
SNU 프로그래밍언어 특강

(2.0)

이 광근

kwangkeunyi.snu.ac.kr

1 / 21

타입type

▶ 프로그래밍언어를 이해하는/디자인하는 틀

▶ 타입마다 값계산을 표현하는 방법들constructs

= 언어 겉모습syntax

▶ 타입에 맞게 값들이 계산되는 소용돌이statics + dynamics

= 언어 속내용semantics

▶ “값계산” = 값 만들기 + 값 사용하기

그래서

▶ 실행전 의미static semantics, 정적의미: 타입으로 따져보는

▶ 실행 의미dynamic semantics, 동적의미: 실행으로 따져보는

2 / 21

계획 (1/2)

타입은 프로그래밍을 비추고

프로그래밍은 타입을 이끌고

▶ 간단한 타입simple type: 기본타입으로 합성하는 상식

▶ 여러모양 타입polymorphic type: (타입이 뒤따랐던 프로래밍)

▶ 값에기대는 타입dependent type: (타입이 이끈 프로래밍)

3 / 21

계획 (2/2)

타입은 프로그래밍을 비추고

프로그래밍은 타입을 이끌고

▶ 커리-하워드 대응curry-howard correspondence:

프로그램과 타입
거울←→ 증명과 명제

▶ 값에기대는 타입dependent type과 함께

= 증명중심 프로그래밍proof-oriented pgm’ng(Rocq, Lean)을

연 열쇠

▶ system F, parametric polymorphism, ad-hoc

polymorphism, bounded polymorphism, type class,

recursive type, abstract data type, subtype, lambda cube,

let-polymorphic types, type checking, type inference

4 / 21

간단한 타입simple type

기본값과 기본 합성값(함수, 짝, 갈래)타입

Type τ → ι (기본타입:int, bool, · · ·)
| τ → τ (함수타입, 함수, 이면)

| τ × τ (곱타입, 짝, 그리고)

| τ + τ (합타입, 갈래, 또는)

5 / 21

간단한 타입simple type 언어

Exp E → n

| x

| - E

| fn x E

| E E

Type τ → int

| τ → τ

6 / 21

타입으로 따지기: 실행전의미static semantics

Γ ⊢ E : τ

의 증명. (타입환경type env Γ ∈ Var
fin→ Type)

Γ ⊢ n : int
Γ ⊢ E : int
Γ ⊢ - E : int

Γ(x) = τ

Γ ⊢ x : τ

Γ + x : τ1 ⊢ E : τ2
Γ ⊢ fn x E : τ1 → τ2

Γ ⊢ E1 : τ1 → τ2 Γ ⊢ E2 : τ1
Γ ⊢ E1 E2 : τ2

7 / 21

실행전의미static semantics가 이치에맞나?

실행의미dynamic semantics와 발맞춰야

▶ 안전함sound: 실행전의미가 있으면 잘돈다.

▶ 완전함complete? 잘돌면 실행전의미가 있다.

실행전의미static semantics = 타입검사type checking(의 기반)

8 / 21

실행전의미static semantics의 안전함 증명

Theorem (안전함soundness, correctness, type safety)

∀E. ⊢ E : τ이면 E는 문제없이 실행되고 끝난다면 결과값은

τ타입의 값이다.

작은보폭(E → E ′) 실행의미 경우

▶ 증명

⊢ E : τ 이고 E ̸∈ Value이면 E → E ′ “progress lemma”

▶ 증명

⊢ E : τ 이고 E → E ′ 이면 ⊢ E ′ : τ“preservation lemma”

두 증명에 의해 안전함.

9 / 21

실행전의미static semantics의 안전함 증명

Theorem (안전함soundness, correctness, type safety)

∀E. ⊢ E : τ이면 E는 문제없이 실행되고 끝난다면 결과값은

τ타입의 값이다.

