
전자기기 사용 금지

1 / 31

SNU 프로그래밍언어 특강

(0.0)

이 광근

kwangkeunyi.snu.ac.kr

2 / 31

인덕induction,귀납 = 집합의 정의

집합을 정의하는 방법

▶ 인덕induction,귀납: 만든것으로 만들기

▶ 그 집합의 원소를 가지고 그 집합의 원소를 만든다
▶ 유한개의 그런 규칙들로 표현

3 / 31

그 집합은 이것이다

▶ 규칙 X
x
: 가정 X와 결론 x.

▶ “X가 정의하려는 집합에 모두 있으면, x도 있어야
한다.”

▶ 그러한 집합 중에서 가장 작은 집합.
▶ 규칙 X

x들 집합을 Φ라고 하자
▶ 규칙들 Φ는 함수 ϕ를 정의:

ϕ(Y) = {x | X
x

∈ Φ, X ⊆ Y }

▶ Φ 규칙들이 정의하는 집합은 함수 ϕ에 의해서 닫혀있는
모든 집합들의 교집합⋂

{X|ϕ(X) ⊆ X}

4 / 31

자연수의 집합:
(∅, 0) ({n}, n+ 1)

영문 소문자 알파벳으로 만들어 지는 스트링의 집합:

(∅, ϵ) ({α}, xα for x ∈ {a, · · · , z})

5 / 31

인덕induction규칙 표기법

자연수 집합은

n → 0 | n+ 1

혹은

0
n

n+ 1

위의 스트링 집합은:

α → ϵ
| xα (x ∈ {a, · · · , z})

혹은

ϵ
α
xα x ∈ {a, · · · , z}

6 / 31

집합이 유한하다면 인덕이 필요없다. 집합 {1, 2, 3}을
규칙들로 표현하면

(∅, 1) (∅, 2) (∅, 3)

혹은

x → 1 | 2 | 3

혹은

1 2 3

가 된다.

7 / 31

리스트의 집합:

nil
ℓ

◦−ℓ

혹은

ℓ → nil | ◦−ℓ

8 / 31

말단에 정수를 가지는 두갈래 나무binary tree들의 집합:

n n ∈ Z
t

N(t, nil)

t
N(nil, t)

t1 t2
N(t1, t2)

혹은
t → n (n ∈ Z)

| N(t, nil)
| N(nil, t)
| N(t, t)

9 / 31

정수식들의 집합:

n n ∈ N
e
−e

e1 e2
e1+e2

e1 e2
e1∗e2

혹은
e → n (n ∈ N)

| −e
| e+ e
| e ∗ e

10 / 31

그 집합은 이렇게 만든다

이 집합 ⋂
{X|ϕ(X) ⊆ X}

을 이렇게 만들 수 있다:⋃
i∈N

ϕi(∅) = ϕ0(∅) ∪ ϕ1(∅) ∪ ϕ2(∅) ∪ · · ·

유한한 크기(i ∈ N)의 것들이 모인 무한한 집합.

11 / 31

자연수 집합 규칙

n → 0 | n+ 1

그 집합은:
ϕ0(∅) = ∅
ϕ1(∅) = {0}
ϕ2(∅) = {0, 1}
ϕ3(∅) = {0, 1, 2}
· · ·

들의 합집합.

12 / 31

리스트의 집합 규칙

ℓ → nil | ◦−ℓ

그 집합은:

ϕ0(∅) = ∅
ϕ1(∅) = {nil}
ϕ2(∅) = {nil, ◦−nil}
ϕ3(∅) = {nil, ◦−nil, ◦−◦−nil}
· · ·

들의 합집합.

13 / 31

두갈래 나무binary tree의 집합 규칙:

t → ◦
| N(t, nil)
| N(nil, t)
| N(t, t)

이 집합은:

ϕ0(∅) = ∅
ϕ1(∅) = {◦}
ϕ2(∅) = {◦, N(◦, nil), N(nil, ◦), N(◦, ◦)}
· · ·

들의 합집합.

