
Functional Pearl: The Monad Zipper

Tom Schrijvers
Dept. of Computer Science, K.U.Leuven

Celestijnenlaan 200A
3001 Heverlee, Belgium

tom.schrijvers@cs.kuleuven.be

Bruno C. d. S. Oliveira
ROSAEC Center, Seoul National University

Room 215, Building 138
599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea

bruno@ropas.snu.ac.kr

Abstract
Limitations of monad stacks get in the way of developing highly
modular programs with effects. This pearl demonstrates that Func-
tional Programming’s abstraction tools are up to the challenge. Of
course, abstraction must be followed by clever instantiation: Huet’s
zipper for the monad stack makes components jump through unan-
ticipated hoops.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.2 [Program-
ming Languages]: Language Classifications—Applicative (func-
tional) languages, Haskell; D.3.3 [Programming Languages]:
Language Constructs and Features—Frameworks, patterns, recur-
sion

General Terms Design, Languages

Keywords Monads, monad transformers, zipper, modularity, mix-
ins, expression problem

1. Introduction
As Functional Programmers it would seem that problem solving
invariably involves writing an interpreter of one kind or another.
Adapting an existing interpreter is of course better than writing a
new one from scratch. That is why Liang et al. (1995)’s technique
for modular interpreters is so appealing. A key idea of the modular
interpreters technique, is that each of the features of an interpreter
is written as a separate functor. For example, a simple interpreter
featuring variables and addition has the following two functors:

data Var e = Var String
data Add e = Add e e

which are combined using the disjoint sum

data (⊕) f g e = Inl (f e) | Inr (g e)

The fixpoint assembles a complete expression type from the desired
combination Var ⊕ Lit :

newtype Fix f = In{out :: f (Fix f)}
type Expr0 = Fix (Add ⊕Var)

Each of the features provides a separate evaluation function

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP ’10 September 27-29, Baltimore.
Copyright c© 2010 ACM [to be supplied]. . . $10.00

evalVar :: Var Expr0 → M Int
evalVar (Var v) =

do env ← get
case lookup v env of

Nothing → throw "Variable does not exist!"

Just x → return x

evalAdd :: Add Expr0 → M Int
evalAdd (Add l r) =

do x ← eval0 l
y ← eval0 r
return (x + y)

The main evaluation function dispatches to the appropriate fea-
ture’s evaluation function

eval0 :: Expr0 → M Int
eval0 (In e) = case e of

Inl e → evalAdd e
Inr e → evalVar e

The M monad fills in the requirements for the side-effects of
features. In this case a state monad carries the variable environment
around and an exception monad reports uses of undefined variables.
Monad transformers (Liang et al. 1995) combine these separate
monads into a stack-like monadic structure.

type Env = [(String , Int)]

type M = ST Env (ET String I)

The monad transformers ST and ET represent, respectively, the state
and exception monad transformers; and I is the identity monad.

For convenience smart constructors can be used to construct
values of Expr0

add0 :: Expr0 → Expr0 → Expr0

add0 e1 e2 = In (Inl (Add e1 e2))

var0 :: String → Expr0

var0 v = In (Inr (Var v))

making the interpreter usable in essentially the same way as a
conventional (non-modular) interpreter

client = eval0 (var0 "x" ‘add0 ‘ var0 "y")

What is great about this modular approach is that the code of the
existing features does not need to be touched, if we want to add, say,
integer literals. All that is needed is the code for the new feature

data Lit e = Lit Int

evalLit :: Lit Expr1 → M Int
evalLit (Lit l) = return l

and some updates in the composition and smart constructors code

type Expr1 = Fix (Add ⊕Var ⊕ Lit)

eval1 :: Expr1 → Int
eval1 (In e) = case e of

Inl e → evalAdd e
Inr (Inl e) → evalVar e
Inr (Inr e)→ evalLit e

add1 e1 e2 = In (Inl (Add e1 e2))
var1 v = In (Inr (Inl (Var v)))
lit1 l = In (Inr (Inr (Lit l)))

The catch Unfortunately, the modularity is not as good as it
seems. Even though we do not have to touch the evalVar and
evalAdd code for this addition, we do have to recompile it. The
reason is that the original definition expressions Expr0 , on which
the features depend, has been updated into Expr1 . The monad
type M forms a similar dependency that forces recompilation when
updated.

Another important drawback is that the features cannot be used
in two or more languages at the same time. Again the two depen-
dencies are in our way: the same expression and monad types are
used across all components. Thus two features that use different ex-
pression and monad types cannot reuse the same evaluation code.
Another dependency is present in evalAdd : there is only one eval
function for recursive calls.

Essentially the whole system is entangled with hard, mutual de-
pendencies, making separate compilation and reuse across multiple
different interpreters difficult.

Can we get rid of these hard dependencies and make our inter-
preter more modular?

2. Dependency Abstraction
The solution to hard-wired dependencies is of course abstraction,
which comes in different flavors in Functional Programming.

