⊑ 𝑔 ⇔ 𝑆𝑖 ⊆ 𝑔 ⇒ ⊔𝑆 ⊆ 𝑔 ⇔ ⊔𝑆 ⊑ 𝑔

Exercise 3
For each CPO A, B, we can get ⊥𝐴, ⊥𝐵, and by definition, ∀⟨𝑎, 𝑏⟩ ∈ 𝐴×𝐵, ⟨⊥𝐴, ⊥𝐵⟩ ⊑ ⟨𝑎, 𝑏⟩, hence ⟨⊥𝐴, ⊥𝐵⟩
is the bottom element.
Definition 1. For a given chain 𝑆, 𝑆𝐴 ≔ {𝑎 | ⟨𝑎, 𝑏⟩ ∈ 𝑆} (Same applies to 𝑆𝐵)

It is trivial that 𝑆𝐴, 𝑆𝐵 are a chain, since A and B are CPOs. Also for the same reason, we can get the least
upper bound of 𝑆𝐴, 𝑆𝐵 as 𝑙𝐴, 𝑙𝐵 respectively.
Claim 2. For a given chain 𝑆, (𝑙𝐴, 𝑙𝐵) is the least upper bound of 𝑆 by

1. ∀𝑆𝑖 ∈ 𝑆, 𝑆𝑖 ⊑ (𝑙𝐴, 𝑙𝐵)
2. If 𝑔 is an upper bound of 𝑆, (𝑙𝐴, 𝑙𝐵) ⊑ 𝑔

Proof.
1. ∀𝑆𝑖 = (𝑎𝑖, 𝑏𝑖) ∈ 𝑆, 𝑎𝑖 ⊑𝐴 𝑙𝐴, 𝑏𝑖 ⊑𝐵 𝑙𝐵. Hence, 𝑆𝑖 ⊑ (𝑙𝐴, 𝑙𝐵)
2. For 𝑔 = (𝑔𝐴, 𝑔𝐵), if 𝑙𝐴 ⋢𝐴 𝑔𝐴, then as A is a CPO, 𝑔𝐴 ⊏𝐴 𝑙𝐴. Since 𝑔 is an upper bound of 𝑆,

∀𝑎𝑖 ∈ 𝑆𝐴, 𝑎𝑖 ⊑𝐴 𝑔𝐴, which makes 𝑔𝐴 an upper bound of 𝑆𝐴, and it contradicts with the assumption that
𝑙𝐴 is the least upper bound of 𝑆𝐴. Hence, 𝑙𝐴 ⊑𝐴 𝑔𝐴. (Same applies to 𝑙𝐵, 𝑔𝐵).
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Exercise 4
Definition 2. For 𝑓, 𝑔 ∈ 𝐴 cont−−→ 𝐵, 𝑓 ⊑ 𝑔 ⇔ ∀𝑥 ∈ 𝐴, 𝑓(𝑥) ⊑𝐵 𝑔(𝑥)
Claim 3. The five following claims hold:

1. ∀𝑓 ∈ 𝐴 cont−−→ 𝐵, 𝑓 ⊑ 𝑓 (Reflexivity)

2. ∀𝑓, 𝑔 ∈ 𝐴 cont−−→ 𝐵, 𝑓 ⊑ 𝑔 ∧ 𝑔 ⊑ 𝑓 ⇒ 𝑓 = 𝑔 (Symmetry)

3. ∀𝑓, 𝑔, ℎ ∈ 𝐴 cont−−→ 𝐵, 𝑓 ⊑ 𝑔 ∧ 𝑔 ⊑ ℎ ⇒ 𝑓 ⊑ ℎ (Transitivity)

4. ∀𝑆 ⊆ 𝐴 cont−−→ 𝐵, 𝑆 ∶ chain ⇒ ⊔𝑆 ∈ 𝐴 cont−−→ 𝐵 (Completeness)

5. ∃⊥ ∈ 𝐴 cont−−→ 𝐵 s.t ∀𝑓 ∈ 𝐴 cont−−→ 𝐵, ⊥ ⊑ 𝑓 (Existence of a bottom element)

Proof. The proofs are straightforward:

1. Choose 𝑓 ∈ 𝐴 cont−−→ 𝐵. We need to show pointwise reflexivity for 𝑓 .

∀𝑥 ∈ 𝐴, 𝑓(𝑥) ⊑𝐵 𝑓(𝑥) (∵𝐵 is a CPO) ⇒ 𝑓 ⊑ 𝑓 (∵definition of ⊑)

