
SNU 프로그래밍언어 특강

(1.1)

이 광근

kwangkeunyi.snu.ac.kr

1 / 34

계획

실행 의미구조operational semantics

◮ 큰보폭으로

◮ 구조물로structural operational semantics

◮ 실행 = 증명 나무

◮ 인덕규칙induction rule, 추론/증명규칙inference/proof rule

◮ 작은보폭으로

◮ 발자국으로transitional semantics

◮ 실행 = 발자국 줄

◮ 실행발자국transition sequence, 다시쓰기rewriting,

실행문맥evaluation context

2 / 34

실행 의미구조operational semantics

프로그램 실행과정을 드러내는 정의.

◮ 충분히 엄밀

◮ 조립식compositional이 아닐 수 있다

◮ 하지만 인덕방식inductive이다

◮ 프로그램 구조를 따라 인덕

◮ 프로그램 이외의 것을 따라 인덕

3 / 34

의미공간semantic domain

보통의 집합, 꼭 CPO일 필요는 없슴

◮ 인덕, 원소나열법, 조건제시번, S + T, S × T, S
fin
→ T

◮ 일반 함수집합 만들기 →를 사용하면 곤란

4 / 34

스타일1: 프로그램의 의미 = 증명
호칭: 큰보폭으로big-step semantics,

구조물로structural operational semantics, 자연스레natural semantics,

관계로relational semantics

◮ 증명 규칙inference rule: 대개 프로그램식 생김새마다
하나이상씩

· · ·
(M,x := E,M ′)

· · ·
(M,C1 ; C2,M

′)

· · ·
(M, if E C1 C2,M

′)
· · ·

(M, while E C,M ′)

· · ·
(M,E,M ′)

(“structural rule′′)

◮ 증명나무들의 집합: 인덕으로inductive 정의

◮ 유한실행과정만 ⇐ 인덕induction, 무한실행과정까지 ⇐

코덕coinduction

5 / 34

예: 명령형 언어

명령문 C와 정수식 e의 의미는 (메모리 M 에서)

M ⊢ C ⇒ M ′ 와 M ⊢ e ⇒ v

의 유한한 증명나무

◮ 증명 불가능 ⇔ C는 메모리 M에서 무의미

6 / 34

M ∈ Memory = Var
fin
→ Val

v ∈ Val = Z

M ⊢ skip ⇒ M

M ⊢ E ⇒ v
M ⊢ x := E ⇒ M{x 7→ v}

M ⊢ C1 ⇒ M1 M1 ⊢ C2 ⇒ M2

M ⊢ C1 ; C2 ⇒ M2

7 / 34

M ⊢ E ⇒ 0 M ⊢ C2 ⇒ M ′

M ⊢ if E C1 C2 ⇒ M ′

M ⊢ E ⇒ v M ⊢ C1 ⇒ M ′

M ⊢ if E C1 C2 ⇒ M ′
v 6= 0

M ⊢ E ⇒ 0
M ⊢ while E C ⇒ M

M ⊢ E ⇒ v M ⊢ C ⇒ M1 M1 ⊢ while E C ⇒ M2

M ⊢ while E C ⇒ M2
v 6= 0

8 / 34

M ⊢ n ⇒ n

M ⊢ x ⇒ M(x)

M ⊢ E1 ⇒ v1 M ⊢ E2 ⇒ v2
M ⊢ E1 + E2 ⇒ v1 + v2

M ⊢ E ⇒ v
M ⊢ - E ⇒ −v

9 / 34

C
let
= x := 1 ; y := x + 1

∅ ⊢ 1 ⇒ 1
∅ ⊢ x := 1 ⇒ {x 7→ 1}

{x 7→ 1} ⊢ x ⇒ 1 {x 7→ 1} ⊢ 1 ⇒ 1

{x 7→ 1} ⊢ x + 1 ⇒ 2

{x 7→ 1} ⊢ y := x + 1 ⇒ {x 7→ 1, y 7→ 2}

∅ ⊢ C ⇒ {x 7→ 1, y 7→ 2}

10 / 34

예: 값중심 언어, 적극적계산법call-by-value

프로그램식 E → n 자연수

| x 변수

| fn x E 함수값

| rec x E 재귀값

| E E 함수적용

식 E의 의미:

σ ⊢ E ⇒ v

의 유한한 증명나무(유한 실행과정)

◮ 증명 불가능 ⇔ E는 환경 σ에서 무의미

11 / 34

값 v ∈ V = N+ C

함수값 C = Exp × Env

환경 σ ∈ Env = Var
fin
→ V

σ ⊢ n ⇒ n

σ ⊢ x ⇒ σ(x)

σ ⊢ fn x E ⇒ (fn x E, σ)

σ ⊢ E1 ⇒ (fn x E, σ′) σ ⊢ E2 ⇒ v σ′{x 7→ v} ⊢ E ⇒ v′

σ ⊢ E1 E2 ⇒ v′

12 / 34

rec x E 의미: 안1

σ{x 7→ v} ⊢ E ⇒ v

σ ⊢ rec x E ⇒ v

◮ 재귀함수의 v가 존재? C을 확장해야:

V = N+ C

C = Expr × Env + Expr × RecEnv

σ ∈ Env = Var
fin
→ V

α, µα.σ ∈ RecEnv = EnvVar + EnvVar × Env

◮ 생김새 다른 값을 같게 여기기 v ≡ v′ 정의해야:

13 / 34

v ≡ v′의 핵

◮ µα.σ는 “한꺼풀 베껴서 바꿔친것”과 같은것으로 한다:

µα.σ ≡ {µα.σ/α}σ

(α는 모두 다름)

◮ 바꿔치기는 구조를 유지homomorphic하며 (늘)

{µα.σ/α}σ′ def
=

⋃

(x 7→v)∈σ′{x 7→ {µα.σ/α}v}

{µα.σ/α}v
def
= · · ·

◮ v ≡ v′와 σ ≡ σ′은 구조를 따라 인덕inductive으로 (늘)

14 / 34

그래서

◮ rec f (fn x E)의 의미는:

σ{f 7→ v} ⊢ fn x E ⇒ v

σ ⊢ rec f (fn x E) ⇒ v

여기서

v
let
= (fn x E, µα.σ{f 7→ (fn x E, α)})

◮ rec x (x+1) 의 의미는?

15 / 34

rec x E 의미: 안2

◮ 의미공간은 그대로 두고, 재귀는 함수로만 제한하고:

E → · · · | fn x E | rec f x E | E E

σ ⊢ rec f x E ⇒ (rec f x E, σ)

σ ⊢ E1 ⇒ (rec f x E, σ′) σ ⊢ E2 ⇒ v2
σ′{f 7→ (rec f x E, σ′), x 7→ v2} ⊢ E ⇒ v

σ ⊢ E1 E2 ⇒ v

16 / 34

스타일2: 프로그램의 의미 = 실행발자국

(transition sequence)

작은 보폭으로small-step semantics.

실행발자국 의미구조transitional semantics

◮ 프로그램의 실행 = 무언가가 변해간 발자국

◮ 무한한 실행과정? 무한히 늘어선 발자국, 무한히

변해가기

◮ 예) 1+2+3의 의미 = 1+2+3 → 3+3 → 6

17 / 34

◮ 실행발자국 규칙transition rule

· · ·
(M,C) → (M ′, C ′)

◮ 이면, 프로그램 C의 실행발자국은 증명들의 일렬:

· · ·
(M0, C) → (M1, C1) ⇒

· · ·
(M1, C1) → (M2, C2) ⇒ · · ·

18 / 34

명령문 C와 정수식 e의 의미는 (메모리 M에서), 실행발자국

(M,C) → (M1, C1)

(M1, C1) → (M2, C2)
...

(Mn, Cn) → (M ′, done)

와

(M0, e) → (M1, e1)

(M1, e1) → (M2, e2)
...

(Mm, em) → (M ′′, v)

꼴을 증명한 나무들의 일렬(실행 발자국)

19 / 34

예: 명령형 언어

M ∈ Memory = Var
fin
→ Val

v ∈ Val = Z

C → · · · | done

(M, skip) → (M, done)

(M,E) → (M,E′)

(M,x := E) → (M,x := E′)

(M,x := v) → (M{x 7→ v}, done)

(M,C1) → (M ′, C ′

1)

(M,C1 ; C2) → (M ′, C ′

1 ; C2)

(M, done ; C2) → (M,C2)

20 / 34

(M,E) → (M,E′)

(M, if E C1 C2) → (M, if E′ C1 C2)

(M, if 0 C1 C2) → (M,C1)

(M, if n C1 C2) → (M,C1)
n 6= 0

(M, while E C) → (M, if E C ; while E C skip)

(M,x) → (M,M(x))

(M,E1) → (M,E′

1)

(M,E1 + E2) → (M,E′

1 + E2)

(M,E2) → (M,E′

2)

(M, v1 + E2) → (M, v1 + E
′

2)

(M, v1 + v2) → (M, v1 + v2) 21 / 34

x := 1
︸ ︷︷ ︸

C1

; y := x + 1
︸ ︷︷ ︸

C2

(∅, x := 1 ; C2) → ({x 7→ 1}, done ; C2)

({x 7→ 1}, done ; C2) → ({x 7→ 1}, C2)

({x 7→ 1}, x + 1) → ({x 7→ 1}, 1 + 1)

({x 7→ 1}, C2) → ({x 7→ 1}, y := 1 + 1)

({x 7→ 1}, 1 + 1) → ({x 7→ 1}, 2)

({x 7→ 1}, y := 1 + 1) → ({x 7→ 1}, y := 2)

({x 7→ 1}, y := 2) → ({x 7→ 1, y 7→ 2}, done)

22 / 34

문맥구조를 통해서evaluation-context semantics

실행발자국 의미구조를 표현하는 한 방식

◮ 실행발자국 규칙 = 프로그램 다시 쓰기

◮ 어디를 다시 써(계산 해)?

