Program Analysis HW 1

김도형

Exercise 1

We use structural induction on $e . \llbracket e \rrbracket$ stands for the value of e.
(Base case) $e=x$
The variables are divisible by n by assumption, so $n|x \Rightarrow n| \llbracket e \rrbracket$.
(Inductive case 1) $e=e_{1}+e_{2}$
$\llbracket e_{1} \rrbracket=n k_{1}, \llbracket e_{2} \rrbracket=n k_{2}$ for some $k_{1}, k_{2} \in \mathbb{Z}$ by the inductive hypothesis.
Then $\llbracket e \rrbracket=n\left(k_{1}+k_{2}\right) \Rightarrow n \mid \llbracket e \rrbracket$.
(Inductive case 2) $e=e_{1} \cdot e_{2}$
$\llbracket e_{1} \rrbracket=n k_{1}, \llbracket e_{2} \rrbracket=n k_{2}$ for some $k_{1}, k_{2} \in \mathbb{Z}$ by the inductive hypothesis.
Then $\llbracket e \rrbracket=n\left(n k_{1} k_{2}\right) \Rightarrow n \mid \llbracket e \rrbracket$.
(Inductive case 3) $e=e_{1} ? e_{2} e_{3}$
By the inductive hypothesis, $n \mid \llbracket e_{2} \rrbracket$ and $n \mid \llbracket e_{3} \rrbracket$.
Since $\llbracket e \rrbracket$ is either $\llbracket e_{2} \rrbracket$ or $\llbracket e_{3} \rrbracket, n \mid \llbracket e \rrbracket$.

Exercise 2

Since $\forall P \in 2^{A}, \phi \subseteq P \Leftrightarrow \phi \sqsubseteq P, \phi$ is the bottom element.
Claim 1. For a given chain $S, \sqcup S$ is the least upper bound of S by

1. $\forall S_{i} \in S, S_{i} \sqsubseteq \sqcup S$
2. If g is an upper bound of $S, \sqcup S \sqsubseteq g$

Proof.

1. Since $\forall S_{i} \in S, S_{i} \subseteq \sqcup S$, it is trivial.
2. By definition, $\forall S_{i} \in S, S_{i} \sqsubseteq g \Leftrightarrow S_{i} \subseteq g \Rightarrow \sqcup S \subseteq g \Leftrightarrow \sqcup S \sqsubseteq g$

Exercise 3

For each CPO A, B, we can get \perp_{A}, \perp_{B}, and by definition, $\forall\langle a, b\rangle \in A \times B,\left\langle\perp_{A}, \perp_{B}\right\rangle \sqsubseteq\langle a, b\rangle$, hence $\left\langle\perp_{A}, \perp_{B}\right\rangle$ is the bottom element.

Definition 1. For a given chain $S, S_{A}:=\{a \mid\langle a, b\rangle \in S\}$ (Same applies to S_{B})
It is trivial that S_{A}, S_{B} are a chain, since A and B are CPOs. Also for the same reason, we can get the least upper bound of S_{A}, S_{B} as l_{A}, l_{B} respectively.

Claim 2. For a given chain $S,\left(l_{A}, l_{B}\right)$ is the least upper bound of S by

1. $\forall S_{i} \in S, S_{i} \sqsubseteq\left(l_{A}, l_{B}\right)$
2. If g is an upper bound of $S,\left(l_{A}, l_{B}\right) \sqsubseteq g$

Proof.

1. $\forall S_{i}=\left(a_{i}, b_{i}\right) \in S, a_{i} \sqsubseteq_{A} l_{A}, b_{i} \sqsubseteq_{B} l_{B}$. Hence, $S_{i} \sqsubseteq\left(l_{A}, l_{B}\right)$
2. For $g=\left(g_{A}, g_{B}\right)$, if $l_{A} \not \ddagger_{A} g_{A}$, then as A is a CPO, $g_{A} \sqsubset_{A} l_{A}$. Since g is an upper bound of S, $\forall a_{i} \in S_{A}, a_{i} \sqsubseteq_{A} g_{A}$, which makes g_{A} an upper bound of S_{A}, and it contradicts with the assumption that l_{A} is the least upper bound of S_{A}. Hence, $l_{A} \sqsubseteq_{A} g_{A}$. (Same applies to l_{B}, g_{B}).

