
SNU 프로그래밍언어 특강

(1.2)

이 광근

kwangkeunyi.snu.ac.kr

1 / 33

개념/용어 리뷰

▶ 문법syntax: 생김새, 의미semantics: 속내용

▶ 집합 정의법: 인덕규칙inductive rules, 인덕induction,

코덕coinduction

▶ 고정점fixpoint: 최소, 최대

▶ 무엇 의미구조denotational semantics: CPO, 연속함수

▶ 실행 의미구조operational semantics: 집합, 증명나무proof tree,

실행발자국transition sequence/실행문맥evaluation context,

실행나무itree

▶ 딱맞는 의미구조full abstraction semantics

▶ 증명법: 인덕induction, 고정점인덕fixpoint induction, 고정점

정의 이용법, 겉보기 증명extentional proof

2 / 33

사용한/할 의미개념/의미공간
(CPO/연속함수 vs 집합/유한함수, 구분없이)

▶ 환경environment

Env = Var → Thing

Thing = Value, Thing = Loc

▶ 메모리memory

Memory = Loc → Value

▶ 값value

V = N+ (V → V), V = N+ (Exp × Env)

▶ 마저할일continuation

K = V → V

3 / 33

계획

▶ 값중심언어 확장: 메모리 다루기 + 예외상황 다루기

▶ 마저할일continuation

▶ 마저할일드러내기continuation-passing-style transformation

▶ 할일을 값으로control as value

4 / 33

프로그래밍언어가 제공하는 값의 종류

▶ 기본값primitives: 숫자, 참거짓, 문자열, · · ·
▶ 합성값compounds: 함수, 짝, · · ·
값 종류마다, 만들기⇌사용하기 방법을 제공

▶ 함수: fn x E ⇌ E E

▶ 짝: (E,E)⇌ E.l, E.r

5 / 33

값중심 언어applicative language

프로그램식 E → n | x | fn x E | rec f x E | E E

| let x E E | if E E E

| (E,E) | E.l | E.r | E + E | - E

실행문맥 K → [] | K E | v K

값 v → n | fn x E | rec f x E

E → E ′

K[E] → K[E ′]

(fn x E) v → {v/x}E
(rec f x E) v → {(rec f x E)/f, v/x}E

6 / 33

값중심 언어applicative language 확장
메모리 다루기/메모리주소location를 값으로

프로그램식 E → n | x | fn x E | rec f x E | E E

| ref E | E := E | !E

실행문맥 K → [] | K E | v K |· · ·
값 v → n | fn x E | rec f x E

| l

메모리 M ∈ Loc
fin→ Value

M,E → M ′, E ′

M,K[E] → M ′, K[E ′]

M, (fn x E) v → M, {v/x}E
M, (rec f x E) v → M, {(rec f x E)/f, v/x}E

M, l := v → M{l 7→ v}, v
· · ·

7 / 33

값중심 언어applicative language

예외상황 다루기/튀는 실행흐름control/멀리가기non-local goto

프로그램식 E → n | x | fn x E | rec f x E | E E

| raise L | E handle L E

실행문맥 K → [] | K E | v K | · · ·
값 v → n | fn x E | rec f x E

예외상황 η → L

E → E ′

K[E] → K[E ′]

(fn x E) v → {v/x}E
(rec f x E) v → {(rec f x E)/f, v/x}E
v handle L E → v

raise L → L

L handle L E → E

· · ·

8 / 33

마저할일continuation

“방과후 집에오는 길에 놀이방에 들려 동생을 데려오렴”

▶ 발견: goto-식의 각잡힌 의미를 정의하려다 발견한 개념

▶ 사용: 프로그래머가 실행흐름을 자유롭게 다루게 하는데

사용하는 개념

▶ 안경: 번역기compiler가 중간단계에서 하는 변환을

바라보는 안경

9 / 33

마저할일continuation 예

▶ E1 + E2 에서 E1 계산을 끝내고 마저 할 일은?

λx.x + E2

▶ E1 + E2 에서 E2 계산을 끝내고 마저 할 일은?

λx.v1 + x

▶ E1 E2: E1 계산을 끝내고 마저 할 일은?

λx.x E2

▶ (goto L) + E 에서 goto를 만나고 마저 할 일은?

L이름이 붙은 마저할일로 건너뛰기

▶ (raise L) + E 에서 raise를 만나고 마저 할 일은?

L 예외상황때 하기로한 마저할일로 건너뛰기

10 / 33

마저할일continuation 예

▶ E1 + E2 에서 E1 계산을 끝내고 마저 할 일은?