2.1 Function Abstraction
We relax the eval dependency by parametrization, making eval an
argument of evalAdd :

evalAdd eval (Add l r) =
do x ← eval l

y ← eval r
return (x + y)

This yields the type signature

evalAdd :: (Expr → M Int)→ (Add Expr → M Int)

Other evaluation functions are written similarly for uniformity,
even though they do not involve recursive calls

evalVar :: (Expr → M Int)→ (Var Expr → M Int)
evalLit :: (Expr → M Int)→ (Lit Expr → M Int)

Going one abstraction step further, the more general type of this
open recursion (Cook 1989) pattern is captured by the following
type synonym:

type Open e f r = (e → r)→ (f e → r)

evalAdd :: Open Expr Add (M Int)
evalVar :: Open Expr Var (M Int)
evalLit :: Open Expr Lit (M Int)

Rather than a big multiway case expression for eval the features
can be more conveniently composed using the � combinator

I

ST
Env

ET
String

Lit

Var

Add

evalLit

evalVar

evalAdd

⊛

⊛

Figure 1. The structural composition of the evaluator

class (f � g) where
inj :: f a → g a

instance Functor f ⇒ f � f where
inj = id

instance (Functor g ,Functor f)
⇒ f � (f ⊕ g) where

inj = Inl

instance (Functor g ,Functor h,Functor f , f � g)
⇒ f � (h ⊕ g) where

inj = Inr ◦ inj

inject :: (f � g)⇒ f (Fix g)→ Fix g
inject = In ◦ inj

Figure 2. Injections for the smart constructors.

(�) :: Open e f r → Open e g r → Open e (f ⊕ g) r
evalf � evalg = λeval e →

case e of
Inl el → evalf eval el
Inr er → evalg eval er

and the open recursion can be closed with a fixpoint combinator

fix :: Open (Fix f) f r → (Fix f → r)
fix f = let this = f this ◦ out

in this

yielding a compact eval function

eval = fix (evalAdd � evalVar � evalLit)

What makes this composition so convenient is that the structure of
the evaluation function follows exactly the structure of expression
type

type Expr1 = Fix (Add ⊕Var ⊕ Lit)

Figure 1 illustrates the connections between the feature types, fea-
ture implementations and monad stack.

2.2 Constructor Abstraction
It is possible to make the smart constructors smarter by using a
technique described in the “Data Types à la Carte” (Swierstra
2008) approach. At the essence of these smarter constructors is
an overloaded injection function inject , which automatically lifts
a constructor to the right layer in a disjoint sum of functors. The

relevant code is shown in Figure 2. For each datatype representing
a feature one functor instance is needed:

instance Functor Lit where
fmap (Lit l) = Lit l

instance Functor Var where
fmap (Var v) = Var v

instance Functor Add where
fmap f (Add e1 e2) = Add (f e1) (f e2)

and we also need one instance for functor composition:

instance (Functor f ,Functor g)⇒
Functor (f ⊕ g) where

fmap f (Inl x) = Inl (fmap f x)
fmap f (Inr y) = Inr (fmap f y)

Using inject smarter constructors can be defined for the various
different types of expressions as follows:

lit :: (Lit � g) ⇒ Int → Fix g
lit l = inject (Lit l)

var :: (Var � g) ⇒ String → Fix g
var v = inject (Var v)

add :: (Add � g)⇒ Fix g → Fix g → Fix g
add e1 e2 = inject (Add e1 e2)

The advantage of these constructors versus the ones defined in Sec-
tion 1, is that they do not depend on a particular type of expressions.
Instead they can construct values of multiple different expression
types such as Expr0 or Expr1 .

2.3 Type Abstraction
We can easily further abstract the types of the features’ evaluation
functions by generalizing the concrete types Expr and M to type
variables e and m . In fact, modulo the type synonym, type infer-
ence can do this for us automatically.

evalLit :: Monad m
⇒ Open e Lit (m Int)

evalVar :: (SM Env m,EM String m)
⇒ Open e Var (m Int)

evalAdd :: Monad m
⇒ Open e Add (m Int)

Note that the type class constraints capture the requirements on the
monad m: SM Env m means that m should provide a state of type
Env , and EM String m means that m should support exceptions
of type String .

Figure 3 shows a quick reference guide for the various monad
transformers, classes and operations used throughout this text. All
of these come from the Monatron library (Jaskelioff 2008), which
is the monad transformer library used in this paper.

2.4 Client Code
Now we can compose different expression languages with their
separate evaluation functions side-by-side:

type Expr0 = Fix (Add ⊕Var)
type Expr1 = Fix (Add ⊕Var ⊕ Lit)
type Expr2 = Fix (Add ⊕ Lit)

eval0 :: Expr0 → M Int
eval0 = fix (evalAdd � evalVar)

eval1 :: Expr1 → M Int
eval1 = fix (evalAdd � evalVar � evalLit)

eval2 :: Expr2 → I Int
eval2 = fix (evalAdd � evalLit)

In order to conveniently run the evaluation functions, the
monadic layers are removed:

run0 :: Env → Expr0 → Int
run0 e = unwrap e ◦ eval0

run1 :: Env → Expr1 → Int
run1 e = unwrap e ◦ eval1

run2 :: Expr2 → Int
run2 = runI ◦ eval2

Here, unwrap is defined as follows:

unwrap e = handler ◦ runI ◦ runET ◦ runST e

handler (Left x) = error x
handler (Right t) = fst t

Constructor abstraction cames into play when some expressions are
defined

expr12 :: (Lit � g ,Add � g)⇒ Fix g
expr12 = add (lit 3) (lit 4)

expr1 :: (Lit � g ,Add � g ,Var � g)⇒ Fix g
expr1 = add expr12 (var "x")

The expression expr12 requires a functor supporting Lit and Add .
Since both Expr1 and Expr2 satisfy these requirements, the fol-
lowing programs are valid:

env = [("x", 6)]

p1 = run1 env expr12

p2 = run2 expr12

In contrast, expr1 requires functors that are only supported by by
Expr1 . Consequently only run1 can be used to evaluate Expr1 :

p3 = run1 env expr1

2.5 Mission Accomplished?
That worked wonderfully well: standard abstraction mechanisms
give us separate compilation and reusability of interpreter fea-
tures. So, mission accomplished? Actually, on closer inspection,
the monad abstraction does not work well at all.