Exercise 4

Definition 2. For $f, g \in A \xrightarrow{\text { cont }} B, f \sqsubseteq g \Leftrightarrow \forall x \in A, f(x) \sqsubseteq_{B} g(x)$
Claim 3. The five following claims hold:

1. $\forall f \in A \xrightarrow{\text { cont }} B, f \sqsubseteq f$ (Reflexivity)
2. $\forall f, g \in A \xrightarrow{\text { cont }} B, f \sqsubseteq g \wedge g \sqsubseteq f \Rightarrow f=g$ (Symmetry)
3. $\forall f, g, h \in A \xrightarrow{\text { cont }} B, f \sqsubseteq g \wedge g \sqsubseteq h \Rightarrow f \sqsubseteq h$ (Transitivity)
4. $\forall S \subseteq A \xrightarrow{\text { cont }} B, S:$ chain $\Rightarrow \sqcup S \in A \xrightarrow{\text { cont }} B$ (Completeness)
5. $\exists \perp \in A \xrightarrow{\text { cont }} B$ s.t $\forall f \in A \xrightarrow{\text { cont }} B, \perp \sqsubseteq f$ (Existence of a bottom element)

Proof. The proofs are straightforward:

1. Choose $f \in A \xrightarrow{\text { cont }} B$. We need to show pointwise reflexivity for f.

$$
\forall x \in A, f(x) \sqsubseteq_{B} f(x)(\because B \text { is a CPO }) \Rightarrow f \sqsubseteq f(\because \text { definition of } \sqsubseteq)
$$

2. Choose $f, g \in A \xrightarrow{\text { cont }} B$. We need to show pointwise symmetry for f, g.

$$
\begin{array}{rlr}
f \sqsubseteq g \wedge g \sqsubseteq f & \Rightarrow \forall x \in A, f(x) \sqsubseteq_{B} g(x) \wedge g(x) \sqsubseteq_{B} f(x) & (\because \text { definition of } \sqsubseteq) \\
& \Rightarrow \forall x \in A, f(x)=g(x) & (\because B \text { is a CPO }) \\
& \Rightarrow f=g & \\
& (\because \text { definition of function's equality) })
\end{array}
$$

3. Choose $f, g, h \in A \xrightarrow{\text { cont }} B$. We need to show pointwise transitivity for f, g, h.

$$
\begin{aligned}
f \sqsubseteq g \wedge g \sqsubseteq h & \Rightarrow \forall x \in A, f(x) \sqsubseteq_{B} g(x) \wedge g(x) \sqsubseteq_{B} h(x) & (\because \text { definition of } \sqsubseteq) \\
& \Rightarrow \forall x \in A, f(x) \sqsubseteq_{B} h(x) & (\because B \text { is a CPO }) \\
& \Rightarrow f \sqsubseteq h & (\because \text { definition of } \sqsubseteq)
\end{aligned}
$$

4. We want to prove: If $S \subseteq A \xrightarrow{\text { cont }} B$ is a chain,
(a) $\forall x \in A, S_{x}:=\{f(x) \mid f \in S\} \subseteq B$ is a chain
(b) $F:=\lambda x$. $\sqcup S_{x}$ is a continuous function from A to B
(c) F is the least upper bound of S

Proof.
(a) Choose $y_{1}, y_{2} \in S_{x}$. Then $y_{1}=f_{1}(x), y_{2}=f_{2}(x)$ for some $f_{1}, f_{2} \in S$. Since S is a chain, either $f_{1} \sqsubseteq f_{2}$ or $f_{2} \sqsubseteq f_{1}$. Then by definition of \sqsubseteq, either $y_{1}=f_{1}(x) \sqsubseteq_{B} f_{2}(x)=y_{2}$ or vice versa. Therefore, S_{x} is a chain.
(b) Then λx. $\sqcup S_{x}$ is a well-defined function from A to B, since B is a CPO and S_{x} is a chain in B, therefore $\sqcup S_{x}$ exists in B. The continuity of F is proven by first showing that F is monotonic, then showing that F maps the l.u.b. of a chain in A to the l.u.b. of the image of that chain. First, F is monotonic:

$$
\begin{aligned}
x_{1} \sqsubseteq_{A} x_{2} & \Rightarrow \forall f \in S, f\left(x_{1}\right) \sqsubseteq_{B} f\left(x_{2}\right) \\
& \Rightarrow \forall f \in S, f\left(x_{1}\right) \sqsubseteq_{B} \sqcup S_{x_{2}} \\
& \Rightarrow \sqcup S_{x_{1}} \sqsubseteq_{B} S_{x_{2}} \\
& \Rightarrow F\left(x_{1}\right) \sqsubseteq_{B} F\left(x_{2}\right)
\end{aligned}
$$

$$
(\because f: \text { continuous } \Rightarrow f: \text { monotonic })
$$

$$
\left(\because f\left(x_{1}\right) \sqsubseteq_{B} f\left(x_{2}\right) \sqsubseteq_{B} \bigsqcup_{g \in S} g\left(x_{2}\right)=\sqcup S_{x_{2}}\right)
$$

$$
\left(\because \sqcup S_{x_{2}} \text { is an upper bound of } S_{x_{1}}\right)
$$

