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Abstract
This paper presents 3MT, a framework for modular mechanized
meta-theory of languages with effects. Using 3MT, individual lan-
guage features and their corresponding definitions – semantic func-
tions, theorem statements and proofs – can be built separately and
then reused to create different languages with fully mechanized
meta-theory. 3MT combines modular datatypes and monads to
define denotational semantics with effects on a per-feature basis,
without fixing the particular set of effects or language constructs.

One well-established problem with type soundness proofs for
denotational semantics is that they are notoriously brittle with re-
spect to the addition of new effects. The statement of type sound-
ness for a language depends intimately on the effects it uses, mak-
ing it particularly challenging to achieve modularity. 3MT solves
this long-standing problem by splitting these theorems into two
separate and reusable parts: a feature theorem that captures the
well-typing of denotations produced by the semantic function of an
invidual feature with respect to only the effects used, and an effect
theorem that adapts well-typings of denotations to a fixed superset
of effects. The proof of type soundness for a particular language
simply combines these theorems for its features and the combina-
tion of their effects. To establish both theorems, 3MT uses two key
reasoning techniques: modular induction and algebraic laws about
effects. Several effectful language features, including references
and errors, illustrate the capabilities of 3MT. A case study reuses
these features to build fully mechanized definitions and proofs for
28 languages, including several versions of mini-ML with effects.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics

General Terms Languages

Keywords mechanized meta-theory; modularity; monads; side-
effects

1. Introduction
Theorem provers are actively used to mechanically verify large-
scale formalizations of critical components, including program-
ming language meta-theory [1], compilers [25], large mathematical
proofs [15] and operating system kernels [23]. Due to their scale
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and complexity, these developments can be quite time consuming,
often demanding multiple man-years of effort.

It is reasonable to expect that variations can simply extend and
reuse the original development in order to leverage the large in-
vestment of resources in these formalizations. This is unfortunately
often not the case, as even small extensions can require significant
additional effort. Adding a new language feature to a programming
language formalization or compiler, for example, involves signifi-
cant redesigns that have a cross-cutting impact on nearly all defi-
nitions and proofs in the formalization. This leads to a copy-paste-
patch approach to reuse with several modified copies of the original
development, making it difficult to compose new features and ulti-
mately leading to a maintenance nightmare. Dissatisfied with this
situation, several researchers [1, 15, 43, 44] have called for better
ways to modularize mechanical formalizations.

This work extends the current state-of-the-art in modular mech-
anizations by solving a well-known and long-standing open prob-
lem with denotational semantics: type soundness proofs are notori-
ously brittle with respect to the addition of new effects. This is an
important problem because effects are pervasive in programming
language formalizations: in addition to extensions to syntax and
semantics, new features usually introduce new effects to the de-
notations. Without a more robust formulation of type soundness,
the addition of new effects requires cross-cutting changes to type
soundness theorem statements and proofs.

Initially the semantics themselves were also brittle with respect
to effects [24, 32], but monads [31, 50] have been found to provide
the necessary robustness to denotations. Yet as far as we know, the
brittleness of (denotational) type soundness proofs has remained
an open problem since it was raised by Wright and Felleisen [53]
to motivate their own type-soundness approach. The framework
we present here, modular monadic meta-theory (3MT), is the first
in 20 years to provide a substantial solution. Using 3MT, we
develop a novel approach to proving type soundness for monadic
denotational semantics in a way that is modular in the set of effects
used. Proofs for individual features do not depend on effects they
do not use and hence are robust to extension.

The solution builds on Meta-Theory à la Carte (MTC) [9], a Coq
framework for the mechanization of formal programming language
meta-theory that supports modular extension of existing definitions.
With MTC it is possible to develop meta-theory which is modular
in two dimensions: language features on the one hand and functions
and proofs over these features on the other hand. MTC adapts
ideas from existing programming language solutions [34, 46] to
the expression problem [51] for functions and features, and adds
modular induction for proofs.

3MT adds a third modularity dimension to MTC: modular
addition of new effects. 3MT enables the separate definition of
features with effectful semantic functions and proofs over these
functions, and reuse of these features in formalizations of multiple
languages.



To make denotations robust with respect to effects, 3MT uses
the established solution, monads. In Coq, type classes [52] enable
semantic function definitions that are constrained, yet polymorphic
in the monad. This allows the inclusion of a feature in any language
which supports a superset of its effects. When a language is com-
posed from different effectful features, monad transformers [28]
are used to instantiate the denotation’s monad with all the effects
required by the modular components.

To solve the key challenge of modularizing and reusing theo-
rems and proofs of type soundness, we split the classic type sound-
ness theorems into three parts:

1. Reusable feature theorems capture the essence of type
soundness for an individual feature. They depend only on
that feature’s syntax, typing relation, semantic function and
the effects used therein. At the same time, they abstract over
the syntax, semantics and effects of other features. This
means that the addition of new features with other types of
effects does not affect the existing feature theorem proofs.
To achieve the abstraction over other effects, a feature uses a
constrained polymorphic monad. As a consequence, it only
establishes the well-typing of the resulting denotations with
respect to the effects declared in the constraints.

2. Reusable effect theorems fix the monad of denotations and
consequently the set of effects. They take well-typing proofs
of monadic denotations expressed in terms of a constrained
polymorphic monad and which mention only a subset of
effects, and turn them into well-typings with respect to a
fixed monad and all the effects it provides.
Effect theorems reason fully at the level of denotations and
abstract over the details of language features like syntax and
semantic functions.

3. Finally, language theorems establish type soundness for a
particular language. They require no more effort than to
instantiate the set of features and the set of effects (i.e., the
monad), thus tying together the respective feature and effect
theorems into an overall proof.

To establish the first two theorems, 3MT relies on modular induc-
tion and algebraic laws about effects. As far as we know, it applies
the most comprehensive set of such laws to date, as each effect uti-
lized by a feature needs to be backed up by laws and interactions be-
tween different effects must also be governed by laws. These laws
are crucial for modular reasoning in the presence of effects.

In summary, the specific contributions of this work are:
• A reusable framework, 3MT, for mechanized meta-theory

of languages with effects. This framework includes a mech-
anized library for monads, monad transformers and corre-
sponding algebraic laws in Coq. Besides several laws for spe-
cific types of effects, the library also includes laws for the
interactions between different types of effects.

• A new modular proof method for type-soundness proofs of
denotational semantics.

• A case study of a family of fully mechanized languages, in-
cluding a mini-ML variant with errors and references. The
case study comprises 28 languages, 8 different effect theo-
rems and 5 features with their feature theorems.

3MT is implemented in the Coq proof assistant and the code is
available at http://www.cs.utexas.edu/~bendy/3MT.

Code and Notational Conventions While all the code underlying
this paper has been developed in Coq, the paper adopts a terser syn-
tax for its many code fragments. For the computational parts, this
syntax exactly coincides with Haskell syntax, while it is an extrap-
olation of Haskell syntax style for propositions and proof concepts.
Following MTC, the Coq code requires the impredicative-set op-
tion due to the use of Church encodings.