Let’s add a memory feature that allows storing the result of an
expression in a register and retrieving it again.

data Mem e = Store e | Retrieve

type Reg = Int

evalMem :: SM Reg m ⇒ Open e Mem (m Int)
evalMem eval (Store e) =

do n ← eval e
put n
return n

evalMem eval Retrieve = get

The type checker complains when we add this feature to our exist-
ing expression language as follows

type Expr3 = Fix (Mem ⊕Var ⊕ Lit)

type M3 = ST Reg (ST Env (ET String I))

eval3 :: Expr3 → M3 Int
eval3 = fix (evalMem � evalVar � evalLit)

The type checker complaint is that Reg and Env are distinct types.
The problem is that there are two uses of get in our features: one
in evalMem; and another in evalVar . Due to automatic lifting,
both get methods read the state from the same top-level ST, which

-- identity monad
newtype I a

I :: a → I a
runI :: I a → a

-- identity monad transformer
newtype IT m a

IT :: m a → IT m a
runIT :: IT m a → m a

-- reader monad transformer
newtype RT e m a

RT :: (e → m a)→ RT e m a
runRT :: e → RT e m a → m a

-- state monad transformer
newtype ST s m a

ST :: (s → m (a, s))→ ST s m a
runST :: s → ST s m a → m (a, s)

-- exception monad transformer
newtype ET x m a

ET :: m (Either x a)→ ET x m a
runET :: ET x m a → m (Either x a)

-- reader monad class
class Monad m ⇒ RM e m | m → e

ask :: RM e m ⇒ m e

-- state monad class
class Monad m ⇒ SM s m | m → s

get :: SM s m ⇒ m s
put :: SM s m ⇒ s → m ()

-- exception monad class
class Monad m ⇒ EM x m | m → x

throw :: EM x m ⇒ x → m a

Figure 3. Monatron quick reference.

happens to contain a Reg value. This is the right thing to do for
evalMem , but wrong for evalVar that expects a value of type Env .

This type error is only a symptom of the real problem though.
Namely, we expect the get calls in evalMem and evalVar to pick,
or automatically lift out, different states in the monad stack, but the
type checker does not distinguish between the two calls.

The lifting is biased towards the top of the monad stack. If
the stack contains two ST instances, then the top one is in focus.
Obviously, we cannot simply rearrange the layers in the monad
stack to fix the problem, because this also alters the semantics and
still the bottom instance remains inaccessible.

In Liang et al.’s modular interpreters this problem is solved us-
ing lift methods to explicitly disambiguate the access to the monad
stack. However, this solution would not work for us because, un-
like Liang et al., we are interested in having modular components
that can be reused in several different configurations; and where
potentialy many different interpreters can coexist at the same time.
The use of lift entails adapting existing code for the library compo-
nents, which is fine when a single instance of a modular interpreter
is in use, but it leads to fundamentally incompatible components
when multiple interpreters with different configurations exist.

A dilemma At this stage it seems that we are left with a dilemma.
On the one hand automatically lifted methods like get are nice be-
cause they do not polute the code and they interact well with ab-
straction, implicitly lifting the monad into the right layer. Unfortu-
natelly, they do not allow multiple instances of the same monad in
the monad stack, which is just too constraining for realistic appli-
cations. On the other hand explicit lift methods are nice to disam-
biguate uses of automatically lifted methods, which allows multiple
monads of the same type to be used in a component. However lift
methods can also lead to a significant loss of abstraction and reuse.

Is there a way out of this dilemma?

3. The Monad Zipper
We want to combine multiple instances of the same monad without
touching the library components. In order to have our cake and eat
it too, we must make the most of the provided abstraction. Indeed,
we can influence the behavior of the library components from the
outside by instantiating the type variables appropriately. Of course,
doing so in the obvious way did not get us anywhere earlier. So we
need to reconsider what we expect from the instantiation: it should
focus the automatic lifting to the desired layer in the stack.

3.1 Stacks and Zippers
Sometimes type-level problems get easier when we shift them to
the value level. Let’s reify the structure of the monad stack in a
data type

data Stack = Push Trans Stack | Bottom Monad
data Trans = T1 | ... | Tn

data Monad = M1 | ... | Mn

where the Ti represent the different transformers and Mi are plain
monads like I.

Huet (1997) taught us how to shift the focus to any position in a
data structure, with his zipper. Here is the Zipper for Stack :

data Zipper = Zipper Path Trans Stack
data Path = Pop Trans Path | Top

where Zipper p l s denotes a stack with layer l in focus, remainder
of the stack s and path p back to the top of the stack. The path is a
reversed list, where the first element is closest to the layer in focus
and the last element is the top of the stack.