$$
(\because \text { by definition of } F)
$$

Then if $A^{\prime} \subseteq A$ is a chain, $F\left(A^{\prime}\right) \subseteq B$ is a chain, and $F\left(\sqcup A^{\prime}\right)$ is an upper bound of $F\left(A^{\prime}\right)$.
$\left(\because F\left(A^{\prime}\right)\right.$ is a chain because for two elements $y_{1}, y_{2} \in F\left(A^{\prime}\right), y_{1}=F\left(x_{1}\right), y_{2}=F\left(x_{2}\right)$ for some $x_{1}, x_{2} \in A^{\prime}$, and since A^{\prime} is a chain, either $x_{1} \sqsubseteq_{A} x_{2}$ or $x_{2} \sqsubseteq_{A} x_{1}$. Then the monotonicity of F leads to the conclusion that either $y_{1} \sqsubseteq_{B} y_{2}$ or vice versa. $F\left(\sqcup A^{\prime}\right)$ is the upper bound of $F\left(A^{\prime}\right)$, since $\sqcup A^{\prime}$ is bigger than any element of A^{\prime}, and F preserves this ordering.)

Now, to show that $F\left(\sqcup A^{\prime}\right)$ is the least upper bound of $F\left(A^{\prime}\right)$, we must show that if y is an upper bound of $F\left(A^{\prime}\right)$, then y must be at least $F\left(\sqcup A^{\prime}\right)$.

$$
\begin{array}{rr}
y \text { is an upper bound of } F\left(A^{\prime}\right) & \text { (} \because \text { by definition of an upper bound) } \\
& \Rightarrow \forall x \in A^{\prime}, F(x)=\bigsqcup_{f \in S} f(x) \sqsubseteq_{B} y \\
& \Rightarrow \forall x \in A^{\prime}, f \in S, f(x) \sqsubseteq_{B} y \\
& \Rightarrow \forall f \in S, \sqcup f\left(A^{\prime}\right) \sqsubseteq_{B} y \\
& (\because y \text { is an upper bound of }\{f(x) \mid f \in S\}) \\
& \Rightarrow \forall f \in S, f\left(\sqcup A^{\prime}\right) \sqsubseteq_{B} y \\
& \left(\because y \text { is an upper bound of } f\left(A^{\prime}\right),\right. \text { which is a } \\
& \text { chain by continuity of } \left.f, \text { so } \exists \sqcup f\left(A^{\prime}\right) \sqsubseteq_{B} y\right) \\
& f\left(\sqcup A^{\prime}\right) \sqsubseteq_{B} y
\end{array} \quad\left(\because \sqcup f\left(A^{\prime}\right)=f\left(\sqcup A^{\prime}\right) \text { by continuity of } f\right)
$$

Thus we have shown that F preserves chains and their l.u.b.s, so $F \in A \xrightarrow{\text { cont }} B$.
(c) We want to show that (1) $\forall f \in S, f \sqsubseteq F$ and (2) If g is an upper bound of S, then $F \sqsubseteq g$.
(1) $\forall f \in S, \forall x \in A, f(x) \sqsubseteq_{B} \bigsqcup_{g \in S} g(x)=\sqcup S_{x}=F(x) \Rightarrow \forall f \in S, f \sqsubseteq F$.
(2) For all $f \in S$,

$$
\begin{aligned}
f \sqsubseteq g & \Rightarrow \forall f \in S, \forall x \in A, f(x) \sqsubseteq_{B} g(x) \\
& \Rightarrow \forall x \in A, \sqcup S_{x} \sqsubseteq_{B} g(x) \\
& \Rightarrow \forall x \in A, F(x) \sqsubseteq_{B} g(x) \\
& \Rightarrow F \sqsubseteq g
\end{aligned}
$$

(\because definition of $\sqsubseteq) ~$
$\left(\because g(x)\right.$ is an upper bound of $\left.S_{x}\right)$
$(\because$ definition of $F)$
$(\because$ definition of $\sqsubseteq)$
$\therefore F=\sqcup S$ is in $A \xrightarrow{\text { cont }} B$.
5. Define $\perp:=\lambda x . \perp_{B}$. Then \perp is continuous, since it maps a chain to the chain $\left\{\perp_{B}\right\}(\because$ by reflexivity of \sqsubseteq_{B}), and it maps the chain's l.u.b. to \perp_{B}, which is the l.u.b. of $\left\{\perp_{B}\right\}$.
Since $\forall f \in A \xrightarrow{\text { cont }} B, x \in A, \perp(x)=\perp_{B} \sqsubseteq_{B} f(x) \Rightarrow \forall f \in A \xrightarrow{\text { cont }} B, \perp \sqsubseteq f$, we proved the existence of a bottom element in $A \xrightarrow{\text { cont }} B$.

