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계획

▶ 준비

▶ 집합set, 함수function, 관계relation

▶ 합집합, 곱집합, 함수집합, 유한함수집합

▶ POpartial order, 체인chain, ⊔, ⊓, ⊥
▶ CPOcomplete partial order, 합CPO, 곱CPO, 함수CPO

▶ 연속함수continuous function, 최소고정점least fixpoint

▶ 문법구조syntax, 의미구조semantics

▶ 무엇의미구조denotational semantics
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집합, 관계

집합 S → Φ 인덕으로, 코덕으로

| {· · · } | {x | x의 조건}
| S + S | S × S

| S → S | S fin→ S

| 2S

▶ A+B = {⟨a, 1⟩ | a ∈ A} ∪ {⟨b, 2⟩ | b ∈ B}.
▶ A×B = {⟨a, b⟩ | a ∈ A, b ∈ B}.
▶ A → B = {함수 f | domain(f) = A, range(f) ⊆ B}
▶ A

fin→ B = {함수 f | domain(f)
fin

⊆ A, range(f) ⊆ B}
▶ 2A = {X|X ⊆ A}
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부분순서partial order

▶ 순서 ⊑
▶ 거울reflexive: x ⊑ x

▶ 한방향anti-symmetric: x ⊑ y ∧ y ⊑ x 이면 x = y

▶ 번짐transitive: x ⊑ y ∧ y ⊑ z 이면 x ⊑ z

▶ 부분순서집합 S: S의 (일부) 원소들 사이에 순서 ⊑가
있으면

▶ 체인chain: 순서대로 일렬로 줄 서는 집합(모든 원소들

사이에 순서가 있는 집합)

▶ ⊔X, X ⊆ S: 최소윗뚜껑least upper bound (존재안할수도)

▶ ⊓X, X ⊆ S: 최대아래뚜껑greatest lower bound

(존재안할수도)
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프로그램 집합 = 인덕으로 정의

프로그램의 생김새

▶ 나무구조를 갖춘 2차원 모습
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정수식

E → n (n ∈ Z)
| E + E

| - E
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명령형 언어 프로그램

C → skip

| x := E

| if E C C

| C ; C
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군더더기 없이

C → &

| = x E

| ? E C C

| ; C C

E → n (n ∈ Z)
| + E E

| - E
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C → &

| x E

| E C C

| C C

E → n (n ∈ Z)
| E E

| - E

이렇게 까지 최대한 핵심만?
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요약된 v.s. 구체적인 문법구조

▶ 요약된 문법구조abstract syntax

▶ 프로그램을 만들 때 사용하는 규칙

▶ 나무구조를 가진 2차원의 구조물

▶ 구체적인 문법구조concrete syntax

▶ 읽을 때 사용하는 규칙

▶ 프로그램의 표현: 1차원의 실

▶ 1차원의 실에서 2차원의 구조물을 복구하는 규칙
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구체적인 문법concrete syntax

-1+2 는 ((− 1) + 2) ? − (1 + 2) ?

▶ 답변 불가
E → n (n ∈ Z)

| E + E

| - E

▶ 답변 가능
E → n (n ∈ Z)

| E + E

| - F

F → n

| ( E )
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구체적인 문법concrete syntax

▶ 1차원의 실에서 2차원의 구조물을 혼동없이 복구시키는

규칙

▶ 방향성associativity과 우선순위precedence

▶ 프로그램 복원parsing 혹은 문법검증parsing 과정의 설계도
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이제부터 “프로그램” 하면

요약된 문법abstract syntax으로 만들어진 2차원의 나무 구조물

▶ 편의를 위해서 1차원 실로 표현

▶ 적절히 괄호를 이용해서 그 구조를 명시
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의미구조semantics

▶ 프로그램이 뜻하는 바를 정의

▶ 프로그램이 뜻 하는 바?
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“1+2”라는 프로그램의 뜻?