The zipper function turns a stack into a zipper with the first
element in focus:

zipper :: Stack → Zipper
zipper (Push t s) = Zipper Top t s

while the up and down functions allow shifting the focus one
position up or down:

up, down :: Zipper → Zipper
up (Zipper (Pop t1 p) t2 s) = Zipper p t1 (Push t2 s)
down (Zipper p t1 (Push t2 s)) = Zipper (Pop t1 p) t2 s

It’s all well and good to zip around a reified form of the monad
stack, but can we do it on the real thing too?

3.2 Monad Zipper
The answer is yes. Here is how the monad zipper (B) is defined:

newtype (t1 B t2) m a = ZT{runZT :: t1 (t2 m) a }

where the type (p B t) s corresponds to the reified data structure
Zipper p t s . However, the monad zipper only changes the
type representation: the Haskell newtype indicates that no actual
structural change to the monad stack t1 (t2 m) takes place.

Mixing Stack and Zipper The type system will not allow values
of type Zipper to be used when values of type Stack are expected.
This segregation is not the case at the type level: the monad zipper

type (B) can appear as part of a monad stack. Indeed, we define
t1 B t2 to be a monad transformer that is the composition of t1 and
t2 :

instance (MonadT t1 ,MonadT t2)
⇒ MonadT (t1 B t2) where

lift = ZT ◦ lift ◦ lift
tbind m f = ZT $ runZT m >>= runZT ◦ f
tmixmap f g = ZT ◦ tmixmap (tmixmap f g)

(tmixmap g f) ◦ runZT

In Monatron, a monad transformer t provides the usual lifting
functionality lift :: m a → t m a . Furthermore, it also supplies
a bind operator tbind :: t m a → (a → t m b) → t m b
for the transformed monad; and treturn :: a → t m a , which is
simply defined by default as lift ◦ return . A distinguishing feature
of Monatron’s monad transformers is the tmixmap method:

tmixmap :: (Monad m,Monad n)
⇒ (∀a.m a → n a)
→ (∀b.n b → m b)→ t m c → t n c

The tmixmap operation takes a natural isomorphism—two natural
transformations, from the monad functor m to the monad functor n
and vice-versa, that are each other’s inverse—and returns a natural
transformation from the monad functor t m to the monad functor
t n . In other words, tmixmap is an operation similar to the fmap
operation of the Functor class, but mapping the monad functor in-
stead. However, unlike fmap the (higher-order) functor t can have
both co-variant and contra-variant occurrences (for the continuation
monad transformer in particular) of m , which explains the need for
the natural isomorphism.

Focus The interesting behavior of t1 B t2 , where it deviates from
a plain monad transformer composition, lies in the methods of
the monad classes: for looking up the method implementations it
ignores (looks through) t1 and only considers t2 m .

For instance, consider the state monad with its methods for read-
ing and writing the state. Monatron provides an explicit dictionary
type

type MakeWith s m

that encapsulates the functionality for accessing a state of type s in
monad m . The actual methods can be retrieved from this dictionary
with helper functions:

getX :: Monad m ⇒ MakeWith s m → m s
putX :: Monad m ⇒ MakeWith s m → s → m ()

A dictionary can be generated for ST s m

makeWithStateT :: Monad m ⇒ MakeWith s (ST s m)

In addition, the state functionality can be lifted through other
monad transformers that reside above the state transformer in the
monad stack. The lifting is uniform: there is a single implemen-
tation for lifting the state transformer methods through all other
monad transformers:

liftMakeWith :: (Monad m,MonadT t)⇒
MakeWith z m → MakeWith z (t m)

For convenience Monatron uses Haskell’s type class mechanism
to make the dictionaries implicit. Figure 4 shows how this is done
for the state monad. The first instance implements the specific func-
tionality for the ST monad using makeWithStateT . The second
instance is more interesting as it shows how Monatron makes use
of liftMakeWith to achieve uniform lifting through any monad
transformer t . Note that other monad transformers are implemented

class Monad m ⇒ SM z m | m → z where
stateM :: MakeWith z m

instance Monad m ⇒ SM z (ST z m) where
stateM = makeWithStateT

instance (SM z m,MonadT t)⇒ SM z (t m) where
stateM = liftMakeWith stateM

get :: SM z m ⇒ m z
get = getX stateM

put :: SM z m ⇒ z → m ()
put = putX stateM

Figure 4. Overloading of state operations in Monatron

in essentially the same way: one instance provides the functional-
ity specific to the particular monad in question; whereas another
instance provides uniform lifting.