Exercise 5

1. The fixpoint x_{0} must satisfy $x_{0}=1$, so the only fixpoint is 1 .
2. The fixpoint x_{0} must satisfy $x_{0}=x_{0}$, so the fixpoints are $x(x \in \mathbb{N})$.
3. The fixpoint x_{0} must satisfy $x_{0}=x_{0}+1$, so the unique fixpoint must be ∞.
4. The fixpoint f_{0} must satisfy $f_{0}=\lambda x$.if $x=0 ? 0: x+f_{0}(x-1)$. We can prove that

$$
f_{0}(x)=\frac{x(x+1)}{2}
$$

by mathematical induction. This also means that the fixpoint is unique.
Proof. For $x=0, f_{0}(0)=0$. Assuming that the equation holds for some $x \geq 0$,

$$
f_{0}(x+1)=x+1+f_{0}(x)=x+1+\frac{x(x+1)}{2}=\frac{(x+1)(x+2)}{2}
$$

Therefore the equation holds for all $x \in \mathbb{N}$.

We can confirm that $f_{0}=\lambda x \cdot \frac{x(x+1)}{2}$ is indeed the fixpoint by calculation.
5. The fixpoint X_{0} must satisfy $X_{0}=\{\epsilon\} \cup\left\{\star x \mid x \in X_{0}\right\}$. Similar to the case above, we can prove that $\forall i \geq 0, \star^{i} \in X_{0}$, so $S \subseteq X_{0} \subseteq S \Rightarrow X_{0}=S$ by mathematical induction.

Proof. For $i=0, \star^{0}=\epsilon \in\{\epsilon\} \subseteq\{\epsilon\} \cup\left\{\star x \mid x \in X_{0}\right\}=X_{0}$. Assuming that the equation holds for some $i \geq 0, \star^{i+1} \in\left\{\star x \mid x \in\left\{\star^{i}\right\}\right\} \subseteq\left\{\star x \mid x \in X_{0}\right\} \subseteq X_{0}$ by the inductive hypothesis, so the equation also holds for all $i \geq 0$.

We can confirm that S is indeed the fixpoint by calculation.

Exercise 6

Claim 1. For a finite collection $\left\{A_{i}\right\}_{0 \leq i \leq n}$ of subsets of $S, f\left(\bigcup_{0 \leq i \leq n} A_{i}\right)=\bigcup_{0 \leq i \leq n} f\left(A_{i}\right)$.
Proof. We prove by mathematical induction on n.
When $n=0$, the equality is trivial by $f\left(A_{0}\right)=f\left(A_{0}\right)$.
When we assume that the claim holds for some $n(\geq 0)$,

$$
f\left(\bigcup_{0 \leq i \leq n+1} A_{i}\right)=f\left(\bigcup_{0 \leq i \leq n} A_{i} \cup A_{n+1}\right)=f\left(\bigcup_{0 \leq i \leq n} A_{i}\right) \cup f\left(A_{n+1}\right)=\bigcup_{0 \leq i \leq n} f\left(A_{i}\right) \cup f\left(A_{n+1}\right)=\bigcup_{0 \leq i \leq n+1} f\left(A_{i}\right) .
$$

The second equality holds because of $f(x \cup y)=f(x) \cup f(y)$, and the third equality holds because of the inductive hypothesis. Since the claim holds also for $n+1$, the claim holds for all $n \geq 0$.

Claim 2. For a countable collection $\left\{A_{i}\right\}_{i \geq 0}$ of subsets of $S, f\left(\bigcup_{i \geq 0} A_{i}\right)=\bigcup_{i \geq 0} f\left(A_{i}\right)$.
Proof. We first define $B_{i}:=\bigcup_{0 \leq j \leq i} A_{i}$ for $i \geq 0$. Then $\left\{B_{i}\right\}_{i \geq 0}$ is a chain in 2^{S}, since $i \leq j \Rightarrow B_{i} \subseteq B_{j}$, so for any two elements of the chain we can compare the elements.

Since f is continuous, $f\left(\bigcup_{i \geq 0} B_{i}\right)=\bigcup_{i \geq 0} f\left(B_{i}\right)$. But $\bigcup_{i \geq 0} B_{i}=\bigcup_{i \geq 0} \bigcup_{0 \leq j \leq i} A_{j}=\bigcup_{i \geq 0} A_{i}$. Due to Claim 1, we have: $f\left(B_{i}\right)=\bigcup_{0 \leq j \leq i} f\left(A_{j}\right)$, so $\bigcup_{i \geq 0} f\left(B_{i}\right)=\bigcup_{i \geq 0} \bigcup_{0 \leq j \leq i} f\left(A_{j}\right)=\bigcup_{i \geq 0} f\left(A_{i}\right)$. Hence, $f\left(\bigcup_{i \geq 0} A_{i}\right)=\bigcup_{i \geq 0} f\left(A_{i}\right)$.