▶ 의미 = 단도직입/무엇: “3”

뭐냐를 드러내는, 무엇 의미구조denotational semantics

▶ 의미 = 계산과정/어떻게: “1과 2를 더해 3을 냄”

과정을 드러내는, 실행 의미구조operational semantics
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다양하다

프로그램의 의미를 혼동없이 표현하는 스타일들

▶ 모두 충분히 엄밀

▶ 각 스타일마다 다양한 증명 기술이 존재

▶ 각 스타일이 어울리는 경우가 있슴

▶ 우리 의도에 맞는 의미구조 방식을 선택
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무엇 의미구조denotational semantics

▶ 프로그램의 의미: 전통적인 수학의 세계에서, 의미하는

바 무엇인지를 드러냄

▶ 단도직입, 결국 무엇인지를 드러내는 의미구조

▶ (별명) 조립식 의미구조compositional semantics:

전체의 의미 = 부품들의 의미로 조립

▶ (별명) 고정점 의미구조fixpoint semantics:

함수의 고정점으로 정의
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C → skip

| x := E

| if E C C

| C ; C

E → n (n ∈ Z)
| x

| E + E

| - E

▶ 명령어 C의 의미 = 함수: 메모리에서 메모리로

▶ 메모리 = 함수: 주소에서 값으로
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의미공간semantic domain

의미를 정의할 때 사용하는 물건들의 집합

M ∈ Memory = Var → Value

z ∈ Value = Z
x ∈ Var = ProgramVariable

명령문 C의 의미 [[C]] ∈ Memory → Memory

계산식 E의 의미 [[E]] ∈ Memory → Z
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[[skip]]M = M

[[x := E]]M = M{x 7→ [[E]]M}
[[if E C1 C2]]M = if [[E]]M ̸= 0 then [[C]]M else [[C2]]M

[[C1 ; C2]]M = [[C2]] ([[C1]]M)

[[n]]M = n

[[x]]M = M(x)

[[E1 + E2]]M = ([[E1]]M) + ([[E2]]M)

[[- E]]M = −([[E]]M)

잘 정의되었는가? 조립식인가?
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조립식이 안되는 경우

while E C

의 의미

[[while E C]]M

= if [[E]]M ̸= 0 then [[while E C]]([[C]]M) else M

조립식인가?
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[[while E C]]M

= if [[E]]M ̸= 0 then [[while E C]]([[C]]M) else M

▶ 정의가 아님; 방정식일 뿐

▶ 그 해는 무엇일까? 해는 과연 있을까? 항상 있을까?

있다면 유일하게 있을까?
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▶ 그 질문들에 대한 답은 모두 “예”

▶ 의미방정식에서 사용하는 물건들이 소속된

공간semantic domain이 특별하기 때문

▶ 읽기: [Sco89,Sco72,Sco70]

모든 컴퓨터 프로그램(모든 계산 가능한 함수들)의 의미

(의미방정식의해)는의미공간이론에서규정하는성질의

집합안에서 유일하게 존재하고 그것은 이러이러하다.
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의미공간 이론domain theory

▶ 의미공간 = CPOcomplete partial order set

▶ 프로그램의 의미방정식들에 쓰이는 것들은 모두 어떤

CPO의 원소들

▶ 연산자들은 모두 CPO에서 CPO로 가는

연속함수continuous function

▶ “Computability is continuity.”

▶ “프로그램은 연속함수이다.”
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프로그램 C의 의미 [[C]]에 대한 의미방정식은 항상 다음과

같고

[[C]] = F([[C]])

여기서 [[C]] ∈ D (어떤 CPO)

그리고 F ∈ D → D (D에서 D로의 연속함수들의 CPO)

▶ 이 방정식의 해는 항상 연속함수 F의
최소고정점least fixpoint으로 정의.