2. Background: Meta-Theory à la Carte
This section summarizes the necessary parts of the Meta-Theory à
la Carte (MTC) approach to modular datatypes in Coq. For the full
details of MTC, we refer the reader to the original paper [9].

2.1 Mendler Church Encodings and Folds for Semantics
MTC encodes data types and folds with a variant of Church encod-
ings [5, 36] based on Mendler folds [47]. The advantage of Mendler
folds is that recursive calls are explicit, allowing the user to pre-
cisely control the evaluation order. The Mendler-Church encodings
represent (least) fixpoints and folds as follows:

type AlgebraM f a = ∀r .(r → a)→ f r → a

type FixM f = ∀a.AlgebraM f a → a

foldM :: AlgebraM f a → FixM f → a
foldM alg fa = fa alg

Mendler algebras (AlgebraM f a) use a function argument of type
(r → a) for their recursive calls. To enforce structurally recursive
calls, arguments which appear at recursive positions have a poly-
morphic type r . Using this polymorphic type prevents case analy-
sis, or any type of inspection, on those arguments. Mendler-Church
encodings (FixM f ) are functions of type ∀a.AlgebraM f a → a .
Mendler folds are defined by directly applying a Church encoded
value fa to a Mendler algebra alg . All these definitions are non-
recursive and can thus be expressed in Coq.

Example As a simple example, consider a language for boolean
expressions supporting boolean literals and conditionals:

data LogicF e = BLit Bool | If e e e

type Value = Bool

The evaluation algebra for this language is defined as follows:

ifAlg :: AlgebraM LogicF Value
ifAlg J·K (BLit b) = b
ifAlg J·K (If e1 e2 e3) = if Je1K then Je2K else Je3K

Unlike conventional Church encodings and folds, the recursive
calls (J·K) are explicit and indicate the evaluation order.
The evaluation function simply folds the ifAlg algebra:

eval :: FixM LogicF → Value
eval = foldM ifAlg

2.2 Modular Composition of Features
MTC adapts the Data Types à la Carte (DTC) [46] approach for
composing f -algebras to Mendler algebras.

Modular Functors Because feature syntax is defined by means of
functors, such as LogicF , it can easily be composed with functor
composition:

data (⊕) f g a = Inl (f a) | Inr (g a)

The syntax of a language of both conditional and simple arithmetic
expressions, for example, is Fix (ArithF ⊕ LogicF ) where

data ArithF e = Lit Int | Add e e

Feature semantics are expressed as Mendler algebras and can be
composed in a similar way.

Type Classes Unlike DTC, MTC defines a number of type classes
with laws in order to support proofs. These classes and laws are
summarized in the table in Figure 1. The second column notes
whether the base instances of a particular class are provided by the
user or are automatically inferred with a default instance. Impor-
tantly, instances of all these classes for feature compositions (using
⊕) are built automatically.



Class Definition Description
class Functor f where

fmap :: (a → b)→ (f a → f b)

fmap id :: fmap id ≡ id

fmap fusion :: ∀g h.

fmap h ◦ fmap g ≡ fmap (h ◦ g)

Functors
Supplied by the user

class f ≺: g where

inj :: f a → g a

prj :: g a → Maybe (f a)

inj prj :: prj ga ≡ Just fa →
ga ≡ inj fa

prj inj :: prj ◦ inj ≡ Just

Functor Subtyping
Inferred

class (Functor f ,Functor g, f ≺: g)⇒
WF Functor f g where

wf functor :: ∀a b (h :: a → b).

fmap h ◦ inj ≡ inj ◦ fmap h

Functor Delegation
Inferred

class (Functor h, f ≺: h, g ≺: h)⇒
DistinctSubFunctor f g h where

inj discriminate :: ∀a (fe :: f a)

(ge :: g a).inj fe 6≡ inj ge

Functor Discrimina-
tion
Inferred

class FAlg name t a f where

f algebra : Mixin t f a

Function Algebras
Supplied by the user

class (f ≺: g,FAlg n t a f ,FAlg n t a g)⇒
WF FAlg n t a f g where

wf algebra :: ∀rec (fa :: f t).

f algebra rec (inj fa) ≡
f algebra rec fa

Algebra Delegation
Inferred

class (Functor f ,Functor g, f ≺: g)⇒
PAlg name f g a where

p algebra :: Algebra f a

proj eq :: ∀e.π1 (p algebra e) ≡
inf (inj (fmap π1 e))

Proof Algebras
Supplied by the User

Figure 1. Type classes provided by 3MT
The Functor class provides the fmap method and is an adap-

tation of the corresponding type class in Haskell. In contrast with
the Haskell version, the two functor laws are part of the definition.
The class ≺: represents a subtyping relation between two func-
tors f and g . This class is an adaptation of the corresponding class
in DTC and it includes two additional laws which govern the be-
havior of functor projection and injection (inj prj and prj inj ).
The class WF Functor ensures that fmap distributes through in-
jection, and the class DistinctSubFunctor ensures that injections
from two different subfunctors are distinct. Unlike DTC, MTC de-
fines a single generic Coq type class, FAlg , for the definition of
semantic algebras. FAlg is indexed by the name of the semantic
function (name). Note that the type Mixin:

type Mixin t f a = (t → a)→ f r → a

is a slight generalization of Mendler algebras, which is useful for
defining non-inductive language features such as general recursion
or higher-order binders. The type class WF FAlg provides a well-
formedness condition for every composite algebra. Finally, the type
class PAlg provides the definitions for proof algebras.

2.3 Modular Proofs
The main novelty of MTC is its modular approach to inductive
proofs. Regular structural induction is not available for Church en-
codings, so MTC adapts the proof methods used in the initial al-
gebra semantics of data types [14, 29] – in particular universal
properties – to support modular inductive proofs over Church en-
codings. Proofs are written in the same modular style as functions,
using proof algebras (class PAlg in Figure 1). These algebras are
folded over the terms and can be modularly combined. Unlike func-
tion algebras, proof algebras are subject to an additional constraint
which ensures the validity of the proofs (proj eq).

Sublemmas Each feature builds extensible datatypes by abstract-
ing them over a super-functor. Because this super-functor is ab-
stract, the complete set of cases needed by a proof algebra is un-
known within a feature. To perform induction, a feature must there-
fore dispatch proofs to an abstract proof algebra over this super-
functor. The components of this proof algebra are built in a dis-
tributed fashion among individual features. These components can
then be composed to build a complete proof algebra for a concrete
composition of functors.

As an example, consider the lemma that the type equality func-
tion eqType is sound:

∀t1 t2.eqType t1 t2 ≡ true → t1 ≡ t2 (EqP )

This property can be captured in a proof algebra:

PAlg EqFname f f (∃ e : EqP e)

A feature can build a proof of EqP for a specific type t by folding
this proof algebra over t . Features also provide specific instances
of this proof algebra for the types they introduce:

PAlg EqFname TBoolF f (∃ e : EqP e)

A concrete language with boolean and natural types provides a
proof algebra of the lemma by composing the proof algebras for
the two separate type functors and instantiating the super-functor f
to TNatF ⊕ TBoolF . By instantiating f to other functor compo-
sitions, the proof algebras of the individual features can easily be
reused in other languages.