Now we can prove the main claim.
Claim 3. $\operatorname{Ifp}(\lambda x \cdot A \cup f(x))=\bigcup_{i \geq 0} f^{i}(A)=: \alpha$, that is:

1. α is a fixpoint of $\lambda x . A \cup f(x)$
2. If x_{0} is a fixpoint of $\lambda x . A \cup f(x)$, then $\alpha \subseteq x_{0}$

Proof.

1. Plugging in α to the fixpoint equation leads to:

$$
\begin{align*}
(\lambda x . A \cup f(x)) \alpha & =A \cup f(\alpha) \\
& =A \cup f\left(\bigcup_{i \geq 0} f^{i}(A)\right) \\
& =A \cup \bigcup_{i \geq 0} f\left(f^{i}(A)\right) \\
& =f^{0}(A) \cup \bigcup_{i \geq 0} f^{i+1}(A) \\
& =\bigcup_{i \geq 0} f^{i}(A)=\alpha
\end{align*}
$$

2. We first prove that $\forall i \geq 0, f^{i}(A) \subseteq x_{0}$ by mathematical induction.

For $i=0, f^{0}(A)=A \subseteq A \cup f\left(x_{0}\right)=x_{0}$.
Assuming that the claim holds for some $i \geq 0, f^{i+1}(A)=f\left(f^{i}(A)\right) \subseteq f\left(x_{0}\right) \subseteq A \cup f\left(x_{0}\right)=x_{0}$. $f\left(f^{i}(A)\right) \subseteq f\left(x_{0}\right)$ holds, since $f^{i}(A) \subseteq x_{0}$ by the inductive hypothesis and f is continuous. Then since f is monotonic, f preserves the order between $f^{i}(A)$ and x_{0}.
Now, since $\forall i \geq 0, f^{i}(A) \subseteq x_{0}$, we have: $\alpha=\bigcup_{i \geq 0} f^{i}(A) \subseteq x_{0}$.

Exercise 7

1. We already showed in Exercise 5 that the only fixpoint is $x_{0}=1$, so it is the least fixpoint.
2. $(\lambda x . x) \perp=\perp$, and $\forall x \in \mathbb{N}_{\perp}, \perp \subseteq x$, so \perp is the least fixpoint.
3. If f_{0} is a fixpoint, then $f_{0}=\lambda x$.if $x=0 ? 0: x+f_{0}(x-1)$. Then $f_{0}(\perp)=\perp+f_{0}(\perp-1)=\perp$, and $f_{0}(x)=\frac{x(x+1)}{2}$ when $x \in \mathbb{N}$ by mathematical induction exactly as in Exercise 5 . Thus $f_{0}=\lambda x$.if $x=$ $\perp ? \perp: \frac{x(x+1)}{2}$ is a fixpoint, since $\forall x \in \mathbb{N}_{\perp}, f_{0}(x)=\left(\lambda x^{\prime}\right.$.if $\left.x^{\prime}=0 ? 0: x^{\prime}+f_{0}\left(x^{\prime}-1\right)\right) x$ holds. Since the fixpoint is unique, f_{0} must be the least fixpoint.
4. We already showed in Exercise 5 that the only fixpoint is S, so it is the least fixpoint.

Exercise 8

1. Definition of $\llbracket \rrbracket!\operatorname{Pgm} \rightarrow\left(2^{G} \rightarrow 2^{G}\right)$
$\llbracket \operatorname{init}(\mathcal{R}) \rrbracket A:=\mathcal{R}$
$\llbracket \operatorname{translation}(u, v) \rrbracket A:=\{\operatorname{trans}(p,(u, v)) \mid p \in A\}$
$\llbracket \operatorname{rotation}(u, v, \theta) \rrbracket A:=\{\operatorname{rotate}(p,(u, v, \theta)) \mid p \in A\}$
$\llbracket p_{1} ; p_{2} \rrbracket A:=\llbracket p_{2} \rrbracket\left(\llbracket p_{1} \rrbracket A\right)$, that is, $\llbracket p_{1} ; p_{2} \rrbracket:=\llbracket p_{2} \rrbracket \circ \llbracket p_{1} \rrbracket$.
$\llbracket\left\{p_{1}\right\}$ or $\left\{p_{2}\right\} \rrbracket A:=\llbracket p_{1} \rrbracket A \cup \llbracket p_{2} \rrbracket A$, that is, $\llbracket\left\{p_{1}\right\}$ or $\left\{p_{2}\right\} \rrbracket:=\llbracket p_{1} \rrbracket \cup \llbracket p_{2} \rrbracket$, when \cup means pointwise union.
$\llbracket i \operatorname{ter}\{p\} \rrbracket A:=\bigcup_{i \geq 0} \llbracket p \rrbracket^{i} A$, that is, $\llbracket i \operatorname{ter}\{p\} \rrbracket:=\bigcup_{i \geq 0} \llbracket p \rrbracket^{i}$.
2. Calculation of the given program