▶ 고정점 의미구조fixpoint semantics

26 / 45



CPO (의미공간)

프로그램의 의미는 CPO(complete partial order)라는 공간의

한 원소

▶ CPO 는 집합

▶ 집합의 원소들 간에 어떤 순서가 있고(partial order)

▶ 모든 원소보다작은 밑바닥 원소(⊥)가 있고

▶ 그 순서로 일렬로 줄 세울 수 있는 원소들(chain)의

최소윗뚜껑least upper bound, LUB이 항상 그 집합안에 있다.
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연속함수continuous function, 최소고정점least fixpoint

▶ CPO A, CPO B. 연속함수 f : A → B란, A의 체인chain

의 최소윗뚜껑least upper bound를 보전해주는 함수:

∀체인X ⊆ A.f(
⊔

X) =
⊔
x∈X

f(x).

▶ 연속함수 f : A → A의 최소고정점 lfpf은

lfpf =
⊔
i∈N

f i(⊥) =
l

{x | f(x) ⊑ x}.

▶ 연속함수는 단조함수

▶ 단조함수 f : x ⊑ y ⇒ f(x) ⊑ f(y)

▶ 팽창함수 f : x ⊑ f(x)
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소풍: 일반적으로, 고정점fixpoint 예

“Computer science is full of fixpoints.”

▶ N = {0} ∪ {n+1|n ∈ N}

= lfpλX.{0} ∪ {n+ 1|n ∈ X}
▶ list = {nil} ∪ {(0,l)|l∈ list}

= lfpλX.{nil} ∪ {(0, l)|l ∈ X}
▶ reach(N) = N ∪ reach(next(N))

= lfpλf.(λN.N ∪ f(next(N)))

▶ sort(A) = if sorted(A) then A else

sort(exch(A))

= lfpλf.(λA.sorted(A)? A : f(exch(A)))

▶ fac(n) = if n=0 then 1 else n*fac(n-1)

= lfpλf.(λn.n = 0? 1 : n× f(n− 1))
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CPO 만들기

집합 S

CPO D → S⊥

| D +D

| D ×D

| D → D
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▶ 올려붙인 집합lifted set S⊥은 CPO

▶ CPO와 CPO의 곱product도 CPO

▶ CPO와 CPO의 합sum도 CPO

▶ CPO에서 CPO로 가는 연속함수들의 집합도 CPO
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S⊥ = S ∪ {⊥}
▶ S 원소들 사이의 순서는 없고

▶ 순서는 오직 ⊥과 S 사이에만: ∀x ∈ S.⊥ ⊑ x.

▶ 모든 체인은 유한. 따라서 CPO.
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CPO D1과 D2의 데카르트 곱Cartesian product

D1 ×D2 = {⟨x, y⟩ | x ∈ D1, y ∈ D2}

▶ 원소들의 순서는 조립식component-wise

⟨x, y⟩ ⊑ ⟨x′, y′⟩ iff x ⊑D1 x
′ ∧ y ⊑D2 y

′.

▶ 따라서 CPO. (왜?)

33 / 45



CPO D1과 D2의 합

D1 +D2 = {⟨x, 1⟩ | x ∈ D1} ∪ {⟨x, 2⟩ | x ∈ D2} ∪ {⊥}

▶ 원소들의 순서는 출신별로

⟨x, 1⟩ ⊑ ⟨x′, 1⟩ iff x ⊑D1 x
′

⟨x, 2⟩ ⊑ ⟨x′, 2⟩ iff x ⊑D2 x
′

▶ 따라서 CPO. (왜?)
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CPO D1에서 D2로 가는 모든 연속함수의 집합 D1 → D2 은

CPO

▶ 연속함수들 순서는 조립식point-wise:

f ⊑ g iff ∀x ∈ D1.f(x) ⊑D2 g(x).

▶ 따라서 CPO. (왜?)
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의미구조에서 연속함수 표기법

λx. · · ·x · · ·

(x는 함수의 인자).