2.4 No Effect Modularity
Unfortunately, effect modularity is not supported in MTC. Consider
two features: mutable references Ref F and errors ErrF . Both of
these introduce an effect to any language, the former state and the
latter the possibility of raising an error. These effects show up in
the type of their evaluation algebras:

evalRef :: AlgebraM Ref F (Env → (Value,Env))
evalErr :: AlgebraM ErrF (Maybe Value)

MTC supports the composition of two algebras over different func-
tors as long as they have the same carrier. That is not the case here,
making the two algebras incompatible. This problem can be solved
by anticipating both effects in both algebras:

evalRef :: AlgebraM Ref F (Env → (Maybe Value,Env))
evalErr :: AlgebraM ErrF (Env → (Maybe Value,Env))

This anticipation is problematic for modularity: the algebra for ref-
erences mentions the effect of errors even though it does not involve
them, while a language that includes references does not necessar-
ily feature errors. More importantly, the two algebras cannot be
composed with a third feature that introduces yet another effect
(e.g., local environments) without further foresight. It is impossible
to know in advance all the effects that new features may introduce.

3. The 3MT Monad Library
3MT includes a monad library to support effectful semantic func-
tions using monads and monad transformers, and provides alge-
braic laws for reasoning. Monads provide a uniform representation
for encapsulating computational effects such as mutable state, ex-
ception handling, and non-determinism. Monad transformers allow
monads supporting the desired set of effects to be built. Algebraic
laws are the key to modular reasoning about monadic definitions.

3MT implements the necessary definitions of monads and
monad transformers as a Coq library inspired by the Haskell monad
transformer library (MTL) [28]. Our library refines the MTL in two
key ways in order to support modular reasoning using algebraic
laws. While algebraic laws can only be documented informally in



Monad class
class Functor m ⇒ Monad m where

return :: a → m a

(>>=) :: m a → (a → m b)→ m b

return bind :: return x >>= f ≡ f x

bind return :: p >>= return ≡ p

bind bind :: (p >>= f )>>= g ≡
p >>= λx → (f x >>= g)

fmap bind :: fmap f t ≡ t >>= (return ◦ f )

Failure class
class Monad m ⇒ FM m where

fail :: m a

bind fail :: fail >>= f ≡ fail

State class
class Monad m ⇒ SM s m where

get :: m s

put :: s → m ()

get query :: get >> t ≡ t

put get :: put s >> get ≡ put s >> return s

get put :: get >>= put ≡ return ()

get get :: get >>= λs >>= get >>= f s ≡
get >>= λs → f s s

put put :: put s1 >> put s2 ≡ put s2

Reader class
class Monad m ⇒ RM e m where

ask :: m e

local :: (e → e)→ m a → m a

ask query :: ask >> t ≡ t

local return :: local f ◦ return = return

ask ask :: ask >>= λs >>= ask >>= f s ≡
ask >>= λs → f s s

ask bind :: t >>= λx → ask >>= λe → f x e ≡
ask >>= λe → t >>= λx → f x e

local bind :: local f (t >>= g) ≡
local f t >>= local f ◦ g

local ask :: local f ask ≡ ask >>= return ◦ f
local local :: local f ◦ local g ≡ local (g ◦ f )

Exception class
class Monad m ⇒ EM x m where

throw :: x → m a

catch :: m a → (x → m a)→ m a

bind throw :: throw e >>= f ≡ throw e

catch throw1 :: catch (throw e) h ≡ h e

catch throw2 :: catch t throw ≡ t

catch return :: catch (return x) h ≡ return x

fmap catch :: fmap f (catch t h) ≡
catch (fmap f t) (fmap f ◦ h)

Identity monad
newtype I a
I :: a → I a
runI :: I a → a

Failure transformer
newtype FT m a

FT :: m (Maybe a)→ FT m a

runFT :: FT m a → m (Maybe a)

State transformer
newtype ST s m a

ST :: (s → m (a, s))→ ST s m a

runST :: ST s m a → s → m (a, s)

Exception transformer
newtype ET x m a

ET :: m (Either x a)→ ET x m a

runET :: ET x m a → m (Either x a)

Reader transformer
newtype RT e m a

RT :: (e → m a)→ RT e m a

runRT :: RT e m a → e → m a

Figure 2. Key classes, definitions and laws from 3MT’s monadic library. The names of algebraic laws are in bold.

Haskell, our library fully integrates them into type class definitions
using Coq’s expressive type system. Additionally, 3MT systemati-
cally includes laws for all monad subclasses, several of which have
not been covered in the functional programming literature before.

Library overview Figure 2 summarizes the library’s key classes,
definitions and laws. The type class Monad describes the basic
interface of monads. The type m a denotes computations of type
m which produce values of type a when executed. The function
return lifts a value of type a into a (pure) computation that simply
produces the value. The bind function>>= composes a computation
m a producing values of type a , with a function that accepts a value
of type a and returns a computation of type m b. The function >>
defines a special case of bind that discards the intermediate value:

(>>) :: Monad m ⇒ m a → m b → m b
ma >>mb = ma >>= \ → mb

The do notation is syntactic sugar for the bind operator: do {x ←
f ; g } means f >>= λx → g .

Particular monads can be built from basic monad types such as
the identity monad (I) and monad transformers including the failure
(FT), mutable state (ST), and exception (ET) transformers. These
transformers are combined into different monad stacks with I at the
bottom. Constructor and extractor functions such as ST and runST
provide the signatures of the functions for building and running
particular monads/transformers.

In order to support extensible effects, a feature needs to abstract
over the monad implementation used. Any implementation which
includes the required operations is valid. These operations are cap-
tured in type classes such as SM and EM, also called monad sub-
classes. The type classes (denoted by subscript M) are used to re-
quire a monad stack to support a particular effect without assuming
a particular stack configuration.1 Each class offers a set of primitive
operations, such as get to access the state for SM.

Algebraic laws Each monad (sub)class includes a set of algebraic
laws that govern its operations. These laws are an integral part of
the definition of the monad type classes and constrain the possi-
ble implementations to sensible ones. Thus, even without knowing

1 Supporting two instances of the same effect requires extra machinery [41].

the particular implementation of a type class, we can still modu-
larly reason about its behavior via these laws. This is crucial for
supporting modular reasoning [35].

The first three laws for the Monad class are standard, while
the last law (fmap bind) relates fmap and bind in the usual way.
Each monad subclass also includes its own set of laws. The laws for
various subclasses can be found scattered throughout the functional
programming literature, such as for failure [13] and state [13, 35].
Yet, as far as we know, 3MT is the first to systematically bring them
together. Furthermore, although most laws have been presented in
the semantics literature in one form or another, we have not seen
some of the laws in the functional programming literature. One
such example are the laws for the exception class:

• The bind throw law generalizes the bind fail law: a sequen-
tial computation is aborted by throwing an exception.

• The catch throw1 law states that the exception handler is
invoked when an exception is thrown in a catch .