$$
\begin{aligned}
& \llbracket i t e r\{\{\text { translation }(1,0)\} \text { or }\{\text { translation }(1,1)\}\} \rrbracket \rrbracket(\llbracket \text { init }\{(0,0),(0,1)\} \rrbracket A) \\
& =\llbracket i \text { iter }\{\{\text { translation }(1,0)\} \text { or }\{\text { translation }(1,1)\}\} \rrbracket\{(0,0),(0,1)\} \\
& =\bigcup_{i \geq 0} \llbracket\{\text { translation }(1,0)\} \text { or }\{\text { translation }(1,1)\} \rrbracket^{i}\{(0,0),(0,1)\} \\
& =\bigcup_{i \geq 0} \bigcup_{j=0}^{i}\left(\llbracket \operatorname{translation}(1,0) \rrbracket^{j} \llbracket \text { translation }(1,1) \rrbracket^{i-j}\{(0,0),(0,1)\}\right) \\
& (\because \text { translation commute over } \cup) \\
& =\bigcup_{i \geq 0} \bigcup_{j}^{i}(\llbracket \operatorname{translation}(i, i-j) \rrbracket\{(0,0),(0,1)\}) \\
& =\bigcup_{0 \leq j \leq i}\{(i, j),(i, j+1)\} \\
& =\left\{(i, j) \in \mathbb{Z}^{2} \mid i \geq 0,0 \leq j \leq i+1\right\}
\end{aligned}
$$

So $\llbracket p \rrbracket$ is the constant function $\lambda A .\left\{(i, j) \in \mathbb{Z}^{2} \mid i \geq 0,0 \leq j \leq i+1\right\}$.

Exercise 9

Claim 1. $\gamma(x) \dot{+} \gamma(y)=\gamma\left(x+{ }^{\#} y\right)$
Proof. Since the abstract domain is finite, we can exhaustively check all cases for (x, y).

$$
\begin{aligned}
&(\perp, \ldots): \gamma(x)+\gamma(y)=\emptyset \dot{+} \gamma(y)=\left\{x^{\prime}+y^{\prime} \mid x^{\prime} \in \emptyset, y^{\prime} \in \gamma(y)\right\}=\emptyset=\gamma(\perp)=\gamma(\perp+\# y)=\gamma(x+\# y) \\
&(\mathrm{T}, \ldots): \gamma(x)+\gamma(y)=\mathbb{Z}+\gamma(y)=\mathbb{Z}=\gamma(\top)=\gamma(\mathbb{+}+\# y)=\gamma\left(x+{ }^{\#} y\right)(y \neq \perp) \\
&(0,0): \gamma(x)+\gamma(y)=2 \mathbb{Z}+2 \mathbb{Z}=\left\{x^{\prime}+y^{\prime} \mid x^{\prime} \in 2 \mathbb{Z}, y^{\prime} \in 2 \mathbb{Z}\right\}=\left\{2\left(x^{\prime \prime}+y^{\prime \prime}\right) \mid x^{\prime \prime} \in \mathbb{Z}, y^{\prime \prime} \in \mathbb{Z}\right\}=2 \mathbb{Z} \\
&=\gamma(0)=\gamma\left(0+{ }^{\#} 0\right)=\gamma\left(x++^{\#} y\right) \\
&(1,1): \gamma(x) \dot{+} \gamma(y)=(2 \mathbb{Z}+1) \dot{+}(2 \mathbb{Z}+1)=\left\{x^{\prime}+y^{\prime} \mid x^{\prime} \in 2 \mathbb{Z}+1, y^{\prime} \in 2 \mathbb{Z}+1\right\} \\
&=\left\{2\left(x^{\prime \prime}+y^{\prime \prime}+1\right) \mid x^{\prime \prime} \in \mathbb{Z}, y^{\prime \prime} \in \mathbb{Z}\right\}=2 \mathbb{Z}=\gamma(0)=\gamma\left(1+{ }^{\#} 1\right)=\gamma\left(x+{ }^{\#} y\right) \\
&(0,1): \gamma(x)+\gamma(y)=2 \mathbb{Z}+(2 \mathbb{Z}+1)=\left\{x^{\prime}+y^{\prime} \mid x^{\prime} \in 2 \mathbb{Z}, y^{\prime} \in 2 \mathbb{Z}+1\right\}=\left\{2\left(x^{\prime \prime}+y^{\prime \prime}\right)+1 \mid x^{\prime \prime} \in \mathbb{Z}, y^{\prime \prime} \in \mathbb{Z}\right\} \\
&=2 \mathbb{Z}+1=\gamma(1)=\gamma\left(0+{ }^{\#} 1\right)=\gamma\left(x+{ }^{\#} y\right)
\end{aligned}
$$