▶ 1을 더하는 연속함수: λx.x+ 1

▶ 함수 f를 2에 적용: f2, f(2)

36 / 45



CPO는 모든 프로그래밍언어의 의미공간으로

충분

CPO사이에서 위의 방법으로 정의된 CPO 방정식(domain

equation)의 해가 항상 존재.

▶ 예:
Store = Loc → (Int + Loc + Cmd)

Cmd = Store → Store

를 만족하는 CPO Store는 항상 존재

▶ 참고:

D = D → D

를 만족하는 CPO D도 존재(Dana Scott’s domain

theory). 이 사실이, 왜 CPO가 모든 프로그램의 의미를

담을 수 있는 그릇인지를 말해준다. (왜?)
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▶ 의미방정식에서 사용하는 모든 물건들은 CPO의 원소

▶ 연산자들은 모두 CPO에서 CPO로 가는 연속함수들

▶ 따라서 모든 의미방정식의 해는 항상 어떤 연속함수 F
의 고정점:

X = F(X)

▶ 위의 방정식의 해는 F의 최소고정점 lfpF로 정의:

lfpF = ⊔i∈NF i(⊥)
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그래서 while-문의 의미는?

M ∈ Memory = Var → Value 연속함수 CPO

z ∈ Value = Z⊥ 올려붙인 CPO

x ∈ Var = ProgramVariable⊥ 올려붙인 CPO

명령문 C의 의미

연속함수 [[C]] ∈ Memory → Memory 연속함수 CPO

계산식 E의 의미

연속함수 [[E]] ∈ Memory → Z⊥ 연속함수 CPO
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while-문의 의미방정식은

[[while E C]]M

= if [[E]]M ̸= 0 then [[while E C]]([[C]]M) else M

다시 쓰면,

[[while E C]] =

λM.if [[E]]M ̸= 0 then [[while E C]]([[C]]M) else M.

즉, while-문의 의미 [[while E C]]는 연속 함수

λX.(λM.if [[E]]M ̸= 0 then X([[C]]M) else M)

∈ (Memory → Memroy) → (Memory → Memroy)

의 최소고정점
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[[while E C]]

= lfpF ∈ Memory → Memory

= lfp(λX.(λM.if [[E]]M ̸= 0 then X([[C]]M) else M))

정의되었는가? [[while E C]]는 [[E]]와 [[C]]를 가지고 조립.
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M ∈ Memory = Var → Value

z ∈ Value = Z⊥

x ∈ Var = ProgramVariable⊥
[[C]] ∈ Memory → Memory

[[E]] ∈ Memory → Value

[[skip]] = λM.M

[[x := E]] = λM.M{x 7→ [[E]]M}
[[if E C1 C2]] = λM.if [[E]]M ̸= 0 then [[C]]M else [[C2]]M

[[C1 ; C2]] = λM.[[C2]] ([[C1]]M)

[[while E C]] = lfp(λX.(λM.if [[E]]M ̸= 0 then X([[C]]M) else M))

[[n]] = λM.n

[[x]] = λM.M(x)

[[E1 + E2]] = λM.([[E1]]M) + ([[E2]]M)

[[- E]]M = λM.− ([[E]]M)
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프로그램 C의 의미: 조립식

▶ C는 부품들로 조립됨

C = AB

▶ [[C]]도 부품의미들로 조립됨

[[AB]] = · · · [[A]] · · · [[B]] · · ·
= · · · 1 + 2 · · ·
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프로그램 C의 의미: 고정점

예: C = AB

[[AB]] = [[A]] + [[B]]

여기서

[[A]] = 1

[[B]] = · · · [[B]] · · ·

즉,
([[A]], [[B]]) = (1, · · · [[B]] · · · )

= F([[A]], [[B]])
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프로그램 C의 의미: 고정점

[[C]] = F([[C]]) C의 의미 방정식

[[C]] ∈ D CPO

F ∈ D → D 연속함수

일 때,

[[C]] = lfpF C의 의미

=
⊔

i∈N(F i⊥)

=
d
{x ∈ D | F(x) ⊑ x}
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