• The catch throw2 law indicates that an exception handler is
redundant if it just re-throws the exception.

• The catch return law states that a catch around a pure com-
putation is redundant.

• The fmap catch law states that pure functions (fmap f )
distribute on the right with catch .

Other definitions Our monad library contains a number of other
classes, definitions and laws apart from the definitions discussed
here. This includes infrastructure for other types of effects (e.g.
writer effects), as well as other infrastructure from the MTL. There
are roughly 30 algebraic laws in total.

4. Modular Monadic Semantics
Features can utilize the monad library included with 3MT to con-
struct algebras for semantic functions which are compatible with a
range of effects. These modular monadic algebras have the form:

evalRef :: SM Store m ⇒ AlgebraM Ref F (m a)
evalErr :: EM () m ⇒ AlgebraM ErrF (m a)

These algebras use monad subclasses such as SM and EM to con-
strain the monad required by the feature, allowing the monad to



Simplified value interface
type Value

loc :: Int → Value

stuck :: Value

unit :: Value

isLoc :: Value → Maybe Int

Simplified type interface
type Type

tRef :: Type → Type

tUnit :: Type

isTRef :: Type → Maybe Type

Expression functor
data Ref F a = Ref a

| DeRef a

| Assign a a

type Store = [Value ]

Monadic typing algebra
typeofRef :: FM m ⇒
AlgebraM Ref F (m Type)

typeofRef rec (Ref e) =

do t ← rec e

return (tRef t)

typeofRef rec (DeRef e) =

do te ← rec e

maybe fail return (isTRef te)

typeofRef rec (Assign e1 e2) =

do t1 ← rec e1
case isTRef t1 of

Nothing → fail

Just t → do t2 ← rec e2
if (t ≡ t2)

then return tUnit

else fail

Monadic evaluation algebra
evalRef :: SM Store m ⇒ AlgebraM Ref F (m Value)

evalRef rec (Ref e) =

do v ← rec e

env ← get

put (v : env)

return (loc (length env))

evalRef rec (DeRef e) =

do v ← rec e

env ← get

case isLoc v of

Nothing → return stuck

Just n → return (maybe stuck id (fetch n env))

evalRef rec (Assign e1 e2) =

do v ← rec e1
env ← get

case isLoc v of

Nothing → return stuck

Just n → do v2 ← rec e2
put (replace n v2 env)

return unit

Figure 3. Syntax, type, and semantic function definitions for references.

Arithmetic Expressions Monad m
Boolean Expressions Monad m
Errors EM () m
References SM Store m
Lambda RM Env m,FM m

Figure 4. Effects used by the case study’s evaluation algebras.

have more effects than those used in the feature. These two alge-
bras can be combined to create a new evaluation algebra with type:

(SM m s,EM m x )⇒ AlgebraM (Ref F ⊕ ErrF ) (m a)

The combination imposes both type class constraints while the
monad type remains extensible with new effects. The complete set
of effects used by the evaluation functions for the five language
features used in our case study of Section 7 are given in Figure 4.

4.1 Example: References
Figure 3 illustrates this approach with definitions for the functor for
expressions and the evaluation and typing algebras for the reference
feature. Other features have similar definitions.

For the sake of presentation the definitions are slightly simpli-
fied from the actual ones in Coq. For instance, we have omitted
issues related to the extensibility of the syntax for values (Value)
and types (Type). We refer the interested reader to MTC [9] and
the 3MT Coq code for these details. Value and Type are treated
as abstract datatypes with a number of constructor functions: loc,
stuck , unit , tRef and tUnit denote respectively reference loca-
tions, stuck values, unit values, reference types and unit types.
There are also matching functions isLoc and isTRef for checking
whether a term is a location value or a reference type, respectively.

The type Ref F is the functor for references. It has constructors
for creating references (Ref ), dereferencing (DeRef ) and assign-
ing (Assign) references. The evaluation algebra evalRef uses the
state monad for its reference environment, which is captured in the
type class constraint SM Store m . The typing algebra (typeofRef )
is also monadic, using the failure monad to denote ill-typing.

4.2 Effect-Dependent Theorems
Monadic semantic function algebras are compatible with new ef-
fects and algebraic laws facilitate writing extensible proofs over
these monadic algebras. Effects introduce further challenges to

proof reuse, however: each combination of effects induces its own
type soundness statement. Consider the theorem for a language
with references which features a store σ and a store typing Σ that
are related through the store typing judgement Σ ` σ:

∀e, t,Σ, σ.
{

typeof e ≡ return t
Σ ` σ

}
→

∃v,Σ′, σ′.


put σ >> JeK ≡ put σ′ >> return v

Σ′ ⊇ Σ
Σ′ ` v : t
Σ′ ` σ′


(LSOUNDS)

Contrast this with the theorem for a language with errors, which
must account for the computation possibly ending in an exception
being thrown:

∀e, t.typeof e ≡ return t →
(∃v.JeK ≡ return v∧ ` v : t) ∨ (∃x.JeK ≡ throw x )

(LSOUNDE)

Clearly, the available effects are essential for the formulation of
the theorem. A larger language which involves both exceptions and
state requires yet another theorem where the impact of both effects
cross-cut one another2:

∀e, t,Σ, σ.
{

typeof e ≡ return t
Σ ` σ

}
→

∃v,Σ′, σ′.


put σ >> JeK ≡ put σ′ >> return v

Σ′ ⊇ Σ
Σ′ ` v : t
Σ′ ` σ′


∨

∃x.put σ >> JeK ≡ throw x (LSOUNDES )

Modular formulations of LSOUNDE and LSOUNDS are use-
less for proving a modular variant of LSOUNDES because their

2 A similar proliferation of soundness theorems can be found in TAPL [37].



Σ `M vm : fail
(WFM-ILLTYPED)

Σ ` v : t

Σ `M return v : return t
(WFM-RETURN)

Figure 5. Typing rules for pure monadic values.

induction hypotheses have the wrong form. The hypothesis for
LSOUNDE requires the result to be of the form return v , disal-
lowing put σ′ >> return v (the form required by LSOUNDS).
Similarly, the hypothesis for LSOUNDS does not account for ex-
ceptions occurring in subterms. In general, without anticipating ad-
ditional effects, type soundness theorems with fixed sets of effects
cannot be reused modularly.

5. Modular Monadic Type Soundness
In order to preserve a measure of modularity, we do not prove type
soundness directly for a given feature, but by means of a more
generic theorem. The technique of proving a theorem of interest
by means of a more general theorem is well-known. For a conven-
tional monolithic language, for instance, type soundness is often
established for any well-formed typing context, even though the
main interest lies with the more specific initial, empty context. In
that setting, the more general theorem produces a weaker induction
hypothesis for the theorem’s proof.