2. Choose 𝑓, 𝑔 ∈ 𝐴 cont−−→ 𝐵. We need to show pointwise symmetry for 𝑓, 𝑔.

𝑓 ⊑ 𝑔 ∧ 𝑔 ⊑ 𝑓 ⇒ ∀𝑥 ∈ 𝐴, 𝑓(𝑥) ⊑𝐵 𝑔(𝑥) ∧ 𝑔(𝑥) ⊑𝐵 𝑓(𝑥) (∵ definition of ⊑)
⇒ ∀𝑥 ∈ 𝐴, 𝑓(𝑥) = 𝑔(𝑥) (∵ 𝐵 is a CPO)
⇒ 𝑓 = 𝑔 (∵ definition of function’s equality)

3. Choose 𝑓, 𝑔, ℎ ∈ 𝐴 cont−−→ 𝐵. We need to show pointwise transitivity for 𝑓, 𝑔, ℎ.

𝑓 ⊑ 𝑔 ∧ 𝑔 ⊑ ℎ ⇒ ∀𝑥 ∈ 𝐴, 𝑓(𝑥) ⊑𝐵 𝑔(𝑥) ∧ 𝑔(𝑥) ⊑𝐵 ℎ(𝑥) (∵definition of ⊑)
⇒ ∀𝑥 ∈ 𝐴, 𝑓(𝑥) ⊑𝐵 ℎ(𝑥) (∵𝐵 is a CPO)
⇒ 𝑓 ⊑ ℎ (∵definition of ⊑)

4. We want to prove: If 𝑆 ⊆ 𝐴 cont−−→ 𝐵 is a chain,

(a) ∀𝑥 ∈ 𝐴, 𝑆𝑥 ≔ {𝑓(𝑥)|𝑓 ∈ 𝑆} ⊆ 𝐵 is a chain
(b) 𝐹 ≔ 𝜆𝑥. ⊔ 𝑆𝑥 is a continuous function from 𝐴 to 𝐵
(c) 𝐹 is the least upper bound of 𝑆

Proof.

(a) Choose 𝑦1, 𝑦2 ∈ 𝑆𝑥. Then 𝑦1 = 𝑓1(𝑥), 𝑦2 = 𝑓2(𝑥) for some 𝑓1, 𝑓2 ∈ 𝑆. Since 𝑆 is a chain, either
𝑓1 ⊑ 𝑓2 or 𝑓2 ⊑ 𝑓1. Then by definition of ⊑, either 𝑦1 = 𝑓1(𝑥) ⊑𝐵 𝑓2(𝑥) = 𝑦2 or vice versa. Therefore,
𝑆𝑥 is a chain.

(b) Then 𝜆𝑥. ⊔ 𝑆𝑥 is a well-defined function from 𝐴 to 𝐵, since 𝐵 is a CPO and 𝑆𝑥 is a chain in 𝐵,
therefore ⊔𝑆𝑥 exists in 𝐵. The continuity of 𝐹 is proven by first showing that 𝐹 is monotonic, then
showing that 𝐹 maps the l.u.b. of a chain in 𝐴 to the l.u.b. of the image of that chain.
First, 𝐹 is monotonic:

𝑥1 ⊑𝐴 𝑥2 ⇒ ∀𝑓 ∈ 𝑆, 𝑓(𝑥1) ⊑𝐵 𝑓(𝑥2) (∵𝑓 ∶ continuous ⇒ 𝑓 ∶ monotonic)
⇒ ∀𝑓 ∈ 𝑆, 𝑓(𝑥1) ⊑𝐵 ⊔𝑆𝑥2

(∵𝑓(𝑥1) ⊑𝐵 𝑓(𝑥2) ⊑𝐵 ⨆
𝑔∈𝑆

𝑔(𝑥2) = ⊔𝑆𝑥2
)

⇒ ⊔𝑆𝑥1
⊑𝐵 𝑆𝑥2

(∵ ⊔ 𝑆𝑥2
is an upper bound of 𝑆𝑥1

)
⇒ 𝐹(𝑥1) ⊑𝐵 𝐹(𝑥2) (∵by definition of 𝐹)

Then if 𝐴′ ⊆ 𝐴 is a chain, 𝐹(𝐴′) ⊆ 𝐵 is a chain, and 𝐹(⊔𝐴′) is an upper bound of 𝐹(𝐴′).
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( ∵ 𝐹(𝐴′) is a chain because for two elements 𝑦1, 𝑦2 ∈ 𝐹(𝐴′), 𝑦1 = 𝐹(𝑥1), 𝑦2 = 𝐹(𝑥2) for some
𝑥1, 𝑥2 ∈ 𝐴′, and since 𝐴′ is a chain, either 𝑥1 ⊑𝐴 𝑥2 or 𝑥2 ⊑𝐴 𝑥1. Then the monotonicity of 𝐹 leads
to the conclusion that either 𝑦1 ⊑𝐵 𝑦2 or vice versa. 𝐹(⊔𝐴′) is the upper bound of 𝐹(𝐴′), since ⊔𝐴′

is bigger than any element of 𝐴′, and 𝐹 preserves this ordering.)