λx.x + E2

▶ E1 + E2 에서 E2 계산을 끝내고 마저 할 일은?

λx.v1 + x

▶ E1 E2: E1 계산을 끝내고 마저 할 일은?

λx.x E2

▶ (goto L) + E 에서 goto를 만나고 마저 할 일은?

L이름이 붙은 마저할일로 건너뛰기

▶ (raise L) + E 에서 raise를 만나고 마저 할 일은?

L 예외상황때 하기로한 마저할일로 건너뛰기

10 / 33

마저할일continuation 예

▶ E1 + E2 에서 E1 계산을 끝내고 마저 할 일은?

λx.x + E2

▶ E1 + E2 에서 E2 계산을 끝내고 마저 할 일은?

λx.v1 + x

▶ E1 E2: E1 계산을 끝내고 마저 할 일은?

λx.x E2

▶ (goto L) + E 에서 goto를 만나고 마저 할 일은?

L이름이 붙은 마저할일로 건너뛰기

▶ (raise L) + E 에서 raise를 만나고 마저 할 일은?

L 예외상황때 하기로한 마저할일로 건너뛰기

10 / 33

마저할일continuation 예

▶ E1 + E2 에서 E1 계산을 끝내고 마저 할 일은?

λx.x + E2

▶ E1 + E2 에서 E2 계산을 끝내고 마저 할 일은?

λx.v1 + x

▶ E1 E2: E1 계산을 끝내고 마저 할 일은?

λx.x E2

▶ (goto L) + E 에서 goto를 만나고 마저 할 일은?

L이름이 붙은 마저할일로 건너뛰기

▶ (raise L) + E 에서 raise를 만나고 마저 할 일은?

L 예외상황때 하기로한 마저할일로 건너뛰기

10 / 33

마저할일continuation 예

▶ E1 + E2 에서 E1 계산을 끝내고 마저 할 일은?

λx.x + E2

▶ E1 + E2 에서 E2 계산을 끝내고 마저 할 일은?

λx.v1 + x

▶ E1 E2: E1 계산을 끝내고 마저 할 일은?

λx.x E2

▶ (goto L) + E 에서 goto를 만나고 마저 할 일은?

L이름이 붙은 마저할일로 건너뛰기

▶ (raise L) + E 에서 raise를 만나고 마저 할 일은?

L 예외상황때 하기로한 마저할일로 건너뛰기

10 / 33

마저할일continuation 예

▶ E1 + E2 에서 E1 계산을 끝내고 마저 할 일은?

λx.x + E2

▶ E1 + E2 에서 E2 계산을 끝내고 마저 할 일은?

λx.v1 + x

▶ E1 E2: E1 계산을 끝내고 마저 할 일은?

λx.x E2

▶ (goto L) + E 에서 goto를 만나고 마저 할 일은?

L이름이 붙은 마저할일로 건너뛰기

▶ (raise L) + E 에서 raise를 만나고 마저 할 일은?

L 예외상황때 하기로한 마저할일로 건너뛰기

10 / 33

마저할일continuation

▶ K[E]에서 E계산을 마치고(v) 마저 할 일은?

λx.K[x]

▶ 즉, 위의 마저할일continuation을 호출하기

(λx.K[x]) v

11 / 33

마저할일continuation 사용한 의미구조: 예

E → 1 | E + E

[[E]] ∈ (N → N) → N
[[1]] k = k(1)

[[E1 + E2]] k = [[E1]] (λn1.[[E2]] (λn2.k(n1 + n2)))

▶ ∀E, k.k(val(E)) = [[E]] k

12 / 33

마저할일continuation 사용한 의미구조: 값중심 언어

E → n | x | fn x E | rec f x E | E E

[[E]] ∈ Env → K → V
환경 σ ∈ Env = Var⊥ → V
마저할일 k ∈ K = V → V

값 v ∈ V = N⊥ + (V → K → V)

[[n]] σ k = k(n)

[[x]] σ k = k(σ(x))

[[fn x E]] σ k = k(λv.λk′.[[E]] σ{x 7→ v} k′)

[[rec f x E]] σ k = k(lfp(λ• .λv.λk′.[[E]] σ{x 7→ v}{f 7→ •} k′))

[[E1 E2]] σ k = [[E1]] σ (λf.[[E2]] σ (λv.f v k))