Our approach to type soundness follows the core idea of this
technique and relies on three theorems:

FSOUND: a reusable feature theorem that is only aware of the
effects that a feature uses

ESOUND: an effect theorem for a fixed set of known effects, and
LSOUND: a language theorem which combines the two to prove

soundness for a specific language.
In order to maximize compatibility, the statement of the reusable
feature theorem cannot hardwire the set of effects. This statement
must instead rephrase type soundness in a way that can adapt to any
superset of a feature’s effects. Our solution is to have the feature
theorem establish that the monadic evaluation and typing algebras
of a feature satisfy an extensible well-formedness relation, defined
in terms of effect-specific typing rules. Thus, a feature’s proof of
FSOUND uses only the typing rules required for the effects specific
to that feature. The final language combines the typing rules of all
the language’s effects into a closed relation.

Figure 6 illustrates how these reusable pieces fit together to
build a proof of soundness. Each feature provides a proof algebra
for FSOUND which relies on the typing rules (WFM-X) for the ef-
fects it uses. Each unique statement of soundness for a combination
of effects requires a new proof of ESOUND. The proof of LSOUND
for a particular language is synthesized entirely from a single proof
of ESOUND and a combination of proof algebras for FSOUND.

Note that there are several dimensions of modularity here. A
feature’s proof of FSOUND only depends on the typing rules for
the effects that feature uses and can thus be used in any language
which includes those typing rules. The typing rules themselves can
be reused by any number of different features. ESOUND depends
solely on a specific combination of effects and can be reused in
any language which supports that unique combination, e.g. both
LSOUNDA and LSOUNDAR use ESOUNDES .

5.1 Soundness for a Pure Feature
The reusable feature theorem FSOUND states that J·K and typeof
are related by the extensible typing relation:

∀e,Σ. Σ `M JeK : typeof e (FSOUND)
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Extensible Typing Relation The extensible typing relation has
the form:

Σ `M vm : tm

The relation is polymorphic in an environment type env and an
evaluation monad type m . The parameters Σ, vm and tm have types
env , m Value and Maybe Type respectively. The modular typing
rules for this relation can impose constraints on the environment
type env and monad type m . A particular language must instantiate
env and m in a way that satisfies all the constraints imposed by the
typing rules used in its features.

Figure 5 lists the two base typing rules of this relation. These do
not constrain the evaluation monad and environment types and are
the only rules needed for pure features. The (WFM-ILLTYPED)
rule denotes that nothing can be said about computations (me )
which are ill-typed. The (WFM-RETURN) rule ensures that well-
typed computations only yield values of the expected type.

To see how the reusable theorem works for a pure feature,
consider the proof of soundness for the boolean feature.

Proof Using the above two rules, we can show that FSOUND
holds for the boolean feature. The proof has two cases. The boolean
literal case is handled by a trivial application of (WFM-RETURN).
The second case, for conditionals, is more interesting3.

(`M JecK : typeof ec)→
(`M JetK : typeof et)→

(`M JeeK : typeof ee)→

`M



do v ← JecK
case isBool v of

Just b →
if b then JetK

else JeeK
Nothing → stuck


:



do tc ← typeof ec
tt ← typeof et
te ← typeof ee
guard (isTBool tc)
guard (eqT tt te)
return tt


(WFM-IF-VC)

Because J·K and typeof are polymorphic in the monad, we
cannot directly inspect the values they produce. We can, how-

3 We omit the environment Σ to avoid clutter.



ever, perform case analysis on the derivations of the proofs pro-
duced by the induction hypothesis that the subexpressions are
well-formed, `M JecK : typeof ec , `M JetK : typeof et , and
`M JeeK : typeof ee . The final rule used in each derivation deter-
mines the shape of the monadic value produced by J·K and typeof .
Assuming that only the pure typing rules of Figure 5 are used for
the derivations, we can divide the proof into two cases depending
on whether ec , et , or ee was typed with (WFM-ILLTYPED).

• If any of the three derivations uses (WFM-ILLTYPED), the
result of typeof is fail . As fail is the zero of the typing
monad, (WFM-ILLTYPED) resolves the case.

• Otherwise, each of the subderivations was built with (WFM-
RETURN) and the evaluation and typing expressions can be
simplified using the return bind monad law.

`M


case isBool vc of

Just b →
if b then return vt

else return ve
Nothing → stuck

 :

do guard (isTBool tc)
guard (eqT tt te)
return tt


After simplification, the typing expression has replaced the
bind with explicit values which can be reasoned with. If
isTBool tc is false , then the typing expression reduces to
fail and well-formedness again follows from the WFM-
ILLTYPED rule. Otherwise tc ≡ TBool , and we can apply
the inversion lemma

` v : TBool → ∃b.isBool v ≡ Just b

to establish that vc is of the form Just b, reducing the
evaluation to either return ve or return vt . A similar case
analysis on eqT tt te will either produce fail or return tt .
The former is trivially true, and both `M return vt :
return tt and `M return ve : return tt hold in the latter
case from the induction hypotheses.

Modular Sublemmas The above proof assumed that only the
pure typing rules of Figure 5 were used to type the subexpressions
of the if expression, which is clearly not the case when the boolean
feature is included in an effectful language. Instead, case analyses
are performed on the extensible typing relation in order to make
the boolean feature theorem compatible with new effects. Case
analyses over the extensible `M relation are accomplished using
extensible proof algebras which are folded over the derivations
provided by the induction hypothesis, as outlined in Section 2.3.

In order for the boolean feature’s proof of FSOUND to be com-
patible with a new effect, each extensible case analysis requires a
proof algebra for the new typing rules the effect introduces to the
`M relation. These proof algebras are examples of feature inter-
actions [3] from the setting of modular component-based frame-
works. In essence, a feature interaction is functionality (e.g., a
function or a proof) that is only necessary when two features are
combined. Importantly, these proof algebras do not need to be pro-
vided up front when developing the boolean algebra, but can in-
stead be modularly resolved by a separate feature for the interaction
of booleans and the new effect.

The formulation of the properties proved by extensible case
analysis has an impact on modularity. The conditional case of the
previous proof can be dispatched by folding a proof algebra for the
property WFM-IF-VC over `M JvcK : typeof tc . Each new
effect induces a new case for this proof algebra, however, resulting
in an interaction between booleans and every effect. WFM-IF-VC
is specific to the proof of FSOUND in the boolean feature; proofs
of FSOUND for other features require different properties and thus

Σ `M throw x : tm
(WFM-THROW)

Σ `M m >>= k : tm
∀ Σ′ ⊇ Σ x . Σ′ `M h x >>= k : tm

Σ `M catch m h >>= k : tm
(WFM-CATCH)

Figure 7. Typing rules for exceptional monadic values.

different proof algebras. Relying on such specific properties can
lead to a proliferation of proof obligations for each new effect.

Alternatively, the boolean feature can use a proof algebra for
a stronger property that is also applicable in other proofs, cutting
down on the number of feature interactions. One such stronger,
more general sublemma relates the monadic bind operation to well-
typing:

(Σ `M vm : tm)→
(∀v T Σ′ ⊇ Σ. (Σ′ ` v : T )→ Σ′ `M kv v : kt T )→

Σ `M vm >>= kv : tm >>= kt (WFM-BIND)

A proof of WFM-IF-VC follows from two applications of this
stronger property. The advantage of WFM-BIND is clear: it can be
reused to deal with case analyses in other proofs of FSOUND, while
a proof of WFM-IF-VC has only a single use. The disadvantage
is that WFM-BIND may not hold for some new effect, while
the weaker WFM-IF-VC does, possibly excluding some feature
combinations. As WFM-BIND is a desirable property for typing
rules, the case study focuses on that approach.