Now, to show that 𝐹(⊔𝐴′) is the least upper bound of 𝐹(𝐴′), we must show that if 𝑦 is an up-
per bound of 𝐹(𝐴′), then 𝑦 must be at least 𝐹(⊔𝐴′).

𝑦 is an upper bound of 𝐹(𝐴′)
⇒ ∀𝑥 ∈ 𝐴′, 𝐹 (𝑥) = ⨆

𝑓∈𝑆
𝑓(𝑥) ⊑𝐵 𝑦 (∵by definition of an upper bound)

⇒ ∀𝑥 ∈ 𝐴′, 𝑓 ∈ 𝑆, 𝑓(𝑥) ⊑𝐵 𝑦 (∵𝑦 is an upper bound of {𝑓(𝑥)|𝑓 ∈ 𝑆})

⇒ ∀𝑓 ∈ 𝑆,⊔𝑓(𝐴′) ⊑𝐵 𝑦 (∵𝑦 is an upper bound of 𝑓(𝐴′), which is a
chain by continuity of 𝑓 , so ∃ ⊔ 𝑓(𝐴′) ⊑𝐵 𝑦)

⇒ ∀𝑓 ∈ 𝑆, 𝑓(⊔𝐴′) ⊑𝐵 𝑦 (∵ ⊔ 𝑓(𝐴′) = 𝑓(⊔𝐴′) by continuity of 𝑓)
⇒ ⨆

𝑓∈𝑆
𝑓(⊔𝐴′) ⊑𝐵 𝑦 (∵𝑦 is an upper bound of 𝑆⊔𝐴′)

⇒ 𝐹(⊔𝐴′) ⊑𝐵 𝑦 (∵definition of 𝐹)

Thus we have shown that 𝐹 preserves chains and their l.u.b.s, so 𝐹 ∈ 𝐴 cont−−→ 𝐵.
(c) We want to show that (1) ∀𝑓 ∈ 𝑆, 𝑓 ⊑ 𝐹 and (2) If 𝑔 is an upper bound of 𝑆, then 𝐹 ⊑ 𝑔.

(1) ∀𝑓 ∈ 𝑆,∀𝑥 ∈ 𝐴, 𝑓(𝑥) ⊑𝐵 ⨆𝑔∈𝑆 𝑔(𝑥) = ⊔𝑆𝑥 = 𝐹(𝑥) ⇒ ∀𝑓 ∈ 𝑆, 𝑓 ⊑ 𝐹 .

(2) For all 𝑓 ∈ 𝑆,

𝑓 ⊑ 𝑔 ⇒ ∀𝑓 ∈ 𝑆,∀𝑥 ∈ 𝐴, 𝑓(𝑥) ⊑𝐵 𝑔(𝑥) (∵definition of ⊑)
⇒ ∀𝑥 ∈ 𝐴,⊔𝑆𝑥 ⊑𝐵 𝑔(𝑥) (∵𝑔(𝑥) is an upper bound of 𝑆𝑥)
⇒ ∀𝑥 ∈ 𝐴,𝐹(𝑥) ⊑𝐵 𝑔(𝑥) (∵definition of 𝐹)
⇒ 𝐹 ⊑ 𝑔 (∵definition of ⊑)

∴𝐹 = ⊔𝑆 is in 𝐴 cont−−→ 𝐵.

5. Define ⊥ ≔ 𝜆𝑥.⊥𝐵. Then ⊥ is continuous, since it maps a chain to the chain {⊥𝐵} (∵ by reflexivity of
⊑𝐵), and it maps the chain’s l.u.b. to ⊥𝐵, which is the l.u.b. of {⊥𝐵}.

Since ∀𝑓 ∈ 𝐴 cont−−→ 𝐵,𝑥 ∈ 𝐴,⊥(𝑥) = ⊥𝐵 ⊑𝐵 𝑓(𝑥) ⇒ ∀𝑓 ∈ 𝐴 cont−−→ 𝐵,⊥ ⊑ 𝑓 , we proved the existence of a
bottom element in 𝐴 cont−−→ 𝐵.