13 / 33

마저할일continuation 사용한 의미구조: goto-문

E → n | x | fn x E | rec f x E | E E

| L : E L : E | goto L

[[E]] ∈ Env → K → V
환경 σ ∈ Env = (Var + Label)⊥ → V
마저할일 k ∈ K = V → V

값 v ∈ V = N⊥ + (V → K → V) +K

[[L1 : E1 L2 : E2]] σ k = [[E1]] σ
′ k2 이고

σ′ = σ{L1 7→ k1}{L2 7→ k2}
k1 = λv.[[E1]] σ

′ k2

k2 = λv.[[E2]] σ
′ k

[[goto L]] σ k = σ(L)(0)

14 / 33

마저할일 드러내기 변환cps transformation: 값중심

언어
마저할일 드러내기continuation-passing-style, cps

E → n | x | fn x E | rec f x E | E E

변환 · ∈ V Exp → (K → V) Exp
마저할일 K = V → V

n = fn k (k n)

x = fn k (k x)

fn x E = fn k (k (fn x E))

rec f x E = fn k (k (rec f x E))

E1 E2 = fn k (E1 (fn f (E2 (fn v (f v k))))

15 / 33

CPS 변환의 올바름

▶ 무엇 의미구조denotational semantics:

[[E]] = [[E]] id

▶ 실행 의미구조operational semantics:

E
∗→ v iff E id

∗→ v−

n− = n

x− = x

(fn x E′)− = fn x E′

(rec f x E′)− = rec f x E′

▶ Call-by-name, call-by-value, and λ-calculus, Gordon Plotkin, Theoretical

Computer Science 1, pp.125–159

16 / 33

CPS변환의 올바름: 겉보기 증명extentional proof

▶ CPS변환 cpsExp:

cpsExp : A Exp → ((A → A) → A) Exp

▶ 대응하는 의미세계의 함수 cps :

cps : (A → A) → ((A → A) → A) → ((A → A) → A)

다음 성질을 만족한다(가정):

∀f, f ′, k. (cps f) f ′ k = f (f ′ k)

▶ 다음 겉모습을 증명하자: (의미세계에서 CPS변환의 올바름)

∀F. lfpF = (lfp(cps F)) id

17 / 33

증명목표:

lfp(F) = (lfp(cps F)) id

고정점 인덕으로 증명: P (lfp(F), lfp(cps F))

P (f, g)
let
= (f = g id)

(f ∈ A, g ∈ (A → A) → A)

▶ ⊥A = ⊥(A→A)→A(id)? 네.

▶ P (f, g) 이면 P (F f, (cps F) g)? 즉

f = g id 이면 F f = (cps F) g id? 네, 왜냐면

(cps F) g id = F (g id) (cps 성질)

= F f. (인덕가정)

18 / 33

마저할일continuation 사용한 의미구조: 예외상황

E → n | x | fn x E | rec f x E | E E

| raise L | E handle L E

[[E]] ∈ Env → K → H → V
환경 σ ∈ Env = Var⊥ → V
마저할일 k ∈ K = V → V
예외처리 h ∈ H = Exn⊥ → V 예외 L ∈ Exn

값 v ∈ V = N⊥ + (V → K → H → V)

[[raise L]] σ k h = h(L)

[[E1 handle L E2]] σ k h = [[E1]] σ k (h{L 7→ [[E2]] σ k h})
[[n]] σ k h = k(n)

[[x]] σ k h = k(σ(x))

[[E1 E2]] σ k h = [[E1]] σ (λf.[[E2]] σ (λv.f v k h) h) h

· · ·

19 / 33

예외상황 녹이기: 마저할일continuation 이용

E → n | x | fn x E | rec f x E | E E | E? E : E

| raise L | E handle L E

변환 · ∈ V Exp → (K → H → V) Exp
마저할일 k ∈ K = V → V
예외처리 h ∈ H = Exn → V 예외 L ∈ Exn

raise L = fn (k, h) (h L)

E1 handle L E2 = fn (k, h) E1 (k, fn x (x = L? (E2 (k, h)) : h(x)))

n = fn (k, h) (k n)

x = fn (k, h) (k x)

fn x E = fn (k, h) (k (fn x E))

rec f x E = fn (k, h) (k (rec f x E))

E1 E2 = fn (k, h) (E1 (fn f (E2 (fn v (f v (k, h)), h)), h))

· · ·

20 / 33

마저할일continuation을 값으로control as value

E → n | x | fn x E | rec f x E | E E

| catch x E | throw x E

[[E]] ∈ Env → K → V
환경 σ ∈ Env = Var⊥ → V
마저할일 k ∈ K = V → V

값 v ∈ V = N⊥ + (V → K → V) +K

[[catch x E]] σ k = [[E]] σ{x 7→ k} k
[[throw x E]] σ k = [[E]] σ (λv.σ(x)(v))

[[fn x E]] σ k = k(λv.λk′.[[E]] σ{x 7→ v} k′)