5.2 Type Soundness for a Pure Language
The second phase of showing type soundness is to prove a state-
ment of soundness for a fixed set of effects. For pure effects, the
soundness statement is straightforward:

∀vm t . `M vm : return t ⇒ ∃v .vm ≡ return v ∧ ` v : t
(ESOUNDP )

Each effect theorem is proved by induction over the derivation
of `M vm : return t . ESOUNDP fixes the irrelevant environment
type to the type () and the evaluation monad to the pure monad I.
Since the evaluation monad is fixed, the proof of ESOUNDP only
needs to consider the pure typing rules of Figure 5. The proof of
the effect theorem is straightforward: WFM-ILLTYPED could not
have been used to derive `M vm : return t , and WFM-RETURN
provides both a witness for v and a proof that it is of type t .

The statement of soundness for a pure language built from a
particular set of features is similar to ESOUNDP :

∀e, t .typeof e ≡ return t ⇒ ∃v .JeK ≡ return v ∧ ` v : t
(LSOUND)

The proof of LSOUND is an immediate consequence of the
reusable proofs of FSOUND and ESOUNDP . Folding a proof al-
gebra for FSOUND over e provides a proof of `M JeK : return t ,
satisfying the first assumption of ESOUNDP . LSOUND follows im-
mediately.

5.3 Errors
The evaluation algebra of the error language feature uses the side
effects of the exception monad, requiring new typing rules.

Typing Rules Figure 7 lists the typing rules for monadic compu-
tations involving exceptions. WFM-THROW states that throw x is
typeable with any type. WFM-CATCH states that binding the re-
sults of both branches of a catch statement will produce a monad
with the same type. While it may seem odd that this rule is formu-
lated in terms of a continuation >>=k , it is essential for compatibil-
ity with the proofs algebras required by other features. As described



∀σ,Σ ` σ → Σ `M k σ : tm

Σ `M get >>= k : tm

(WFM-GET)

Σ′ ` σ Σ′ ⊇ Σ Σ′ `M k : tm

Σ `M put σ >> k : tm

(WFM-PUT)

Figure 8. Typing rules for stateful monadic values.

in Section 5.1, extensible proof algebras over the typing derivation
will now need cases for the two new rules. To illustrate this, con-
sider the proof algebra for the general purpose WFM-BIND prop-
erty. This algebra requires a proof of:

(Σ `M catch e h >>= k : tm)→
(∀v T Σ′ ⊇ Σ. (Σ′ ` v : T )→ Σ′ `M kv v : kt T )→

Σ `M (catch e h >>= k)>>= kv : tm >>= kt

With the continuation, we can first apply the associativity
law to reorder the binds so that WFM-CATCH can be applied:
(catch e h >>= k)>>= kv = catch e h >>= (k>>=kv). The two
premises of the rule follow immediately from the inductive hypoth-
esis of the lemma, finishing the proof. Without the continuation, the
proof statement only binds catch e h to vm , leaving no applicable
typing rules.

Effect Theorem The effect theorem, ESOUNDE , for a language
whose only effect is exceptions reflects that the evaluation function
is either a well-typed value or an exception.

∀vm t . `M vm : return t ⇒
∃x.vm ≡ throw x ∨ ∃v .vm ≡ return v∧ ` v : t (ESOUNDE)

The proof of ESOUNDE is again by induction on the derivation of
`M vm : return t . The irrelevant environment can be fixed to (),
while the evaluation monad is the exception monad ET x I.

The typing derivation is built from four rules: the two pure
rules from Figure 5 and the two exception rules from Figure 7.
The case for the two pure rules is effectively the same as be-
fore, and WFM-THROW is straightforward. In the remaining case,
vm ≡ catch e ′ h , and we can leverage the fact that the evalu-
ation monad is fixed to conclude that either ∃v .e ′ ≡ return v
or ∃x .e ′ ≡ throw x . In the former case, catch e ′ h can be re-
duced using catch return, and the latter case is simplified using
catch throw1. In both cases, the conclusion then follows imme-
diately from the assumptions of WFM-CATCH. The proof of the
language theorem LSOUNDE is similar to LSOUND and is easily
built from ESOUNDE and FSOUND.

5.4 References
Typing Rules Figure 8 lists the two typing rules for stateful com-
putations. To understand the formulation of these rules, consider
LSOUNDS , the statement of soundness for a language with a state-
ful evaluation function. The statement accounts for both the typing
environment Σ and evaluation environment σ by imposing the in-
variant that σ is well-formed with respect to Σ. FSOUND however,
has no such conditions (which would be anti-modular in any case).
We avoid this problem by accounting for the invariant in the typing
rules themselves:

• WFM-GET requires that the continuation k of a get is well-
typed under the invariant.

• WFM-PUT requires that any newly installed environment
maintains this invariant.

The intuition behind these premises is that effect theorems will
maintain these invariants in order to apply the rules.

∀γ. Γ ` γ → Γ `M k γ : tm

Γ `M ask >>=k : tm

(WFM-ASK)

∀ γ. Γ ` γ → Γ′ ` f γ Γ′ `M m : return t′m
∀v. ` v : t′m → Γ `M (k v) : tm

Γ `M local f m >>= k : tm

(WFM-LOCAL)

Γ `M ⊥ : tm
(WFM-BOT)

Figure 9. Typing rules for environment and failure monads.

Effect Theorem The effect theorem for mutable state proceeds
again by induction over the typing derivation. The evaluation
monad is fixed to ST Sigma I and the environment type is fixed to
[Type ] with the obvious definitions for ⊇.

• The proof case for the two pure rules is again straightforward.
• For WFM-GET we have that put σ >>JeK ≡ put σ >>get>>=

k . After reducing this to k σ with the put get law, the result
follows immediately from the rule’s assumptions.

• Similarly, for WFM-PUT we have that put σ >>JeK ≡
put σ >>put σ′ >>k . After reducing this to put σ′ >>k with
the put put law, the result again follows immediately from
the rule’s assumptions.

5.5 Lambda
The case study represents the binders of the lambda feature using
PHOAS [7] to avoid many of the boilerplate definitions and proofs
about term well-formedness found in first-order representations.

The Environment Effect Unlike in MTC, 3MT neatly hides
the variable environment of the evaluation function with a reader
monad RM. This new effect introduces the two new typing rules
listed in Figure 9. Unsurprisingly, these typing rule are similar to
those of Figure 8. The rule for ask is essentially the same as WFM-
GET. The typing rule for local differs slightly from WFM-PUT. Its
first premise ensures that whenever f is applied to an environment
that is well-formed in the original typing environment Γ, the re-
sulting environment is well-formed in some new environment Γ′.
The second premise ensures the body of local is well-formed in
this environment according to some type T , and the final premise
ensures that k is well-formed when applied to any value of type T .
The intuition behind binding the local expression in some k is the
same as with put .