The key idea In the case of the monad zipper transformer t1 B t2
t2 should be on focus and t1 should be ignored. Thus adopting the
uniform lifing functionality provided by the second instance would
be the wrong thing to do. With such implementation, the definition
of stateM would be equivalent to:

stateM = isoMakeWith ZT runZT stateM

using an auxiliary function

isoMakeWith :: (∀a.m a → n a)→ (∀a.n a → m a)
→ MakeWith s m → MakeWith s n

that changes a MakeWith dictionary using a given monad isomor-
phism. The above stateM code would merely adopt the SM imple-
mentation of t1 (t2 m) for (t1 B t2) m through the (ZT, runZT)
monad isomorhism, and thereby prefer the SM implementation of
t1 before any in t2 m . However, that is not the desired behavior for
the monad zipper. Instead, using liftMakeWith , we lift the stateM
implementation of t2 m through t1 , ignoring any possible stateM
implementation available for t1 .

instance (MonadT t1 ,MonadT t2 ,Monad m,
SM s (t2 m))⇒ SM s ((t1 B t2) m) where

stateM =
isoMakeWith ZT runZT (liftMakeWith stateM)

Example Now let’s have a look at how to actually use the zipper
monad. Consider the following two examples. The first example
runs put 1 in the regular stack ST Int (ST Int I), and hence
updates the state of the topmost ST transformer. The second shifts
the focus to the other ST transformer with a monad stack of the
form (ST Int B ST Int) I.

> runI $ runST 0 $ runST 0 $ put 1
(((), 1), 0)

> runI $ runST 0 $ runST 0 $ runZT $ put 1
(((), 0), 1)

On the surface, runZT does not provide any expressive power over
lift :

> runI $ runST 0 $ runST 0 $ lift $ put 1
(((), 0), 1)

where put 1 has type ST Int I (). Note that the topmost ST Int
does not appear in this type. In contrast, unlike lift , runZT does
not lose information about any monadic layers. Despite the de-
ceiving similarity between runZT and lift , we will see that runZT

has great advantages when it comes to modular components. First
though, we further develop the correspondence between Huet’s zip-
per and our monad zipper.

Relative Navigation Suppose we have a monad transformer stack
t1 (t2 ... (tn m)). Then the focus lies by default on the topmost
transformer t1 . Analogous to what the zipper function does with
Stack , we can change this monad transformer stack into explicit
zipper form:

zipper :: t m a → (IT B t) m a
zipper = ZT ◦ IT

where the identity monad transformer IT acts as the Top sentinel.
However, this change is entirely unnecessary: t m a and (IT B
t) m a have exactly the same automatic lifting behavior. Indeed,
we have added IT to subsequently ignore it again with IT B t .

The monad zipper becomes useful only when we shift the focus
away from t1 to t2 . We have already seen that ZT accomplishes that
shift of focus, but how can we navigate further down, and back up?

Let us start with moving the focus one step further down:

step2to3 :: (t1 B t2) (t3 m) a → (? B t3) m a

What should come in the place of the question mark? Following
Huet’s zipper, we should push t2 on a reversed stack that already
contains t1 . Pleasingly, if we denote this reversed stack as t1 B t2 ,
we obtain the following very simple implementation for step2to3 :

step2to3 :: (t1 B t2) (t3 m) a → (t1 B t2 B t3) m a
step2to3 = ZT

A further step down:

step3to4 :: (t1Bt2Bt3) (t4 m) a → (t1Bt2Bt3Bt4) m a
step3to4 = ZT

The pattern should now be obvious. A single step down at any
position in the stack is defined as:

↓ :: t1 (t2 m) a → (t1 B t2) m a
↓ = ZT

Stepping back up is similar:

↑ :: (t1 B t2) m a → t1 (t2 m) a
↑ = runZT

such that ↓ ◦ ↑ ≡ id and ↑ ◦ ↓ ≡ id hold.

3.3 Abstraction with the Zipper
How does the monad zipper solve the monad stack abstraction
problem, and avoid clashing monad transformer instances? Simple,
we shift the focus on a different layer in the stack for each feature.
That way the different monad transformer instances do not all have
to be at the top of the stack.

A simple application of this idea consists of defining a combi-
nator ⊗ that shifts each monadic layer one level to the right.

(⊗) :: Open e f (t1 (t2 m) a)
→ Open e g ((t1 B t2) m a)
→ Open e (f ⊕ g) (t1 (t2 m) a)

evalf ⊗ evalg = λeval e →
case e of

Inl el → evalf eval el
Inr er → ↑ (evalg (↓ ◦ eval) er)

Here the evalf feature focusses on the current layer, and evalg

looks one position down – that’s why we have to bring eval down
(↓) to its level and shift the whole back up (↑) to the current level.

This combinator is very useful whenever we have a set of
features that uses a disjoint set of monads (that is, each feature will

I

ST
Reg

ST
Env

ET
String

Lit

Var

Mem

evalLit

evalVar

evalMem

Figure 5. Structural composition with the monad zipper.

newtype (t1 • t2) m a = CT{runCT :: t1 (t2 m) a }

instance (MonadT t1 ,MonadT t2)
⇒ MonadT (t1 • t2) where

lift = CT ◦ lift ◦ lift
tbind m f = CT $ runCT m >>= runCT ◦ f
tmixmap f g = CT ◦ tmixmap (tmixmap f g)

(tmixmap g f) ◦ runCT

instance (Monad m,MonadT t1 ,MonadT t2 ,
SM s (t1 (t2 m)))⇒ SM s ((t1 • t2) m) where

stateM = isoMakeWith CT runCT stateM

Figure 6. Definition of monad transformer composition.

use different monads). No additional work is needed to make the
two state transformers of evalMem and evalVar happily coexist.

eval3 :: Expr3 → M3 Int
eval3 = fix (evalMem ⊗ evalVar ⊗ evalLit)

Note that zipper again nicely preserves the structural correspon-
dence between the expression type and the definition of the evalu-
ation function. More pleasingly, the zipper extends this structural
correspondence to include the monad stack as well (see Figure 5),
as opposed to the previous approach where the same (view of the)
monad stack is shared by all features (see Figure 1).