Exercise 5
1. The fixpoint 𝑥0 must satisfy 𝑥0 = 1, so the only fixpoint is 1.

2. The fixpoint 𝑥0 must satisfy 𝑥0 = 𝑥0, so the fixpoints are 𝑥 (𝑥 ∈ ℕ).
3. The fixpoint 𝑥0 must satisfy 𝑥0 = 𝑥0 + 1, so the unique fixpoint must be ∞.

4. The fixpoint 𝑓0 must satisfy 𝑓0 = 𝜆𝑥.if 𝑥 = 0 ? 0 ∶ 𝑥 + 𝑓0(𝑥 − 1). We can prove that

𝑓0(𝑥) =
𝑥(𝑥 + 1)

2
by mathematical induction. This also means that the fixpoint is unique.

Proof. For 𝑥 = 0, 𝑓0(0) = 0. Assuming that the equation holds for some 𝑥 ≥ 0,

𝑓0(𝑥 + 1) = 𝑥 + 1 + 𝑓0(𝑥) = 𝑥 + 1 + 𝑥(𝑥 + 1)
2 = (𝑥 + 1)(𝑥 + 2)

2
Therefore the equation holds for all 𝑥 ∈ ℕ.
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We can confirm that 𝑓0 = 𝜆𝑥.𝑥(𝑥 + 1)
2 is indeed the fixpoint by calculation.

5. The fixpoint 𝑋0 must satisfy 𝑋0 = {𝜖} ∪ {⋆𝑥 | 𝑥 ∈ 𝑋0}. Similar to the case above, we can prove that
∀𝑖 ≥ 0, ⋆𝑖 ∈ 𝑋0, so 𝑆 ⊆ 𝑋0 ⊆ 𝑆 ⇒ 𝑋0 = 𝑆 by mathematical induction.

Proof. For 𝑖 = 0, ⋆0 = 𝜖 ∈ {𝜖} ⊆ {𝜖} ∪ {⋆𝑥 | 𝑥 ∈ 𝑋0} = 𝑋0. Assuming that the equation holds for some
𝑖 ≥ 0, ⋆𝑖+1 ∈ {⋆𝑥 | 𝑥 ∈ {⋆𝑖}} ⊆ {⋆𝑥 | 𝑥 ∈ 𝑋0} ⊆ 𝑋0 by the inductive hypothesis, so the equation also holds
for all 𝑖 ≥ 0.

We can confirm that 𝑆 is indeed the fixpoint by calculation.

Exercise 6

Claim 1. For a finite collection {𝐴𝑖}0≤𝑖≤𝑛 of subsets of 𝑆, 𝑓 ( ⋃
0≤𝑖≤𝑛

𝐴𝑖) = ⋃
0≤𝑖≤𝑛

𝑓(𝐴𝑖).

Proof. We prove by mathematical induction on 𝑛.
When 𝑛 = 0, the equality is trivial by 𝑓(𝐴0) = 𝑓(𝐴0).
When we assume that the claim holds for some 𝑛(≥ 0),

𝑓 ( ⋃
0≤𝑖≤𝑛+1

𝐴𝑖) = 𝑓 ( ⋃
0≤𝑖≤𝑛

𝐴𝑖 ∪ 𝐴𝑛+1) = 𝑓 ( ⋃
0≤𝑖≤𝑛

𝐴𝑖)∪𝑓(𝐴𝑛+1) = ⋃
0≤𝑖≤𝑛

𝑓(𝐴𝑖)∪𝑓(𝐴𝑛+1) = ⋃
0≤𝑖≤𝑛+1

𝑓(𝐴𝑖).

The second equality holds because of 𝑓(𝑥∪𝑦) = 𝑓(𝑥)∪𝑓(𝑦), and the third equality holds because of the inductive
hypothesis. Since the claim holds also for 𝑛 + 1, the claim holds for all 𝑛 ≥ 0.

Claim 2. For a countable collection {𝐴𝑖}𝑖≥0 of subsets of 𝑆, 𝑓 (⋃
𝑖≥0

𝐴𝑖) = ⋃
𝑖≥0

𝑓(𝐴𝑖).

Proof. We first define 𝐵𝑖 ≔ ⋃
0≤𝑗≤𝑖

𝐴𝑖 for 𝑖 ≥ 0. Then {𝐵𝑖}𝑖≥0 is a chain in 2𝑆, since 𝑖 ≤ 𝑗 ⇒ 𝐵𝑖 ⊆ 𝐵𝑗, so for any

two elements of the chain we can compare the elements.