The Non-Termination Effect The lambda feature also introduces
the possibility of non-termination to the evaluation function, which
is disallowed by Coq. MTC solves this problem by combining
mixin algebras with a bounded fixpoint function. This function
applies an algebra a bounded number of times, returning a ⊥ value
when the bound is exceeded. Because MTC represented ⊥ as a
value, all evaluation algebras needed to account for it explicitly.
In the monadic setting, 3MT elegantly represents ⊥ with the fail
primitive of the failure monad. This allows terminating features to
be completely oblivious to whether a bounded or standard fold
is used for the evaluation function, resulting in a much cleaner
semantics. WFM-BOT allows ⊥ to have any type.

6. Effect Compositions
As we have seen, laws are essential for proofs of FSOUND. The
proofs so far have involved only one effect and the laws regulate
the behavior of that effect’s primitive operations.



Languages often involve more than one effect, however. Hence,
the proofs of effect theorems must reason about the interaction be-
tween multiple effects. There is a trade-off between fully instanti-
ating the monad for the language as we have done previously, and
continuing to reason about a constrained polymorphic monad. The
former is easy for reasoning, while the latter allows the same lan-
guage proof to be instantiated with different implementations of
the monad. In the latter case, additional effect interaction laws are
required.

6.1 Languages with State and Exceptions
Consider the effect theorem which fixes the evaluation monad to
support exceptions and state. The statement of the theorem men-
tions both kinds of effects by requiring the evaluation function to
be run with a well-formed state σ and by concluding that well-
typed expressions either throw an exception or return a value. The
WFM-CATCH case this theorem has the following goal:

(Σ ` σ : Σ)

→

∃ Σ′, σ′, v .

{
put σ >> catch e h >>= k ≡ put σ′ >> return v

Σ′ ` v : t

}
∨

∃ Σ′, σ′, x .

{
put σ >> catch e h >>= k ≡ put σ′ >> throw x

Σ′ ` σ′ : Σ′

}
In order to apply the induction hypothesis to e and h , we need to

precede them by a put σ. Hence, put σ must be pushed under the
catch statement through the use of a law governing the behavior of
put and catch . There are different choices for this law, depending
on the monad that implements both SM and EM. We consider two
reasonable choices, based on the monad transformer compositions
ET x (ST s I) and ST s (ET x I):

• Either catch passes the current state into the handler:
put σ >> catch e h ≡ catch (put σ >> e) h

• Or catch runs the handler with the initial state:
put σ >> catch e h ≡ catch (put σ >> e) (put σ >> h)

The WFM-CATCH case is provable under either choice. As the
LSOUNDES proof is written as an extensible theorem, the two cases
are written as two separate proof algebras, each with a different
assumption about the behavior of the interaction. Since the cases
for the other rules are impervious to the choice, they can be reused
with either proof of WFM-CATCH.

6.2 Full Combination of Effects
A language with references, errors and lambda abstractions features
four effects: state, exceptions, an environment and failure. The
language theorem for such a language relies on the effect theorem
ESOUNDESRF given in Figure 10. The proof of ESOUNDESRF is
similar to the previous effect theorem proofs, and makes use of the
full set of interaction laws given in Figure 11. Perhaps the most
interesting observation here is that because the environment monad
only makes local changes, we can avoid having to choose between
laws regarding how it interacts with exceptions. Also note that since
we are representing nontermination using a failure monad FM m ,
the catch fail law conforms to our desired semantics.

7. Case Study
As a demonstration of the 3MT framework, we have built a set
of five reusable language features and combined them to build a
family of languages which includes a mini-ML [8] variant with
references and errors. The study includes pure boolean and arith-
metic features as well as effectful features for references, errors and
lambda abstractions.

∀Σ,Γ, δ, γ, σ, eE , eT .


γ, δ ` eE ≡ eT

Σ ` σ : Σ
Σ ` γ : Γ

typeof eT ≡ return t

→
∃ Σ′, σ′, v .

 local (λ .γ) (put σ >> JeKE)
≡ local (λ .γ) (put σ′ >> return v)

Σ′ ` v : t


∨

∃ Σ′, σ′, v .


local (λ .γ) (put σ >> JeKE)
≡ local (λ .γ(put σ′ >>⊥)

Σ′ ` σ′ : Σ′

Σ′ ⊇ Σ


∨

∃ Σ′, σ′, v .


local (λ .γ) (put σ >> JeKE)
≡ local (λ .Γ(put σ′ >> throw t)

Σ′ ` σ′ : Σ′

Σ′ ⊇ Σ


(ESOUNDESRF )

Figure 10. Effect theorem statement for languages with errors,
state, an environment and failure.

The study builds twenty eight different combinations of the
features which are all possible combinations with at least one
feature providing values.4 Figure 13 presents the syntax of the
expressions, values, and types provided; each line is annotated with
the feature that provides that set of definitions.

Four kinds of feature interactions appear in the case study.
• The PHOAS representation of binders requires an auxiliary

equivalence relation, the details of which are covered in the
MTC paper [9]. The soundness proofs of language theorems

4 Also available at http://www.cs.utexas.edu/~bendy/3MT

Exceptional Environment
class (EM x m,RM m)⇒ ERM x g m where

local throw :: local f (throw e) ≡ throw e

local catch :: local f (catch e h) ≡
catch (local f e) (λx .local f (h x))

Exceptional Failure
class (EM x m, FM m)⇒ FSM x m where

catch fail :: catch fail h ≡ fail

fail neq throw :: fail 6≡ throw x

Exceptional State Failure
class (EM x m, SM s m, FM m)⇒ EFSM x m where

put fail throw :: put σ >> fail 6≡ put σ′ >> throw x

Exceptional State
class (EM x m, FM m)⇒ MonadErrorState x m where

put ret throw :: put σ >> return a 6≡ put σ′ >> throw x

put throw :: ∀A B.put σ >> throw A x ≡ put σ′ >> throw A x →
put σ >> throw B x ≡ put σ′ >> throw B x

Alternate Exceptional State laws
class (EM x m, FM m)⇒ ESM1

x m where

put catch1 :: put σ >> catch e h ≡ catch (put σ >> e) h

Or
class (EM x m, FM m)⇒ ESM2

x m where

put catch2 :: put env >> catch e h ≡
catch (put σ >> e) (λx → put σ >> h x)

Figure 11. Interaction laws
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e ::= N | e + e Arith
| B | if e then e else e Bool
| lam x : T.e | e e | x Lambda
| ref e | !e | e:=e References
| try e with e | error Errors

V ::= N Arith
| B Bool
| clos e V Lambda
| loc N References

T ::= Nat Arith
| Bool Bool
| T → T Lambda
| Ref T References

Figure 13. mini-ML expressions, values, and types

for languages which include binders proceed by induction
over this equivalence relation instead of expressions. The
reusable feature theorems of other features need to be lifted
to this equivalence relation.