실행문맥evaluation context이 결정

◮ 무엇으로 다시 써?

다시쓰기 규칙rewriting rule이 결정

23 / 34

실행문맥evaluation context K = 다시 쓸 부분이 정의되어 있는

프로그램

◮ K가 문법적으로 정의 가능

◮ 다시 쓸 부분이 [](빈칸)으로 표현됨

◮ 다시 쓸 부분 []을 품은 프로그램을 “K[]”로 표현

◮ 다시 쓸 부분이 E인 프로그램은 “K[E]”로 표현

24 / 34

예: 명령형 언어

C → skip | x := E | C ; C

| if E C C | while E C

E → n | x | E + E | - E

실행문맥 K → []

| x :=K

| K ; C

| r ;K

| ifK C C

| whileK C

| K + E

| r +K

| -K

결과 r → n | done

25 / 34

◮ 다시 쓸 곳은 다시 쓰면 되고:

(M,C) → (M ′, C ′)

(M,K[C]) → (M ′, K[C ′])

(M,E) → (M,E ′)

(M,K[E]) → (M,K[E ′])

◮ 속에서 어떻게 다시 쓰여지는가 하면:

(M,x := v) → (M{x 7→ v}, done)

(M, done ; done) → (M, done)

(M, if 0 C1 C2) → (M,C1)

(M, if v C1 C2) → (M,C2) (v 6= 0)

(M, while 0 C) → (M, done)

(M, while v C) → (M,C ; while E C) (v 6= 0)

(M, v1 + v2) → (M, v) (v = v1 + v2)

(M, - v) → (M,−v)

(M,x) → (M,M(x))

26 / 34

x := 1 ; y := x + 1 의 의미:

(∅, x := 1) → ({x 7→ 1}, done)

(∅, [x := 1] ; y := x + 1) → ({x 7→ 1}, done ; y := x + 1)

다음은,

({x 7→ 1}, x) → ({x 7→ 1}, 1)

({x 7→ 1}, done ; y := [x] + 1) → ({x 7→ 1}, done ; y := 1 + 1)

다음은,

27 / 34

다음은,

({x 7→ 1}, y := 2) → ({x 7→ 1, y 7→ 2}, done)

({x 7→ 1}, done ; [y := 2]) → ({x 7→ 1, y 7→ 2}, done ; done)

다음은,

({x 7→ 1, y 7→ 2}, done ; done) → ({x 7→ 1, y 7→ 2}, done).

28 / 34

예: 값중심 언어, 적극적계산법call-by-value

프로그램식 E → n | x | fn x E | rec f x E | E E

실행문맥 K → [] | K E | v K

값 v → n | fn x E | rec f x E

◮ 다시 쓸 곳은 다시 쓰면 되고:

E → E ′

K[E] → K[E ′]

◮ 속에서 어떻게 다시 쓰여지는가 하면:

(fn x E) v → {v/x}E

(rec f x E) v → {(rec f x E)/f, v/x}E

29 / 34

바꿔치기substitution 정의

◮ 바꿔치기substitution: 변수 바꿔치기 규칙들

{t1/x1, · · · , tk/xk}, S ∈ 2Var×Thing

xi들은 모두 다름

◮ S✷
let
= ✷를 S바꿔치기한 결과, S2S1✷

let
= S2(S1✷)

30 / 34

위에서, 식E를 S바꿔치기한 결과는 E구조를 유지homomorphic

(늘):

Sn = n

Sx =







t if t/x ∈ S

x if t/x 6∈ S

S(fn x E) = fn x (SE) (x 6∈ S)

S(rec f x E) = rec f x (SE) (x, f 6∈ S)

S(E1E2) = (SE1)(SE2)

31 / 34

언어 확장1

프로그램식 E → z | · · ·

| let x E E | if E E E

| (E,E) | E.l | E.r

| E + E | - E

실행문맥 K → · · ·

값 v → z | fn x E | rec f x E | (v,v)

◮ 다시 쓸 곳은 다시 쓰면 되고:

E → E ′

K[E] → K[E ′]

◮ 속에서 어떻게 다시 쓰여지는가 하면:

(fn x E) v → {v/x}E

(rec f x E) v → {(rec f x E)/f, v/x}E

· · ·

32 / 34

실행의미 예

◮ 1+(2+3)

◮ (fn x (x+1)) 2

◮ (fn x (x 1))(fn y (y+2))

◮ let x 1 ((fn y (x+y)) 2)

◮ (rec f x (if x 1 (f (x+1)))) 2

33 / 34

설탕구조syntactic sugar

이것만으로 완전Turing-complete:

◮ x, fn x E, E E

참고) 설탕구조는: (적극적계산법call-by-value)

◮ 기본값: 참거짓, 부울연산, ifE E E, 자연수, 자연수연산

◮ 구조물: (E,E), E.l, E.r

◮ rec f x E

◮ let x E E

34 / 34

	실행 의미구조operational semantics
	큰보폭 실행으로: 프로그램의 의미 = 증명)
	Style 2: 프로그램의 의미 = 실행발자국(transition sequence)