Actually, in the above composition the ET String transformer
required by Var is lined up with (but not used by) Lit . In this
configuration, that is not a problem, but it does become a problem
when reversing the order of features

type Expr3b = Fix (Lit ⊕Var ⊕Mem)

It is a cleaner solution to group the two transformers used by
Var into a single one, using the composition operator • defined
in Figure 6.1

type M3b = IT ((ST Env • ET String) (ST Reg I))
eval3b :: Expr3b → M3b Int
eval3b = fix (evalLit ⊗ evalVar ⊗ evalMem)

Figure 7 depicts the new structure: every feature type is neatly
aligned with one evaluation function and one (possibly composite
or identity) transformer.

1 Contrast the implementation of (•) with that of (B).

IT

I

ST
Reg

ST
Env

ET
String

Lit

Var

Mem

evalLit

evalVar

evalMem

Figure 7. Structural composition with the monad zipper and trans-
former grouping

4. A Mask with Zippers
We have used the monad zipper to ignore a prefix of the monad
stack. What if we want to ignore other, non-prefix, parts of the
monad stack? The monad zipper can do that too, if we use it in
the middle of the monad stack, rather than only at the top. Using
the Stack - Zipper analogy, this would amount to merging the two
datatypes into one:

data ZStack = Push Trans ZStack
| Zipper Path Trans ZStack
| Bottom Monad

The Zipper constructor has almost the same role as the the Push
constructor: to add another transformer Trans on top of a stack.
The main difference is that is also carries a reversed path of trans-
formers that are not part of the spine of the stack – to be ig-
nored. For instance, Push T1 (Push T2 (Push T3 M1)) is
a regular stack with three transformers, while T2 is ignored in
Push T1 (Zipper (Top T2) T3 M1).

With the actual monad zipper and transformers we do not need
to repeat this merging process. They work together out of the box:
t1 (t2 (t3 m1)) is a regular monad stack and t1 ((t2 B t3) m1)
ignores t2 .

4.1 Monad Masking Language
To simplify masking, we define a little language (m on n), where
n is the masked view of m , with primitive masks

i :: Monad m ⇒ m on m
o :: (Monad m,MonadT t1 ,MonadT t2)
⇒ t1 (t2 m) on (t1 B t2) m

where i means as much as “I want to see the current layer of the
monad stack” and o means “I don’t want to see the current layer”.

The (a`) combinator provides vertical composition

(a`) :: (Monad m1 ,Monad m2 ,Monad m3 ,MonadT t)
⇒ (t m2 on m3)→ (m1 on m2)→ (t m1 on m3)

so that, when composed from left to right, these masking views
stack from top to bottom. For instance, Figure 8 depicts the mask
o a` i a` o that hides the first and third layer.

The masking and unmasking functionality is captured in the to
and from fields of the (m on n) record type

data m on n = View{to :: ∀a.m a → n a
, from :: ∀a.n a → m a }

For i masking and unmasking are simply the identity function.

o

=

oi
Figure 8. The o a` i a` o mask

i = View{to = id
, from = id }

Ignoring the top-most layer with o means applying the monad
zipper to shift down when masking, and up when unmasking.

o = View{to = ↓
, from = ↑}

See that to and from are each other’s inverses: to v ◦ from v ≡
id and from v ◦ to v ≡ id . This is the prerequisite for tmixmap,
which we use in the definition of a lifting function for views:

vlift :: (MonadT t ,Monad m,Monad n)
⇒ (m on n)→ (t m on t n)

vlift v = View{to = tmixmap (to v) (from v)
, from = tmixmap (from v) (to v)}

Lifting, together with horizontal composition

(a`) :: (n on o)→ (m on n)→ (m on o)
v2 a` v1 = View{to = to v2 ◦ to v1

, from = from v1 ◦ from v2 }
are the two building blocks for vertical composition

v2 a` v1 = v2 a` (vlift v1)

So to (i a`o) has type t1 (t2 (t3 m)) a → t1 ((t2 Bt3) m) a:
it hides the second layer.

4.2 Monad Masking in Action
Suppose that we modify our Mem feature to record how often a
value is stored during evaluation for profiling purposes:

type Count = Int

evalMem2 :: (SM Reg (t m), SM Count m,MonadT t)
⇒ Open e Mem (t m Int)

evalMem2 eval (Store e) =
do count ← lift $ get

lift $ put (count + 1)
n ← eval e
put n
return n

evalMem2 eval Retrieve = lift $ get

Because the exception monad does not commute with the state
monad, the relative position of the monad transformers in a stack
affects the semantics. There are two possibilities:

• ET e (ST s...): the state is preserved when an exception is
thrown, or

Mem Var LitM4

I

ST
Reg

ST
Env

ET
String

ST
Count

Figure 9. The monad stack (left) and the layers visible for the
different features (right): black layers are masked and gray layers
are abstracted over.

• ST s (ET e...): the state is forgotten when an exception is
thrown.