Other cases are covered by the commutativity of $+{ }^{\text {\# }}$.
Claim 2. $\gamma(x)=-\gamma(x)$
Proof. Since the abstract domain is finite, we can exhaustively check all cases for x.
$\perp: \gamma(\perp)=\emptyset=\{-s \mid s \in \emptyset\}=\dot{-} \emptyset=\dot{-} \gamma(\perp)$
$\top: \gamma(\top)=\mathbb{Z}=\{z \mid z \in \mathbb{Z}\}=\{-(-z) \mid z \in \mathbb{Z}\}=\{-w \mid w \in \mathbb{Z}\}=\dot{-}=\dot{Z}=\gamma(\top)$
$0: \gamma(0)=2 \mathbb{Z}=\{2 z \mid z \in \mathbb{Z}\}=\{-2(-z) \mid z \in \mathbb{Z}\}=\{-2 w \mid w \in \mathbb{Z}\}=\dot{-} 2 \mathbb{Z}=\dot{-} \gamma(0)$
$1: \gamma(1)=2 \mathbb{Z}+1=\{2 z+1 \mid z \in \mathbb{Z}\}=\{-(2(-z-1)+1) \mid z \in \mathbb{Z}\}=\{-(2 w+1) \mid w \in \mathbb{Z}\}=\dot{-}(2 \mathbb{Z}+1)=\dot{-} \gamma(1)$
Claim 3. $\gamma(x) \cup \gamma(y)=\gamma\left(x \cup^{\#} y\right)$
Proof. Since the abstract domain is finite, we can exhaustively check all cases for (x, y).
$\left(\perp, _\right): \gamma\left(\perp \cup^{\#} y\right)=\gamma(y)=\emptyset \cup \gamma(y)=\gamma(\perp) \cup \gamma(y)$
$(\top, \ldots): \gamma(\top \cup \# y)=\gamma(\top)=\mathbb{Z}=\mathbb{Z} \cup \gamma(y)=\gamma(T) \cup \gamma(y) \quad(y \neq \perp)$
$(x, x): \gamma\left(x \cup^{\#} x\right)=\gamma(x)=\gamma(x) \cup \gamma(x)$
$(0,1): \gamma(0 \cup \# 1)=\gamma(\top)=\mathbb{Z}=2 \mathbb{Z} \cup(2 \mathbb{Z}+1)=\gamma(0) \cup \gamma(1)$
Other cases are covered by the commutativity of $\cup^{\#}$.
Now we can prove our main claim.
Claim 4. For any program $C, S \subseteq \gamma\left(s^{\#}\right) \Rightarrow \llbracket C \rrbracket S \subseteq \gamma\left(\llbracket C \rrbracket^{\#} s^{\#}\right)$
Proof. We use structural induction on C.
(Base case 1) $C=$ store E
To prove $S \subseteq \gamma\left(s^{\#}\right) \Rightarrow \llbracket E \rrbracket S \subseteq \gamma\left(\llbracket E \rrbracket^{\#} s^{\#}\right)$, we use structural induction on E.
(Base case 1) $E=n$

$$
\llbracket E \rrbracket S=\{n\}, \text { and } \llbracket E \rrbracket^{\#} s^{\#}=n \bmod 2 \Rightarrow \gamma\left(\llbracket E \rrbracket^{\#} s^{\#}\right)=\{m \mid n \equiv m(\bmod 2)\}
$$

Since $n \equiv n(\bmod 2), \llbracket E \rrbracket S \subseteq \gamma\left(\llbracket E \rrbracket \# s^{\#}\right)$.
(Base case 2) $E=$ load
$\llbracket E \rrbracket S=S$, and $\llbracket E \rrbracket^{\#} s^{\#}=s^{\#}$, so directly we can see that $\llbracket E \rrbracket S=S \subseteq \gamma\left(s^{\#}\right)=\gamma\left(\llbracket E \rrbracket^{\#} s^{\#}\right)$.
(Inductive case 1) $E=E_{1}+E_{2}$

$$
\begin{aligned}
\llbracket E \rrbracket S & =\llbracket E_{1} \rrbracket S \dot{+} \llbracket E_{2} \rrbracket S \\
& \subseteq \gamma\left(\llbracket E_{1} \rrbracket \rrbracket^{\#} s^{\#}\right)+\gamma\left(\llbracket E_{2} \rrbracket^{\#} s^{\#}\right) \\
& =\gamma\left(\llbracket E_{1} \rrbracket^{\#} s^{\#}+\# \llbracket E_{2} \rrbracket^{\#} s^{\#}\right) \\
& =\gamma\left(\llbracket E_{1}+E_{2} \rrbracket^{\#} s^{\#}\right)
\end{aligned}
$$