14 / 31

스트링 집합 규칙:

α → ϵ
| xα (x ∈ {a, · · · , z})

이 집합은
ϕ0(∅) = ∅
ϕ1(∅) = {ϵ}
ϕ2(∅) = {ϵ, aϵ, · · · , zϵ}
· · ·

들의 합집합.

15 / 31

밑바닥 없는 규칙

집합 규칙:
t → N(t, nil)

| N(nil, t)
| N(t, t)

이 집합은 ∅:
ϕ0(∅) = ϕ1(∅) = · · · = ∅

모든 귀납 규칙
X

x

에서 X ̸= ∅이면 정의하는 집합은 ∅

16 / 31

정리

▶ 인덕induction,귀납 = 집합의 정의(inductive definition)

▶ 인덕규칙들 Φ 표현 방법들

▶ 그 집합은 무엇이지?
▶ “닫혀있는 최소의 집합”
▶

⋂
{A|ϕ(A) ⊆ A}

▶ 그 집합은 어떻게 만들지?
▶ ∅에서 출발해서, 규칙을 유한번 적용해서 만드는
원소들만을 빠짐없이 첨가⋃

i∈N
ϕi(∅)

17 / 31

참고: 코덕coinduction = 무한원소 포함한 집합정의
▶ 코덕coinduction으로 정의하는 집합

= 규칙들 Φ을 존중한다면 모두 포함시키기
▶ 규칙들 Φ가 정의하는 함수 ϕ:

ϕ(Y) = {x | X
x

∈ Φ, X ⊆ Y }

▶ 코덕으로 정의하는 집합은 함수 ϕ가 확장하는 모든
집합들의 합집합 ⋃

{X|X ⊆ ϕ(X)}

▶ 이 집합은 이렇게 만든다: (U는 무한원소를 포함한
전체집합)⋂

i∈N

ϕi(U) = ϕ0(U) ∩ ϕ1(U) ∩ ϕ2(U) ∩ · · ·

무한원소도 포함하는 집합
18 / 31

참고: 정의하는 집합 두 가지

인덕induction으로 정의하면 코덕coinduction으로 정의하면⋂
{X|ϕ(X) ⊆ X}

⋃
{X|X ⊆ ϕ(X)}⋃

i∈N ϕ
i(∅)

⋂
i∈N ϕ

i(U)
ϕ의 최소고정점 ϕ의 최대고정점

ϕ는 유한개의 규칙들 Φ가 정의하는 함수:
ϕ(Y) = {x | X

x
∈ Φ, X ⊆ Y }

19 / 31

원소들의 순서

인덕induction,귀납법으로 정의된 집합 S

▶ ϕi번째에 새롭게 만들어 지는 원소: i째번 원소.

▶ 0째번에 만들어진 원소들(∅)이 씨.

▶ “바닥있는 순서well-founded order”

▶ 인덕induction,귀납법으로 정의된 집합은 바닥있는 순서를

가지고 있다.

20 / 31

인덕induction,귀납법 = 증명의 방법

증명 목표:
∀x ∈ S.P (x)

▶ S가 인덕으로 정의됨, 즉, 모든 원소들의 순서가 있슴.

▶ P (0째번 원소)를 증명: 항상 성립(∅이므로)

▶ 임의의 i > 0에 대해서

(∀j < i.P (j째번 원소)) ⇒ P (i째번 원소)

를 증명.

(“대우법 증명”도 있슴)

21 / 31

증명: 규칙들에 대한 것으로

즉,

▶ 시작(base case): 1째번 원소
규칙

x
가 만드는 x들에 대해, P (x)를 증명.

▶ 인덕(inductive case): 모든 1 < k째번 원소
규칙 X

x
가 만드는 x들에 대해, (∀a ∈ X.P (a)) ⇒ P (x)를

증명.

22 / 31

증명 예

▶ 증명: ∀n ∈ N.0 + 1 + 2 + · · ·+ n = n(n+ 1)/2

▶ 증명: 갈라지면 항상 두갈래로 갈라지는 나무는 말단
노드의 갯수가 내부 노드의 갯수보다 하나 많다.