Since 𝑓 is continuous, 𝑓 (⋃
𝑖≥0

𝐵𝑖) = ⋃
𝑖≥0

𝑓(𝐵𝑖). But ⋃
𝑖≥0

𝐵𝑖 = ⋃
𝑖≥0

⋃
0≤𝑗≤𝑖

𝐴𝑗 = ⋃
𝑖≥0

𝐴𝑖. Due to Claim 1, we have:

𝑓(𝐵𝑖) = ⋃
0≤𝑗≤𝑖

𝑓(𝐴𝑗), so ⋃
𝑖≥0

𝑓(𝐵𝑖) = ⋃
𝑖≥0

⋃
0≤𝑗≤𝑖

𝑓(𝐴𝑗) = ⋃
𝑖≥0

𝑓(𝐴𝑖). Hence, 𝑓 (⋃
𝑖≥0

𝐴𝑖) = ⋃
𝑖≥0

𝑓(𝐴𝑖).

Now we can prove the main claim.

Claim 3. lfp(𝜆𝑥.𝐴 ∪ 𝑓(𝑥)) = ⋃
𝑖≥0

𝑓 𝑖(𝐴) ≕ 𝛼, that is:

1. 𝛼 is a fixpoint of 𝜆𝑥.𝐴 ∪ 𝑓(𝑥)
2. If 𝑥0 is a fixpoint of 𝜆𝑥.𝐴 ∪ 𝑓(𝑥), then 𝛼 ⊆ 𝑥0

Proof.

1. Plugging in 𝛼 to the fixpoint equation leads to:

(𝜆𝑥.𝐴 ∪ 𝑓(𝑥))𝛼 = 𝐴 ∪ 𝑓(𝛼)

= 𝐴 ∪ 𝑓 (⋃
𝑖≥0

𝑓 𝑖(𝐴))

= 𝐴 ∪ ⋃
𝑖≥0

𝑓(𝑓 𝑖(𝐴)) (∵ Claim 2)

= 𝑓0(𝐴) ∪ ⋃
𝑖≥0

𝑓 𝑖+1(𝐴)

= ⋃
𝑖≥0

𝑓 𝑖(𝐴) = 𝛼
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2. We first prove that ∀𝑖 ≥ 0, 𝑓 𝑖(𝐴) ⊆ 𝑥0 by mathematical induction.
For 𝑖 = 0, 𝑓0(𝐴) = 𝐴 ⊆ 𝐴 ∪ 𝑓(𝑥0) = 𝑥0.
Assuming that the claim holds for some 𝑖 ≥ 0, 𝑓 𝑖+1(𝐴) = 𝑓(𝑓 𝑖(𝐴)) ⊆ 𝑓(𝑥0) ⊆ 𝐴 ∪ 𝑓(𝑥0) = 𝑥0.
𝑓(𝑓 𝑖(𝐴)) ⊆ 𝑓(𝑥0) holds, since 𝑓 𝑖(𝐴) ⊆ 𝑥0 by the inductive hypothesis and 𝑓 is continuous. Then since 𝑓
is monotonic, 𝑓 preserves the order between 𝑓 𝑖(𝐴) and 𝑥0.
Now, since ∀𝑖 ≥ 0, 𝑓 𝑖(𝐴) ⊆ 𝑥0, we have: 𝛼 = ⋃

𝑖≥0
𝑓 𝑖(𝐴) ⊆ 𝑥0.

Exercise 7
1. We already showed in Exercise 5 that the only fixpoint is 𝑥0 = 1, so it is the least fixpoint.

2. (𝜆𝑥.𝑥)⊥ = ⊥, and ∀𝑥 ∈ ℕ⊥, ⊥ ⊆ 𝑥, so ⊥ is the least fixpoint.

3. If 𝑓0 is a fixpoint, then 𝑓0 = 𝜆𝑥.if 𝑥 = 0 ? 0 ∶ 𝑥 + 𝑓0(𝑥 − 1). Then 𝑓0(⊥) = ⊥ + 𝑓0(⊥ − 1) = ⊥, and

𝑓0(𝑥) =
𝑥(𝑥 + 1)

2 when 𝑥 ∈ ℕ by mathematical induction exactly as in Exercise 5. Thus 𝑓0 = 𝜆𝑥.if 𝑥 =

⊥?⊥ ∶ 𝑥(𝑥 + 1)
2 is a fixpoint, since ∀𝑥 ∈ ℕ⊥, 𝑓0(𝑥) = (𝜆𝑥′.if 𝑥′ = 0 ? 0 ∶ 𝑥′ + 𝑓0(𝑥′ − 1)) 𝑥 holds. Since

the fixpoint is unique, 𝑓0 must be the least fixpoint.