$\left(\because \llbracket E_{i} \rrbracket S \subseteq \gamma\left(\llbracket E_{i} \rrbracket \# s^{\#}\right)\right.$ by the inductive hypothesis, and $\left.A_{i} \subseteq B_{i} \Rightarrow A_{1} \dot{+} A_{2} \subseteq B_{1}+B_{2}\right)$
(\because Claim 1)
(Inductive case 2) $E=-E_{1}$

$$
\begin{array}{rlr}
\llbracket E \rrbracket S & =\llbracket-E_{1} \rrbracket S \\
& =\dot{-} \llbracket E_{1} \rrbracket S \\
& \subseteq \dot{-} \gamma\left(\llbracket E_{1} \rrbracket \rrbracket^{\#} s^{\#}\right) & \left(\because \llbracket E_{i} \rrbracket S \subseteq \gamma\left(\llbracket E_{i} \rrbracket^{\#} s^{\#}\right)\right. \text { by the inductive hypothesis, and } \\
& =\gamma\left(\llbracket E_{1} \rrbracket \# s^{\#}\right) \\
& =\gamma\left(\llbracket-E_{1} \rrbracket \rrbracket^{\#} s^{\#}\right) & A \subseteq B \Rightarrow \dot{A} \subseteq \dot{-}) \\
\therefore S \subseteq \gamma\left(s^{\#}\right) \Rightarrow \llbracket C \rrbracket S=\llbracket E \rrbracket S \subseteq \gamma\left(\llbracket E \rrbracket^{\#} s^{\#}\right)=\gamma\left(\llbracket C \rrbracket^{\#} s^{\#}\right)
\end{array}
$$

(Base case 2) $C=$ skip
$\llbracket C \rrbracket S=S \subseteq \gamma\left(s^{\#}\right)=\gamma\left(\llbracket C \rrbracket^{\#} s^{\#}\right)$
(Inductive case 1) $C=C_{1}$ or C_{2}

$$
\begin{array}{rlr}
\llbracket C \rrbracket S & =\llbracket C_{1} \rrbracket S \cup \llbracket C_{2} \rrbracket S & \\
& \subseteq \gamma\left(\llbracket C_{1} \rrbracket^{\#} s^{\#}\right) \cup \gamma\left(\llbracket C_{2} \rrbracket^{\#} s^{\#}\right) & \left(\because \llbracket C_{i} \rrbracket S \subseteq \gamma\left(\llbracket C_{i} \rrbracket^{\#} s^{\#}\right)\right. \text { by the inductive hypothesis) } \\
& =\gamma\left(\llbracket C_{1} \rrbracket^{\#} s^{\#} \cup \sharp \llbracket C_{2} \rrbracket^{\#} s^{\#}\right) & \\
& =\gamma\left(\llbracket C_{1} \text { or } C_{2} \rrbracket^{\#} s^{\#}\right) & \\
& =\gamma\left(\llbracket C \rrbracket^{\#} s^{\#}\right) &
\end{array}
$$

(Inductive case 2) $C=C_{1} ; C_{2}$
$\llbracket C \rrbracket S=\llbracket C_{2} \rrbracket\left(\llbracket C_{1} \rrbracket S\right)$. Let $S_{1}=\llbracket C_{1} \rrbracket S$, and $s_{1}^{\#}=\llbracket C_{1} \rrbracket{ }^{\#} s^{\#}$, so that we may write $\llbracket C \rrbracket S=\llbracket C_{2} \rrbracket S_{1}$ and $\llbracket C \rrbracket \# s^{\#}=\llbracket C_{2} \rrbracket \# s_{1}^{\#}$.
Now,

$$
\begin{aligned}
S \subseteq \gamma\left(s^{\#}\right) & \Rightarrow S_{1} \subseteq \gamma\left(s_{1}^{\#}\right) & & \left(\because \text { by the inductive hypothesis for } C_{1}\right) \\
& \Rightarrow \llbracket C_{2} \rrbracket S_{1} \subseteq \gamma\left(\llbracket C_{2} \rrbracket \rrbracket_{1}^{\#}\right) & & \left(\because \text { by the inductive hypothesis for } C_{2}\right) \\
& \Rightarrow \llbracket C \rrbracket S \subseteq \gamma\left(\llbracket C \rrbracket^{\#} s^{\#}\right) & & \left(\because \text { by definition of } S_{1}, s_{1}^{\#}\right)
\end{aligned}
$$