큰보폭(σ ⊢ E ⇒ v) 실행의미 경우

▶ 다음 증명이면 충분
⊢ E : τ 이면 ⊢ E ⇒ r 이면 r : τ

▶ r ∈ Value+ {error}, σ ⊢ E ⇒ error 정의필요

▶ v : τ 정의 “logical relation”

▶ n : int iff true

▶ (fn x E, σ) : τ1 → τ2 iff

∀v1 : τ1.σ + x : v1 ⊢ E ⇒ r 이면 r : τ2

10 / 21

τ × τ 곱타입product type

Exp E → · · ·
| (E,E) | E.l | E.r

Type τ → · · ·
| τ × τ

실행전의미static semantics

Γ ⊢ E1 : τ1 Γ ⊢ E1 : τ1
Γ ⊢ (E1,E2) : τ1 × τ2

Γ ⊢ E : τ1 × τ2
Γ ⊢ E.l : τ1

Γ ⊢ E : τ1 × τ2
Γ ⊢ E.r : τ2

참고: 레코드타입record type = 곱타입 + 부품이름

(a:E,b:E) | E.a | E.b

11 / 21

τ + τ 합타입sum type

Exp E → · · ·
| inl E | inr E
| case E (inl x : E) (inr x : E)

Type τ → · · ·
| τ + τ

실행전의미static semantics

Γ ⊢ E : τ1
Γ ⊢ inl E : τ1 + τ2

Γ ⊢ E : τ2
Γ ⊢ inr E : τ1 + τ2

Γ ⊢ E : τ1 + τ2 Γ + x : τ1 ⊢ E1 : τ Γ + x : τ2 ⊢ E2 : τ

Γ ⊢ case E (inl x : E1) (inr x : E2) : τ

참고: 갈래타입variant type = 합타입 + 부품(출신)이름

a E | b E | case E (a x : E) (b x : E)

12 / 21

주소 다루는 식의 타입

Exp E → · · ·
| ref E | E := E | !E

Type τ → · · ·
| τ loc

실행전의미static semantics

Γ ⊢ E : τ
Γ ⊢ ref E : τ loc

Γ ⊢ E1 : τ loc Γ ⊢ E2 : τ
Γ ⊢ E1 := E2 : τ

Γ ⊢ E : τ loc
Γ ⊢ !E : τ

두드러지게 불완전한 실행전의미: “잘 도는데 타입검사가

안되는” 프로그램들이 뻔함
13 / 21

할일 다루는 식의 타입

Exp E → · · ·
| catch x E | throw x E

Type τ → · · ·

실행의미dynamic semantics

[[catch x E]] σ k = [[E]] σ{x 7→ k} k C[catch x E]→ C[{λv.C[v]/x}E]

[[throw x]] σ k = [[E]] σ (λv.σ(x)(v)) C[throw (λv.E ′) E]→ (λv.E ′)E

실행전의미static semantics

Γ + x : τ → τ ′ ⊢ E : τ
Γ ⊢ catch x E : τ

Γ(x) = τ → τ ′ Γ ⊢ E : τ

Γ ⊢ throw x E : τ ′′

14 / 21

실행의미가 다음과 같으면?

Exp E → · · ·
| catch x E | throw x E

Type τ → · · ·

실행의미dynamic semantics

[[catch x E]] σ k = [[E]] σ{x 7→ k} id C[catch x E]→ {λv.C[v]/x}E
[[throw x]] σ k = [[E]] σ (λv.σ(x)(v)) C[throw (λv.E ′) E]→ (λv.E ′)E

실행전의미static semantics

Γ + x : τ → τ ′ ⊢ E : τ ′

Γ ⊢ catch x E : τ

Γ(x) = τ → τ ′ Γ ⊢ E : τ

Γ ⊢ throw x E : τ ′′

15 / 21

어느 디자인이 “맞을까”?

C[catch x E] → C[{λv.C[v]/x}E]

vs

C[catch x E] → {λv.C[v]/x}E

▶ 나침반: 커리-하워드 대응curry-howard correspondence

프로램체계
거울←→ 논리체계

▶ 두번째 디자인이 “맞아보임”:

Γ + x : τ → τ ′ ⊢ E : τ ′

Γ ⊢ catch x E : τ
거울←→ ¬¬A

A

Γ(x) = τ → τ ′ Γ ⊢ E : τ

Γ ⊢ throw x E : τ ′′
거울←→ ⊥

A

16 / 21

어느 디자인이 “맞을까”? 되돌아보니

C[catch x E] → C[{λv.C[v]/x}E]

vs

C[catch x E] → {λv.C[v]/x}E

▶ 첫번째 디자인은

▶ 제한없는 goto를 반영

▶ 넌센스: C[]를 예외상황 처리식으로 본다면, E가

정상실행되도 C[]를 실행한다니!