4. We already showed in Exercise 5 that the only fixpoint is 𝑆, so it is the least fixpoint.

Exercise 8
1. Definition of ⟦⋅⟧ ∶ Pgm → (2𝐺 → 2𝐺)

⟦init(ℛ)⟧𝐴 ≔ ℛ
⟦translation(𝑢, 𝑣)⟧𝐴 ≔ {trans(𝑝, (𝑢, 𝑣)) | 𝑝 ∈ 𝐴}
⟦rotation(𝑢, 𝑣, 𝜃)⟧𝐴 ≔ {rotate(𝑝, (𝑢, 𝑣, 𝜃)) | 𝑝 ∈ 𝐴}
⟦𝑝1; 𝑝2⟧𝐴 ≔ ⟦𝑝2⟧(⟦𝑝1⟧𝐴), that is, ⟦𝑝1; 𝑝2⟧ ≔ ⟦𝑝2⟧ ∘ ⟦𝑝1⟧.
⟦{𝑝1} or {𝑝2}⟧𝐴 ≔ ⟦𝑝1⟧𝐴 ∪ ⟦𝑝2⟧𝐴, that is, ⟦{𝑝1} or {𝑝2}⟧ ≔ ⟦𝑝1⟧ ∪ ⟦𝑝2⟧, when ∪ means pointwise union.
⟦iter{𝑝}⟧𝐴 ≔ ⋃

𝑖≥0
⟦𝑝⟧𝑖𝐴, that is, ⟦iter{𝑝}⟧ ≔ ⋃

𝑖≥0
⟦𝑝⟧𝑖.

2. Calculation of the given program

⟦iter{{translation(1, 0)} or {translation(1, 1)}}⟧(⟦init{(0, 0), (0, 1)}⟧𝐴) (∵ 𝑝1; 𝑝2)
= ⟦iter{{translation(1, 0)} or {translation(1, 1)}}⟧{(0, 0), (0, 1)} (∵ init)
= ⋃

𝑖≥0
⟦{translation(1, 0)} or {translation(1, 1)}⟧𝑖{(0, 0), (0, 1)} (∵ iter)

= ⋃
𝑖≥0

𝑖
⋃
𝑗=0

(⟦translation(1, 0)⟧𝑗⟦translation(1, 1)⟧𝑖−𝑗{(0, 0), (0, 1)})

(∵ translation commute over ∪)

= ⋃
𝑖≥0

𝑖
⋃
𝑗=0

(⟦translation(𝑖, 𝑖 − 𝑗)⟧{(0, 0), (0, 1)})

= ⋃
0≤𝑗≤𝑖

{(𝑖, 𝑗), (𝑖, 𝑗 + 1)}

= {(𝑖, 𝑗) ∈ ℤ2 | 𝑖 ≥ 0, 0 ≤ 𝑗 ≤ 𝑖 + 1}

So ⟦𝑝⟧ is the constant function 𝜆𝐴.{(𝑖, 𝑗) ∈ ℤ2 | 𝑖 ≥ 0, 0 ≤ 𝑗 ≤ 𝑖 + 1}.

5



Exercise 9
Claim 1. 𝛾(𝑥) ∔ 𝛾(𝑦) = 𝛾(𝑥 +# 𝑦)
Proof. Since the abstract domain is finite, we can exhaustively check all cases for (𝑥, 𝑦).

(⊥,_) : 𝛾(𝑥) ∔ 𝛾(𝑦) = ∅ ∔ 𝛾(𝑦) = {𝑥′ + 𝑦′ | 𝑥′ ∈ ∅, 𝑦′ ∈ 𝛾(𝑦)} = ∅ = 𝛾(⊥) = 𝛾(⊥ +# 𝑦) = 𝛾(𝑥 +# 𝑦)
(⊤,_) : 𝛾(𝑥) ∔ 𝛾(𝑦) = ℤ ∔ 𝛾(𝑦) = ℤ = 𝛾(⊤) = 𝛾(⊤ +# 𝑦) = 𝛾(𝑥 +# 𝑦) (𝑦 ≠ ⊥)
(0, 0) : 𝛾(𝑥) ∔ 𝛾(𝑦) = 2ℤ ∔ 2ℤ = {𝑥′ + 𝑦′ | 𝑥′ ∈ 2ℤ, 𝑦′ ∈ 2ℤ} = {2(𝑥″ + 𝑦″) | 𝑥″ ∈ ℤ, 𝑦″ ∈ ℤ} = 2ℤ

