
SNU 프로그래밍언어 특강

(1.0)

이 광근

kwangkeunyi.snu.ac.kr

1 / 18

계획

무엇 의미구조denotational semantics 세계에서 증명방법

◮ 고정점에 대한 증명법

◮ 고정점 인덕fixpoint induction으로 증명하기

◮ 고정점 정의를 이용해서 증명하기

◮ 겉보기 증명extentional proof 스타일

(미리보기) 실행 의미구조operational semantics 세계에서의 증명 대비 장점

2 / 18

무엇 의미구조denotational semantics 증명법 I:

고정점에 대한

◮ 프로그램 의미는 연속함수의 최소고정점

◮ 프로그램 의미의 성질 = 최소고정점의 성질

◮ 최소고정점의 성질 증명 방법

1. 고정점 인덕fixpoint induction으로 (만능 아님)

2. 고정점 정의를 이용하기

3 / 18

고정점 인덕fixpoint induction

◮ CPO D, 연속함수 f : D → D

lfpf =
⊔

C (C
let
= {f i⊥D | i ∈ N})

증명할것: P (lfpf) (성질 P)

◮ ∀x ∈ C.P (x)를 보이면, P (lfpf)을 보인것임?

◮ 아님; lfpf 6∈ C 인 경우가 흔하다(무한 CPO)

4 / 18

단, 성질 P가 품에넣는 성질inclusive assertion인 경우라면 오케이:

◮ 고정점 체인 C 집합을 만드는 인덕규칙:

⊥
x

f(x)

이므로

◮ P (⊥)임을 보이고

◮ P (x) ⇒ P (f(x))을 보이면,

◮ P (lfpf)도 사실임 (“lfpf도 그 품에 들어감”).

품에넣는 성질 P : 관심 체인 C ⊆ D에 대해서

(∀x ∈ C.P (x)) =⇒ P (
⊔

C)

인 성질.

5 / 18

◮ P가 품에넣는 성질? 생김새로 판단하기

P → P ∧ P | ∀~y.EP

EP → EP ∨ EP | Q(~y) | f(~y) ⊑ g(~y)

Q 1차 논리식first order predicate

f, g 연속함수

(p.215, Denotational Semantics: The Scott-Strachey Approach to Programming

Language Theory, Joseph E. Stoy)

(“Inductive Method for Proving Properties of Programs”, Manna, Ness,

Vuillemin)

6 / 18

◮ P가 품에넣는 성질? 내용으로 판단하기

◮ 관심 체인 C ⊆ D에 대해서

(∀x ∈ C.P (x)) =⇒ P (
⊔

C)

인지 확인

◮ 예) 연속함수 f, g ∈ D → D, 증명할것: P (lfpf, lfpg),

P (a, b)
let
= ∀x.(a(x) ⊑ k1 =⇒ b(x) ⊑ k2).

위의 P는 품에넣는 성질이다

◮ 관심 체인 C = {(f i⊥, gi⊥) | i ∈ N}에 대해

(∀(a, b) ∈ C.P (a, b)) =⇒ P (
⊔

C)

이므로. (왜?)

7 / 18

고정점 인덕fixpoint induction 예

[[while E C]]

= lfpλX.(λM.[[E]]M?X([[C]]M) : M)

[[repeat C E]]

= lfpλX.((λM.[[E]]M?XM : M) ◦ [[C]])

증명: [[C ; while E C]] = [[repeat C E]] 즉,

8 / 18

[[C ; while E C]] = (lfpF) ◦ [[C]]

[[repeat C E]] = lfpG

F,G = · · ·

이므로, 증명할 것은

P (lfpF, lfpG)
let
= (lfpF ◦ [[C]] = lfpG).

◮ 품에넣는 성질inclusive predicate 이므로

◮ 고정점 인덕fixpoint induction으로:

P (⊥,⊥)를 보이고, P (f, g) ⇒ P (F (f), G(g))를 보인다.

9 / 18

고정점 정의를 이용한 증명법

최소고정점 정의를 이용해서

lfpf
def
=

l
{x | f(x) ⊑ x}

◮ 조건 f(A) ⊑ A를 만족하는 A를 찾고

◮ P (A) 임을 보이면, P (lfpf)이 사실이다.

◮ 단, P가 (P (x) ∧ y ⊑ x =⇒ P (y))이어야

◮ 왜: lfpf은 그런 A보다 작은 원소이므로.

10 / 18

고정점 정의를 이용하는 증명 예

f(n) = if n=0 then ∞ else (f(n-1) || true)

◮ 증명할 것: [[f]] ⊑ λx.true

◮ 즉, lfp(F
let
= λf.λn.n = 0?⊥ : (f(n− 1) or ∗ true))

⊑ λx.true.

증명하기:

1. 찾아라 F (f) ⊑ f 인 f , 그리고

2. f가, 확인하려는 성질을 만족함을 확인하라:

f ⊑ λx.true, 그러면

3. lfpF ⊑ λx.true이다.