▶ 두번째 디자인은 (논리체계 거울이 안내한)

▶ 말이됨: C[]를 예외상황 처리식으로 본다면, E가 실행중

예외상황때만 C[]를 실행함

▶ 특별한 goto(예외상황처리)만 유도

애초부터 감잡았던: “Letters to the editor: goto statement considered harmful” Edgar

Dijkstra, Communications of the ACM, March, 1968

17 / 21

코드 다루는 식의 타입

Exp E → · · ·
| box E | unbox E
| run E

Type τ → · · ·
| 2(Γ ▷ τ)

실행전의미static semantics Σ ⊢ E : τ (Σ → Γ | Σ,Γ)

Σ,Γ ⊢ E : τ

Σ ⊢ box E : 2(Γ ▷ τ)

Σ ⊢ E : 2(Γ ▷ τ)

Σ,Γ ⊢ unbox E : τ

Σ ⊢ E : 2(∅ ▷ τ)
Σ ⊢ run E : τ

18 / 21

τ <: τ ′, 작은타입subtype 관계가 있는 경우
▶ 이런 세계에서

v : τ 이고 τ <: τ ′ 이면 v : τ ′

▶ τ <: τ ′ 정의

τ <: τ
τ <: τ ′ τ ′ <: τ ′′

τ <: τ ′′ nat <: int

τ1 <: τ ′1 τ2 <: τ ′2
aτ1 × bτ2 <: aτ ′1 × bτ ′2 aτ1 × bτ2 <: aτ1 aτ1 × bτ2 <: bτ2

레코드타입record type

τ1 <: τ ′1 τ2 <: τ ′2
aτ1 + bτ2 <: aτ ′1 + bτ ′2 aτ <: aτ + bτ ′ bτ <: aτ ′ + bτ

갈래타입variant type

τ ′1 <: τ1 τ2 <: τ ′2
τ1 → τ2 <: τ ′1 → τ ′2

거스르는contra-variant

▶ 실행전의미static semantics

Γ ⊢ E : τ τ <: τ ′

Γ ⊢ E : τ ′

19 / 21

µa.τ 재귀타입recursive type

Type τ → · · ·
| a 타입변수

| µa.τ 타입방정식 a = τ의 해

▶ 타입방정식 a = τ의 답을 µa.τ로 표현. 그러므로

µa.τ ≡ {µa.τ/a}τ

예) 인덕데이터 타입방정식 list = unit + int × list의 답

list
let
= µa.unit + int × a

예) 인덕데이터 타입방정식 tree = int + int × tree× tree의

답

tree
let
= µa.int + int × a× a

예) 타입방정식 a = int → a의 답 µa.(int → a)

예) 타입방정식 a = a→ int의 답 µa.(a→ int)

20 / 21

µa.τ 재귀타입recursive type으로 따지기
▶ µa.τ ≡ {µa.τ/a}τ 이므로

Γ ⊢ E : {µa.τ/a}τ
Γ ⊢ E : µa.τ

Γ ⊢ E : µa.τ

Γ ⊢ E : {µa.τ/a}τ

예) 갈래타입방정식 a = N(unit) + C(int × a)의 답

µa.N(unit) + C(int × a)

Γ ⊢ N() : N(unit)

Γ ⊢ N() : N(unit) + C(int × µa. · · ·)
Γ ⊢ N() : µa. · · ·

...
Γ ⊢ C(E1, E2) : C(int × µa. · · ·)

Γ ⊢ C(E1, E2) : N(unit) + C(int × µa. · · ·)
Γ ⊢ C(E1, E2) : µa. · · ·

예) 타입방정식 a = int → a의 답 µa.(int → a)

f : µa.(int → a) + x : int ⊢ f : µa.(int → a)

⊢ rec f x f : int → µa.(int → a)

⊢ rec f x f : µa.(int → a)

예) 타입방정식 a = a→ int의 답 µa.(a→ int)

...
x : µa.(a→ int) ⊢ x x : int

21 / 21