= 𝛾(0) = 𝛾(0 +# 0) = 𝛾(𝑥 +# 𝑦)
(1, 1) : 𝛾(𝑥) ∔ 𝛾(𝑦) = (2ℤ + 1) ∔ (2ℤ + 1) = {𝑥′ + 𝑦′ | 𝑥′ ∈ 2ℤ + 1, 𝑦′ ∈ 2ℤ + 1}

= {2(𝑥″ + 𝑦″ + 1) | 𝑥″ ∈ ℤ, 𝑦″ ∈ ℤ} = 2ℤ = 𝛾(0) = 𝛾(1 +# 1) = 𝛾(𝑥 +# 𝑦)
(0, 1) : 𝛾(𝑥) ∔ 𝛾(𝑦) = 2ℤ ∔ (2ℤ + 1) = {𝑥′ + 𝑦′ | 𝑥′ ∈ 2ℤ, 𝑦′ ∈ 2ℤ + 1} = {2(𝑥″ + 𝑦″) + 1 | 𝑥″ ∈ ℤ, 𝑦″ ∈ ℤ}

= 2ℤ + 1 = 𝛾(1) = 𝛾(0 +# 1) = 𝛾(𝑥 +# 𝑦)
Other cases are covered by the commutativity of +#.

Claim 2. 𝛾(𝑥) = ∸𝛾(𝑥)
Proof. Since the abstract domain is finite, we can exhaustively check all cases for 𝑥.

⊥ : 𝛾(⊥) = ∅ = {−𝑠 | 𝑠 ∈ ∅} = ∸∅ = ∸𝛾(⊥)
⊤ : 𝛾(⊤) = ℤ = {𝑧 | 𝑧 ∈ ℤ} = {−(−𝑧) | 𝑧 ∈ ℤ} = {−𝑤 | 𝑤 ∈ ℤ} = ∸ℤ = ∸𝛾(⊤)
0 : 𝛾(0) = 2ℤ = {2𝑧 | 𝑧 ∈ ℤ} = {−2(−𝑧) | 𝑧 ∈ ℤ} = {−2𝑤 | 𝑤 ∈ ℤ} = ∸2ℤ = ∸𝛾(0)
1 : 𝛾(1) = 2ℤ+1 = {2𝑧+1|𝑧 ∈ ℤ} = {−(2(−𝑧−1)+1)|𝑧 ∈ ℤ} = {−(2𝑤+1)|𝑤 ∈ ℤ} = ∸(2ℤ+1) = ∸𝛾(1)

Claim 3. 𝛾(𝑥) ∪ 𝛾(𝑦) = 𝛾(𝑥 ∪# 𝑦)
Proof. Since the abstract domain is finite, we can exhaustively check all cases for (𝑥, 𝑦).

(⊥,_) : 𝛾(⊥ ∪# 𝑦) = 𝛾(𝑦) = ∅ ∪ 𝛾(𝑦) = 𝛾(⊥) ∪ 𝛾(𝑦)
(⊤,_) : 𝛾(⊤ ∪# 𝑦) = 𝛾(⊤) = ℤ = ℤ ∪ 𝛾(𝑦) = 𝛾(⊤) ∪ 𝛾(𝑦) (𝑦 ≠ ⊥)
(𝑥, 𝑥) : 𝛾(𝑥 ∪# 𝑥) = 𝛾(𝑥) = 𝛾(𝑥) ∪ 𝛾(𝑥)
(0, 1) : 𝛾(0 ∪# 1) = 𝛾(⊤) = ℤ = 2ℤ ∪ (2ℤ + 1) = 𝛾(0) ∪ 𝛾(1)
Other cases are covered by the commutativity of ∪#.

Now we can prove our main claim.

Claim 4. For any program 𝐶, 𝑆 ⊆ 𝛾(𝑠#) ⇒ ⟦𝐶⟧𝑆 ⊆ 𝛾(⟦𝐶⟧#𝑠#)
Proof. We use structural induction on 𝐶.

(Base case 1) 𝐶 = store 𝐸
To prove 𝑆 ⊆ 𝛾(𝑠#) ⇒ ⟦𝐸⟧𝑆 ⊆ 𝛾(⟦𝐸⟧#𝑠#), we use structural induction on 𝐸.

(Base case 1) 𝐸 = 𝑛
⟦𝐸⟧𝑆 = {𝑛}, and ⟦𝐸⟧#𝑠# = 𝑛 mod 2 ⇒ 𝛾(⟦𝐸⟧#𝑠#) = {𝑚 | 𝑛 ≡ 𝑚 (mod 2)}.
Since 𝑛 ≡ 𝑛 (mod 2), ⟦𝐸⟧𝑆 ⊆ 𝛾(⟦𝐸⟧#𝑠#).