그런 f는 (λn.n = 0?⊥ : true)

11 / 18

고정점 정의를 이용하는 증명 예

f(n) = if n=0 then ∞ else (f(n-1) || true)

◮ 증명할 것: [[f]] ⊑ λx.true

◮ 즉, lfp(F
let
= λf.λn.n = 0?⊥ : (f(n− 1) or ∗ true))

⊑ λx.true.

증명하기:

1. 찾아라 F (f) ⊑ f 인 f , 그리고

2. f가, 확인하려는 성질을 만족함을 확인하라:

f ⊑ λx.true, 그러면

3. lfpF ⊑ λx.true이다.

그런 f는 (λn.n = 0?⊥ : true)
(참고) 실행 의미구조operational semantics 세계에서 증명한다면 상대적으로 지루함. 인덕 증명

+ 실행과정 추적: ∀n ∈ N.f(n)이 안멈추거나 true 값을 계산함.

11 / 18

무엇 의미구조denotational semantics 증명법 II: 겉보기

증명extentional proof 스타일

확인하고자 하는 성질 P가 의미 세계안에서 드러나는

“겉모습”에 관한 것일때.

◮ 예) 프로램변환 맞음 ⇒ P ([[출발프로램]], [[도착프로램]]).

◮ P (a, b)
def
= a = b (겉모습 = 무엇의미가 같음)

◮ P (a, b)
def
= a ∼ b (겉모습 = 무엇의미 세계에서 어떤

관계)

◮ 겉모습 증명의 효용: 좀더 확신에 가까워지기 (쩝)

◮ 마치, SW테스트에서 “간접테스트metamorphic test”같은

12 / 18

겉보기 증명extentional proof 스타일: 예 1

이고가기lifting 변환에 대해서

◮ 함수의 자유변수를 인자로 이고가도록 변환

◮ f(x) = x+a −→ f(x,a) = x+a

◮ 함수정의를 맨바깥으로 옮기고

◮ 함수호출을 한상차림으로

이런 이고가기 변환은 맞는가?

13 / 18

◮ 이고가기 변환 liftExp:

liftExp : (A -> X -> Y) Exp

-> ((A × X) -> Y) Exp

◮ 대응하는 의미세계의 함수 lift :

lift : (A → (X → Y) → (X → Y))

→ (A×X → Y) → (A×X → Y)

다음 성질을 만족한다(가정):

(liftF) f (a, x) = F a (λx′.f(a, x′)) x

◮ 다음 겉모습을 증명하자: (의미세계에서 이고가기의 올바름)

(lfp(Fa)) x = (lfp(liftF))(a, x).

14 / 18

증명목표:

(lfp(Fa)) x = (lfp(liftF))(a, x)

고정점 인덕으로 증명: P (lfp(F a), lfp(lift F))

P (f, g)
let
= (f x = g (a, x)).

◮ ⊥X→Y x = ⊥A×X→Y (a, x)? 네.

◮ f x = g (a, x)이면 P ((F a)f, (lift F) g)? 네, 왜냐면

(lift F) g (a, x) = F a (λx′.g(a, x′)) x (성질)

= F a (λx′.f x′) x (인덕가정)

= F a f x.

15 / 18

겉보기 증명extentional proof 스타일: 예 2

마저할일전달(continuation-passing-style) 변환에 관해서.

(마저할일전달 강의 후)

16 / 18

딱맞는 의미구조full abstraction semantics

무엇 의미구조denotational semantics 평가하기

◮ 정의한 의미구조가 실제세계와 딱맞아야

◮ 무엇 의미가 같으면 실행 의미도 같고, 다르면 달라야

정의) [[·]]는 딱맞는 의미구조full abstraction semantics, fully abstract:

[[E]] = [[E ′]] ⇔ ∀context C[].C[E]
behave
= C[E ′].

정의) E
behave
= E’ : · · ·

◮ [[f(n)=if n=0 then 1 else f(n-1)]] = [[g(n)=1]]?

네. 굿.

◮ [[∞||true]] = [[true]]? 음.

◮ [[||]]을 조심히 정의해야

◮ 모든 경우마다 실행의미와 일치하도록

17 / 18

값중심언어의 무엇 의미구조denotational semantics

E → n 자연수

| x 변수

| fn x E 함수값

| rec x E 재귀값

| E E 함수적용

값 V = N⊥ + (V → V)

환경 Env = Var⊥ → V

[[E]] ∈ Env → V

[[n]] σ = n

[[x]] σ = σ(x)

[[fn x E]] σ = λv.([[E]]σ{x 7→ v})

[[rec x E]] σ = lfpλv.([[E]]σ{x 7→ v})

[[E1 E2]] σ = ([[E1]] σ) · ([[E2]] σ)

18 / 18

	무엇 의미구조denotational semantics 증명하기