Hence, when assembling a language with variables and mem-
ory, we must carefully consider the monad stack configuration in
terms of the desired semantics. A reasonable choice is, upon rais-
ing an exception, to forget the current variable environment and
register, but to retain the profiling information.

type M4 = ST Reg (ST Env (ET String (ST Count I)))

So while evalMem2 seemingly assumes consecutive state trans-
formers, we actually wish to prise these appart, interleave them and
wedge an exception transformer inbetween. The basic zipper ap-
proach of the previous section will not do that; ⊗ assumes the ef-
fects of one feature stay together. Fortunately, this is easily achieved
with our masking language.

For convenience, the fmask combinator embeds a masked fea-
ture into an unmasked monad stack.

fmask :: (m on n)→ Open e f (n a)→ Open e f (m a)
fmask v evalf eval = from v ◦ evalf (to v ◦ eval)

Assembling the evaluation function, with features masked appro-
priately, becomes a breeze.

eval4 :: Expr3 → M4 Int

eval4 = fix (fmask (i a` o a` o) evalMem2

� fmask o evalVar
� evalLit)

Figure 9 depicts the monad stack M4 and the different masked
views the features have of it.

5. The View Beyond the Mask
Views are not restricted to masking; they actually support arbitrary
isomorphic views on the monad stack. In this generalized capacity,
views resolve all kinds of compatibility issues between features.
For instance, rather than to completely ignore or fully grant access
to a transformer, a view can selectively disable functionality.

5.1 Read-Only View
We can restrict the read & write capabilities of a state monad trans-
former to read-only capability. For that purpose we exploit the rep-
resentation of Monatron’s reader transformer RT as a newtype of
ST

newtype RT e m a = RT{runRT :: ST e m a }
to get a very simple view

r :: ST s m on RT s m
r = View{to = RT

, from = runRT}
Now we can express the evaluation of the Var feature with read-
only access to the variable environment (RM Env m)

evalVar3 :: (RM Env m,EM String m)
⇒ Open e Var (m Int)

evalVar3 eval (Var n) =
do env ← ask

case lookup n env of
Nothing → throw "Variable does not exist!"

Just x → return x

while, at the same time, the new post-increment feature has full
access.

data Inc e = Inc String

evalInc :: (SM Env m,EM String m)
⇒ Open e Inc (m Int)

evalInc eval (Inc v) =
do env ← get

case lookup v env of
Just n → do put $ (v ,n + 1) : delete (v ,n) env

return n
Nothing → throw "Variable does not exist!"

Using fmask , we combine both features with a shared state trans-
former.

type Expr4 = Fix (Var ⊕ Inc)
type M5 = ST Env (ET String I)
eval5 :: Expr4 → M5 Int
eval5 = fix (fmask r evalVar3

� evalInc)

More Views What other views can we express? The write-only
view is the obvious companion of the read-only view. A state
isomorphism can also be captured in a view

stateIso :: (s1 → s2)→ (s2 → s1)
→ ST s1 m on ST s2 m

stateIso f f −1 = View{to = iso f f −1

, from = iso f −1 f } where
iso g h m = ST $ λs2 → do (a, s1)← runST (h s2) m

return (a, g s1)

which is useful for instance to share a register between features that
expect values in different units (centimeters vs. inches or radians
vs. degrees, say).

5.2 Internal Disambiguation with Explicit Views
The monad zipper resolves conflicts between different features
with effects of the same type. However, the same issue arises
when a single feature requires two different states, say. Obviously
the externally applied zipper is no solution to this problem that
already manifests itself inside the feature. The traditional solution
to disambiguate two different states within a feature is to use lift .

Consider again the evalMem2 example in Section 4.2. To dis-
ambiguate the Count and Reg states, we have used lift for manip-
ulating the former. Unfortunately, this internally motivated use of
lift imposes a quite unnecessary ordering constraint: in the monad
stack the Reg state transformer must appear above the Count state
transformer. Reversing the order or even overlapping (in suitable
situations) the two transformers is not possible; for that purpose
we need to change the feature implementation or write an alternate
version.

Explicit view parameters allow us abstract from the ordering,
similarly to Piponi (2010)’s tagged transformers but with two ma-
jor advantages: (i) the existing transformer infrastructure does not
have to be augmented with tags, and (ii) we get the full expressivity
of views.

evalMem3 :: (SM Reg m1 , SM Count m2 ,Monad m)
⇒ (m on m1)→ (m on m2)→ Open e Mem (m Int)

evalMem3 reg cnt eval (Store e) =
do count ← getv cnt

putv cnt (count + 1)
n ← eval e
putv reg n
return n

evalMem3 reg cnt eval Retrieve = getv reg

where the auxiliary functions getv and putv apply the appropriate
view. Doesn’t that make the feature code look like call-by-reference
of named variables reg and cnt?

getv :: SM s n ⇒ (m on n)→ m s
getv var = from var get
putv :: SM s n ⇒ (m on n)→ s → m ()
putv var = from var ◦ put

The evaluation function eval4b is equivalent to eval4 , but uses
the new evalMem3 . Note that we use the view i for reg to view the
topmost state transformer, and o for cnt to see the other one.

eval4b :: Expr3 → M4 Int

eval4b = fix (fmask (i a` o a` o) (evalMem3 i o)
� fmask o evalVar
� evalLit)

Changing the order of the two state transformers of evalMem3 is
as simple as swapping the two views.

type M6 = ST Count (ST Env (ET String (ST Reg I)))
eval6 :: Expr3 → M6 Int

eval6 = fix (fmask (i a` o a` o) (evalMem3 o i)
� fmask o evalVar
� evalLit)

6. Discussion
After this exercise on abstraction, it is time to reflect on some of
the design choices and summarize the main ideas.