(Base case 2) 𝐸 = load
⟦𝐸⟧𝑆 = 𝑆, and ⟦𝐸⟧#𝑠# = 𝑠#, so directly we can see that ⟦𝐸⟧𝑆 = 𝑆 ⊆ 𝛾(𝑠#) = 𝛾(⟦𝐸⟧#𝑠#).

(Inductive case 1) 𝐸 = 𝐸1 +𝐸2

⟦𝐸⟧𝑆 = ⟦𝐸1⟧𝑆 ∔ ⟦𝐸2⟧𝑆

⊆ 𝛾(⟦𝐸1⟧#𝑠#) ∔ 𝛾(⟦𝐸2⟧#𝑠#) (∵ ⟦𝐸𝑖⟧𝑆 ⊆ 𝛾(⟦𝐸𝑖⟧#𝑠#) by the inductive hypothesis,
and 𝐴𝑖 ⊆ 𝐵𝑖 ⇒ 𝐴1 ∔𝐴2 ⊆ 𝐵1 ∔𝐵2)

= 𝛾(⟦𝐸1⟧#𝑠# +# ⟦𝐸2⟧#𝑠#) (∵ Claim 1)
= 𝛾(⟦𝐸1 +𝐸2⟧#𝑠#)
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(Inductive case 2) 𝐸 = −𝐸1

⟦𝐸⟧𝑆 = ⟦−𝐸1⟧𝑆
= ∸⟦𝐸1⟧𝑆

⊆ ∸𝛾(⟦𝐸1⟧#𝑠#) (∵ ⟦𝐸𝑖⟧𝑆 ⊆ 𝛾(⟦𝐸𝑖⟧#𝑠#) by the inductive hypothesis, and
𝐴 ⊆ 𝐵 ⇒ ∸𝐴 ⊆ ∸𝐵

= 𝛾(⟦𝐸1⟧#𝑠#) (∵ Claim 2)
= 𝛾(⟦−𝐸1⟧#𝑠#)

∴ 𝑆 ⊆ 𝛾(𝑠#) ⇒ ⟦𝐶⟧𝑆 = ⟦𝐸⟧𝑆 ⊆ 𝛾(⟦𝐸⟧#𝑠#) = 𝛾(⟦𝐶⟧#𝑠#)
(Base case 2) 𝐶 = skip

⟦𝐶⟧𝑆 = 𝑆 ⊆ 𝛾(𝑠#) = 𝛾(⟦𝐶⟧#𝑠#)
(Inductive case 1) 𝐶 = 𝐶1 or 𝐶2

⟦𝐶⟧𝑆 = ⟦𝐶1⟧𝑆 ∪ ⟦𝐶2⟧𝑆
⊆ 𝛾(⟦𝐶1⟧#𝑠#) ∪ 𝛾(⟦𝐶2⟧#𝑠#) (∵ ⟦𝐶𝑖⟧𝑆 ⊆ 𝛾(⟦𝐶𝑖⟧#𝑠#) by the inductive hypothesis)
= 𝛾(⟦𝐶1⟧#𝑠# ∪# ⟦𝐶2⟧#𝑠#) (∵ Claim 3)
= 𝛾(⟦𝐶1 or 𝐶2⟧#𝑠#)
= 𝛾(⟦𝐶⟧#𝑠#)

(Inductive case 2) 𝐶 = 𝐶1; 𝐶2
⟦𝐶⟧𝑆 = ⟦𝐶2⟧(⟦𝐶1⟧𝑆). Let 𝑆1 = ⟦𝐶1⟧𝑆, and 𝑠#1 = ⟦𝐶1⟧#𝑠#, so that we may write ⟦𝐶⟧𝑆 = ⟦𝐶2⟧𝑆1 and
⟦𝐶⟧#𝑠# = ⟦𝐶2⟧#𝑠#1 .
Now,

𝑆 ⊆ 𝛾(𝑠#) ⇒ 𝑆1 ⊆ 𝛾(𝑠#1 ) (∵ by the inductive hypothesis for 𝐶1)
⇒ ⟦𝐶2⟧𝑆1 ⊆ 𝛾(⟦𝐶2⟧#𝑠#1 ) (∵ by the inductive hypothesis for 𝐶2)
⇒ ⟦𝐶⟧𝑆 ⊆ 𝛾(⟦𝐶⟧#𝑠#) (∵ by definition of 𝑆1, 𝑠#1 )
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