[[E1 E2]] σ k = [[E1]] σ (λf.[[E2]] σ (λv.f v k))

· · ·

(C/C++)에서: ∼ setjmp x E | longjmp x E

Scheme(Haskell/Scala등)에서: ∼ callcc (fn x E)

21 / 33

마저할일continuation을 값으로control as value

E → n | x | fn x E | rec f x E | E E

| catch x E | throw x E

[[E]] ∈ Env → K → V
환경 σ ∈ Env = Var⊥ → V
마저할일 k ∈ K = V → V

값 v ∈ V = N⊥ + (V → K → V) +K

[[catch x E]] σ k = [[E]] σ{x 7→ k} k
[[throw x E]] σ k = [[E]] σ (λv.σ(x)(v))

[[fn x E]] σ k = k(λv.λk′.[[E]] σ{x 7→ v} k′)

[[E1 E2]] σ k = [[E1]] σ (λf.[[E2]] σ (λv.f v k))

· · ·

(C/C++)에서: ∼ setjmp x E | longjmp x E

Scheme(Haskell/Scala등)에서: ∼ callcc (fn x E)
21 / 33

프로그래밍언어가 제공하는 값의 종류

프로래머가 맘대로 다루는as first-class object

▶ 숫자, 참거짓, 문자열, · · ·
▶ 함수, 짝, 메모리주소, 실행순서control, 프로램식, · · ·

값 종류마다, 만들기⇌사용하기 방법을 제공

함수: fn x E | rec f x E ⇌ E E

짝: (E,E) ⇌ E.l | E.r

메모리주소: ref E ⇌ E := E | !E

실행순서: catch x E ⇌ throw x E

프로램식: box E ⇌ unbox E | run E

22 / 33

코드를 값으로expression as value

코드를 계산하는 프로그램

▶ 일반

▶ 메타meta 프로그래밍, 다단계multi-staged 프로그래밍

▶ 특수

▶ 매크로macro, 부분미리계산partial evaluation,

실행중코드만들기run-time code generation

▶ 진화프로그래밍

▶ 검증불가능한 신경망언어가 아닌 검증가능한

프로그래밍언어의 세계에서

▶ 메타/다단계를 한 언어안에서

23 / 33

다단계multi-staged 프로그래밍

▶ 계산이 여러 단계로 나눠짐

▶ 0단계 코드: 보통의 코드

▶ n+ 1단계 코드: n단계에서 만들어지는 코드

단계 계산 값

0 보통계산 + 코드만들고실행 보통값 + 코드

> 0 코드끼어넣기 코드

24 / 33

다단계 프로래밍 예 (1/3)

e ::= · · ·
| box e 코드 만들기

| unbox e 코드 끼어넣기

| run e 코드 실행하기

단순 코드 만들기

let NULL = box 0

let body = box (if e = unbox(NULL) then abort() ...)

in run body

25 / 33

다단계 프로래밍 예 (1/3)

e ::= · · ·
| box e 코드 만들기

| unbox e 코드 끼어넣기

| run e 코드 실행하기

단순 코드 만들기

let NULL = box 0

let body = box (if e = unbox(NULL) then abort() ...)

in run body

25 / 33

다단계 프로래밍 예 (2/3)

코드 만드는 함수: 코드를 인자로 받아서 코드 만들기

let repeatUntil(s,c) =

box(unbox(s); while unbox(c) do unbox(s))

let xloop = repeatUntil(box(x = x+1), box(x<10))

let x = 0 in run xloop

26 / 33

다단계 프로래밍 예 (3/3)

“진화프로그래밍”/특화specialization/부분미리실행partial evaluation

power(x,n) = if n=0 then 1 else x * power(x,n-1)

v.s. power(x,3) = x*x*x

다음과 같이 준비:

let power’(n) =

if n=0 then box(1)

else box(x * unbox(power’ (n-1)))

in run box(fn x (unbox(power’ 3)))

27 / 33

다단계 프로래밍 실제
▶ 자유변수가 있는, 열린 코드

box(x+1)

▶ 코드끼어넣기때 자유변수가 묶이는 것을 의도하기도

box(fn x (unbox(spower 10)))

▶ 코드끼어넣기때 자유변수가 묶이는 것을 피하기도

box(fn! x (unbox(spower 10) + x))

▶ 메모리에 자유롭게 보관되는 열린 코드

cell := box(x+1); · · · cell := box(y 1);