Tree t → ◦ | N(t, t)

∀t ∈ Tree.|말단노드(t)| = |내부노드(t)|+ 1

23 / 31

논리식 집합

f → T | F
| ¬f
| f ∧ f
| f ∨ f
| f ⇒ f

24 / 31

논리식 의미

조립식 정의 compositional definition

[[T]] = true
[[F]] = false
[[¬f]] = not[[f]]

[[f1 ∧ f2]] = [[f1]] andalso [[f2]]
[[f1 ∨ f2]] = [[f1]] orelse [[f2]]
[[f1 ⇒ f2]] = [[f1]] implies [[f2]]

임의의 논리식 f의 의미가 정의 된 셈.

25 / 31

[[(T ∧ (T ∨ F)) ⇒ F]]
= [[T ∧ (T ∨ F)]] implies [[F]]
= ([[T]] andalso [[T ∨ F]]) implies false
= (true andalso ([[T]] orelse [[F]])) implies false
= (true andalso (true orelse false)) implies false
= false

26 / 31

어떤 집합의 정의
쌍 ({g1, · · · , gn}, f)들의 집합

(Γ, T) (Γ, f)
f ∈ Γ

(Γ, F)

(Γ, f)

(Γ,¬¬f)
(Γ, f)

(Γ, f1) (Γ, f2)

(Γ, f1 ∧ f2)

(Γ, f1 ∧ f2)

(Γ, f1)

(Γ, f1)

(Γ, f1 ∨ f2)

(Γ, f1 ∨ f2) (Γ ∪ {f1}, f3) (Γ ∪ {f2}, f3)
(Γ, f3)

(Γ ∪ {f1}, f2)
(Γ, f1 ⇒ f2)

(Γ, f1 ⇒ f2) (Γ, f1)

(Γ, f2)

(Γ ∪ {f}, F)

(Γ,¬f)
(Γ, f) (Γ,¬f)

(Γ, F)

27 / 31

형식논리의 표기법으로

Γ ⊢ T Γ ⊢ f
f ∈ Γ Γ ⊢ F

Γ ⊢ f

Γ ⊢ ¬¬f
Γ ⊢ f

Γ ⊢ f1 Γ ⊢ f2
Γ ⊢ f1 ∧ f2

Γ ⊢ f1 ∧ f2
Γ ⊢ f1

Γ ⊢ f1
Γ ⊢ f1 ∨ f2

Γ ⊢ f1 ∨ f2 Γ ∪ {f1} ⊢ f3 Γ ∪ {f2} ⊢ f3
Γ ⊢ f3

Γ ∪ {f1} ⊢ f2
Γ ⊢ f1 ⇒ f2

Γ ⊢ f1 ⇒ f2 Γ ⊢ f1
Γ ⊢ f2

Γ ∪ {f} ⊢ F

Γ ⊢ ¬f
Γ ⊢ f Γ ⊢ ¬f

Γ ⊢ F

28 / 31

또 다른 시선: 증명들의 집합을 정의

증명들의 집합을 만드는 증명규칙inference rules, proof rules

▶ 예를 들어, 증명규칙

Γ ⊢ f1 Γ ⊢ f2
Γ ⊢ f1 ∧ f2

은 증명을 만드는 규칙

▶ Γ ⊢ f1와 Γ ⊢ f2의 증명들을 가지고 Γ ⊢ f1 ∧ f2의 증명을
만든다.

29 / 31

증명 나무

{p → ¬p, p} ⊢ p

{p → ¬p, p} ⊢ p → ¬p {p → ¬p, p} ⊢ p

{p → ¬p, p} ⊢ ¬p
{p → ¬p, p} ⊢ F

{p → ¬p} ⊢ ¬p

30 / 31

증명 규칙의 평가
기계가 만드는 {g1, · · · , gn} ⊢ f 는 어떤 것들인가?
예) [[g1 ∧ · · · ∧ gn ⇒ f]] = true 인가?

▶ 기계의 안전성soundness: 믿을만하다

Γ ⊢ f 이면 [[Γ ⇒ f]] = true

▶ 기계의 완전성completeness: 빼먹지않는다

Γ ⊢ f 면이 [[Γ ⇒ f]] = true

31 / 31