• The effect theorems that feature an environment typing Σ,
such as those for state or environment, need a weakening
sublemma which states that each well-formed value under
Σ is also well-formed under a conservative extension:

Σ ` v : t→ Σ′ ⊇ Σ→ Σ′ ` v : t

• Inversion lemmas for the well-formed value relation as in the
proof of FSOUND for the boolean feature in Section 5.1 are
proven by induction over the relation.

The proofs of the first and second kind of feature interactions are
straightforward; the inversion lemmas of the third kind can be dis-
patched by tactics hooked into the type class inference algorithm.

The framework itself consists of about 4,400 LoC of which
about 2,000 LoC comprise the implementation of the monad trans-
formers and their algebraic laws. The size in LoC of the implemen-
tation of semantic evaluation and typing functions and the reusable
feature theorem for each language feature is given in the left box
in Figure 12. The right box lists the sizes of the effect theorems.
Each language needs on average 110 LoC to assemble its semantic
functions and soundness proofs from those of its features and the
effect theorem for its set of effects.

8. Related Work
While previous work has explored the basic techniques of modu-
larizing dynamic semantics of languages with effects, our work is
the first to show how to also do modular proofs. Adding the ability

to do modular proofs required the development of novel techniques
for reasoning about modular components with effects.

8.1 Functional Models for Modular Side Effects
Monads and Monad Transformers Since Moggi [31] first pro-
posed monads to model side-effects, and Wadler [50] popularized
them in the context of Haskell, various researchers (e.g., [21, 45])
have sought to modularize monads. Monad transformers emerged
[6, 28] from this process, and in later years various alternative im-
plementation designs facilitating monad (transformer) implemen-
tations, have been developed, including Filinksi’s layered mon-
ads [10] and Jaskelioff’s Monatron [19].

Monads and Subtyping Filinski’s MultiMonadic MetaLanguage
(M3L) [11, 12] embraces the monadic approach, but uses subtyp-
ing (or subeffecting) to combine the effects of different compo-
nents. The subtyping relation is fixed at the program or language
level, which does not provide the adaptability we achieve with con-
strained polymorphism.

Algebraic Effects and Effect Handlers In the semantics commu-
nity the algebraic theory of computational effects [39] has been an
active area of research. Many of the laws about effects, which we
have not seen before in the context of functional programming, can
be found throughout the semantics literature. Our first four laws for
exceptions, for example, have been presented by Levy [26].

A more recent model of side effects are effect handlers. They
were introduced by Plotkin and Pretnar [38] as a generalization
from exception handlers to handlers for a range of computational
effects, such as I/O, state, and nondeterminism. Bauer and Pret-
nar [4] built the language Eff around effect handlers and show how
to implement a wide range of effects in it. Kammar et al. [22]
showed that effect handlers can be implemented in terms of de-
limited continuations or free monads.

The major advantage of effect handlers over monads is that they
are more easily composed, as any composition of effect operations
and corresponding handlers is valid. In contrast, not every compo-
sition of monads is a monad. In the future, we plan on investigating
the use of effect handlers instead of monad transformers, which
could potentially reduce the amount of work involved on proofs
about interactions of effects.

Other Effect Models Other useful models have been proposed,
such as applicative functors [30] and arrows [17], each with their
own axioms and modularity properties.



8.2 Modular Effectful Semantics
There are several works on how to modularize semantics with
effects, although none of these works considers reasoning.

Mosses [33] modularizes structural operational semantics by
means of a label transition system where extensible labels capture
effects like state and abrupt termination. Swierstra [46] presents
modular syntax with functor coproducts and modular semantics
with algebra compositions. To support effects, he uses modular
syntax to define a free monad. The effectful semantics for this
free monad is not given in a modular manner, however. Jaske-
lioff et al. [20] present a modular approach for operational seman-
tics on top of Swierstra’s modular syntax, although they do not
cover conventional semantics with side-effects. Both Schrijvers and
Oliveira [42] and Bahr and Hvitved [2] have shown how to define
modular semantics with monads for effects; this is essentially the
approach followed in this paper for modular semantics.

8.3 Effects and Reasoning
Non-Modular Monadic Reasoning Although monads are a purely
functional way to encapsulate computational-effects, programs us-
ing monads are challenging to reason about. The main issue is
that monads provide an abstraction over purely functional models
of effects, allowing functional programmers to write programs in
terms of abstract operations like >>=, return , or get and put . One
way to reason about monadic programs is to remove the abstrac-
tion provided by such operations [18]. However, this approach is
fundamentally non-modular.

Modular Monadic Reasoning Several more modular approaches
to modular monadic reasoning have been pursued in the past.

One approach to modular monadic reasoning is to exploit para-
metricity [40, 49]. Voigtländer [48] has shown how to derive para-
metricity theorems for type constructor classes such as Monad .
Unfortunately, the reasoning power of parametricity is limited, and
parametricity is not supported by proof assistants like Coq.

A second technique uses algebraic laws. Liang and Hudak [27]
present one of the earliest examples of using algebraic laws for
reasoning. They use algebraic laws for reader monads to prove
correctness properties about a modular compiler. In contrast to
our work, their compiler correctness proofs are pen-and-paper and
thus more informal than our proofs. Since they are not restricted
by a termination checker or the use of positive types only, they
exploit features like general recursion in their definitions. Oliveira
et al. [35] have also used algebraic laws for the state monad,
in combination with parametricity, for modular proofs of non-
interference of aspect-oriented advice. Hinze and Gibbons discuss
several other algebraic laws for various types of monads [13].
However, as far as we know, we are the first to provide an extensive
mechanized library for monads and algebraic laws in Coq.

8.4 Mechanization of Monad Transformers
Huffmann [16] illustrates an approach for mechanizing type con-
structor classes in Isabelle/HOL with monad transformers. He con-
siders transformer variants of the resumption, error and writer mon-
ads, but features only the generic functor, monad and transformer
laws. The work tackles many issues that are not relevant for our
Coq setting, such as lack of parametric polymorphism and explicit
modeling of laziness.

9. Conclusion
In previous work [9] we have shown that it is possible to modularize
meta-theory along two dimensions: 1) language constructs and 2)
operations and proofs. A significant limitation of that work is that
it only considered pure languages.

This work lifts that limitation and shows how to develop modu-
lar meta-theory for languages with effects. Our solution uses mon-
ads and corresponding algebraic laws for reasoning about different
types of effects. The key challenge that we have solved is how to
formulate and prove a general type-soundness theorem in a mod-
ular way that enables the reuse of feature proofs across multiple
languages with different sets of effects. This turned out to be non-
trivial because existing formulations of type-soundness are very
sensitive to the particular effects used by the language.

As a secondary contribution, our work shows that algebraic laws
about effects scale up to realistic verification tasks such as meta-
theoretic proofs. As far as we know, it is their largest application
to date. In this setting, the proof assistant Coq has been invaluable.
While the typically smaller examples in the functional program-
ming community can easily be dealt with by pen-and-paper proofs,
that approach would not have been manageable for the large family
of type-soundness proofs for mini-ML variants, as keeping track
of large goals and hypotheses by hand would be too painful and
error-prone.
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