28 / 33

실행발자국 의미구조transitional semantics

Exp e → n | x | fn x e | rec f x e | e e

| box e | unbox e | run e

Value0 v0 → n | fn x E | rec f x E | box v1

(n > 0) Valuen vn → n | x | fn x vn | vn vn | rec f x vn

| box vn+1 | unbox vn−1 | run vn

29 / 33

(APP)
e1

n−→ e′1

e1 e2
n−→ e′1 e2

e
n−→ e′ v ∈ Valuen

v e
n−→ v e′

(fn x e) v
0−→ {x 07→ v}e

(rec f x e) v
0−→ {x 07→ v, f

07→ rec f x e}e

(BOX)
e

n+1−→ e′

box e
n−→ box e′

(RUN)
e

n−→ e′

run e
n−→ run e′

v ∈ Value1 FV 0(v) = ∅

run (box v)
0−→ v

30 / 33

(UNB)
e

n−→ e′

unbox e
n+1−→ unbox e′

v ∈ Value1

unbox (box v)
1−→ v

(ABS)
e

n+1−→ e′

fn x e
n+1−→ fn x e′

(FIX)
e

n+1−→ e′

rec f x e
n+1−→ rec f x e′

31 / 33

다단계 프로그래밍언어 연구

정신없는 다단계. 편안한 다단계 프로그래밍을 위하여:

▶ 자동검산이 필요

▶ 정적타입시스템static type system: “종결자” [POPL’06 Kim, Yi,

Calcagno]

32 / 33

다단계 프로그래밍언어 연구

정신없는 다단계. 편안한 다단계 프로그래밍을 위하여:

▶ 자동검산이 필요

▶ 정적타입시스템static type system: “종결자” [POPL’06 Kim, Yi,

Calcagno]

32 / 33

다단계 프로그래밍언어 연구

▶ 일반적인 정적분석은 어떻게?

▶ 다단계 녹이기 + 정적분석 + 분석결과 재구성 [POPL’11

Choi, Aktemur, Yi, Tatsuda]

▶ 다른 방식도 가능?

▶ 검증을 위한 프로그램논리program logic는?

▶ 진화프로그래밍의 두 기둥을 언어에 담기:

▶ “system I” 신경망/기계학습 기둥: 상위논리로

커버못하는 문제풀이 진화프로그래밍

▶ “system II” 다단계 프로그래밍 기둥: 상위논리로

커버하는 문제풀이 진화프로그래밍

▶ 예) (specialize power x) ◦ (learn dnn x)

33 / 33

다단계 프로그래밍언어 연구

▶ 일반적인 정적분석은 어떻게?

▶ 다단계 녹이기 + 정적분석 + 분석결과 재구성 [POPL’11

Choi, Aktemur, Yi, Tatsuda]

▶ 다른 방식도 가능?

▶ 검증을 위한 프로그램논리program logic는?

▶ 진화프로그래밍의 두 기둥을 언어에 담기:

▶ “system I” 신경망/기계학습 기둥: 상위논리로

커버못하는 문제풀이 진화프로그래밍

▶ “system II” 다단계 프로그래밍 기둥: 상위논리로

커버하는 문제풀이 진화프로그래밍

▶ 예) (specialize power x) ◦ (learn dnn x)

33 / 33

다단계 프로그래밍언어 연구

▶ 일반적인 정적분석은 어떻게?

▶ 다단계 녹이기 + 정적분석 + 분석결과 재구성 [POPL’11

Choi, Aktemur, Yi, Tatsuda]

▶ 다른 방식도 가능?

▶ 검증을 위한 프로그램논리program logic는?

▶ 진화프로그래밍의 두 기둥을 언어에 담기:

▶ “system I” 신경망/기계학습 기둥: 상위논리로

커버못하는 문제풀이 진화프로그래밍

▶ “system II” 다단계 프로그래밍 기둥: 상위논리로

커버하는 문제풀이 진화프로그래밍

▶ 예) (specialize power x) ◦ (learn dnn x)

33 / 33

다단계 프로그래밍언어 연구

▶ 일반적인 정적분석은 어떻게?

▶ 다단계 녹이기 + 정적분석 + 분석결과 재구성 [POPL’11

Choi, Aktemur, Yi, Tatsuda]

▶ 다른 방식도 가능?

▶ 검증을 위한 프로그램논리program logic는?

▶ 진화프로그래밍의 두 기둥을 언어에 담기:

▶ “system I” 신경망/기계학습 기둥: 상위논리로

커버못하는 문제풀이 진화프로그래밍

▶ “system II” 다단계 프로그래밍 기둥: 상위논리로

커버하는 문제풀이 진화프로그래밍

▶ 예) (specialize power x) ◦ (learn dnn x)

33 / 33

	할일을 값으로control as value