6.1 Monad Transformers and Data Types à la Carte
As shown in Section 2.5 extending modular features with effects
is not straightforward. The techniques described in this paper can
be viewed as an improvement of the existing techniques to support
modular features with effects.

The approach of Liang et al. (1995) to modular interpreters is an
important step towards the goal of modularizing interpreters (and
programs in general). However their approach does not support
separate compilation nor the concurrent development of several

interpreters, because all the features are entangled through hard
references.

The Data types à la Carte approach (Swierstra 2008) avoids
these hard references: it shows how to abstract away from the con-
crete compositions of datatypes (see Section 2.2). Unlike Liang et
al., Swierstra does not consider the issue of modular implementa-
tions of effectful features of an interpreter. He does, however, apply
his technique to free monads, obtaining a modular way to combine
different monads. This provides an alternative to monad transform-
ers, but we expect similar issues to the ones identified in Section 2.5
to occur for stacks of free monads. Thus, a monad zipper suitably
adapted to stacks of free monads would be desirable.

Unlike Liang et al. and Swierstra, we use open recursion instead
of type classes. Type classes are very good for the ultimate automa-
tion as we do not even have to bother explicitly composing features.
However, this approach does not allow multiple implementations
for the same feature to coexist, since type classes do not permit
more than one instance per (feature) type. At a relatively small cost
of explicitly composing features by hand we gain increased flexi-
bility, expressive power and ability to reuse components.

6.2 Other Stacks for The Zipper
Although the Monatron library is used in this paper to present the
monad zipper, it is certainly possible to use other monad trans-
former libraries such as the MTL, which is a library inspired by
the original design proposed by Liang et al. (1995). We have two
main reasons to prefer Monatron over the MTL.

• The first reason is that in the MTL, the class for monad trans-
fomers

class MonadTrans t where
lift :: m a → t m a

provides only the lift method. However, in order to lift the op-
erations of the various monads through the monad zipper an
operation like the tmixmap provide by Monatron is necessary.
MTL is not fundamentally incompatible; one work-around con-
sists of adding tmixmap in a new subclass of MonadTrans .

• The second, more fundamental, reason to prefer Monatron over
the MTL is that the MTL design prevents certain operations
from being lifted. In particular, as noted by Jaskelioff (2009),
the listen operation of the writer monad seems to be impossible
to lift. This would preclude the use of writer monads, which
is not desirable. Nevertheless, if we would be willing to give
up the listen operation or the writer monad, then it would be
possible to use the monad zipper in the MTL.

While we focus here on the range of monad transformers avail-
able in Monatron, it should be possible to use the monad zipper in
stacks of free monads (Swierstra 2008). It would be also be inter-
esting to adapt the zipper to other effect stacks such as applicative
functors (Mcbride and Paterson 2008) or arrows (Hughes 1998).

7. Conclusion
With this pearl we have shown that highly modular and effectful
systems can be realized in Haskell. Our solution borrows heavily
from the literature, in particular Liang’s modular interpreters and
Swierstra’s data types à la carte, but the monad zipper is the key
ingredient that ties everything together.

The code of this pearl is currently available at http://www.
cs.kuleuven.be/~toms/Research/papers/MonadZipper.tgz,
but will shortly be released on Hackage as part of the Monatron li-
brary.

Acknowledgments
We are grateful to Jeremy Gibbons, Mauro Jaskelioff, Wonchan
Lee, Wouter Swierstra and Stephanie Weirich for their help and
feedback.

Tom Schrijvers is a post-doctoral researcher of the Fund for
Scientific Research - Flanders. Bruno Oliveira is supported by
the Engineering Research Center of Excellence Program of Korea
Ministry of Education, Science and Technology (MEST) / Korea
Science and Engineering Foundation (KOSEF) grant number R11-
2008-007-01002-0.

References
W. R. Cook. A Denotational Semantics of Inheritance. PhD thesis, Brown

University, 1989.
G. Huet. Functional Pearl: The Zipper. Journal of Functional Program-

ming, 7(5):549–554, September 1997.
John Hughes. Generalising monads to arrows. Science of Computer

Programming, 37:67–111, 1998.
Mauro Jaskelioff. Monatron: An extensible monad transformer library. In

IFL ’08: Symposium on Implementation and Application of Functional
Languages, 2008.

Mauro Jaskelioff. Modular monad transformers. In ESOP ’09: Proceed-
ings of the 18th European Symposium on Programming Languages and
Systems, pages 64–79, Berlin, Heidelberg, 2009. Springer-Verlag.

S. Liang, P. Hudak, and M. Jones. Monad transformers and modular
interpreters. In POPL’95, 1995.

Conor Mcbride and Ross Paterson. Applicative programming with effects.
J. Funct. Program., 18(1):1–13, 2008.

D. Piponi. Tagging monad transformer layers, 2010. http://blog.
sigfpe.com/2010/02/tagging-monad-transformer-layers.
html.

Wouter Swierstra. Data types à la carte. J. Funct. Program., 18(4):423–436,
2008.

