
SNU 프로그래밍언어 특강

(2.1)

이 광근

kwangkeunyi.snu.ac.kr

1 / 13

여러모양 타입polymorphic type, 다형 타입 계산들

간단한 타입simple type만으로는 담기에 버거운 계산들이 있음

▶ 타입에 “상관없는” 계산들이 존재

예) 저울, 그네, 내장, 읽기, 붓· · ·
예) identity, list-length, tree-size,· · ·

2 / 13

여러모양 타입polymorphic type, 다형 타입 계산들

예)

저울: ∀a.a → real

내장: ∀a ∈ 식음료.a → energy

읽기: ∀a ∈ 미디어.a → impetus

붓: ∀α ∈ 잉크.a → brush(a)

list-length: ∀a.list(a) → nat

id: ∀a.a → a

저울공장: nat → (∀a.a → real) list

대학: (∀a ∈ 미디어.a → impetus)

×(∀a ∈ 잉크.a → brush(a)) → diffminds

a가 어떤 타입이어도 상관없이parametricity 잘작동하는 계산들

3 / 13

계획

▶ polymorphic type, parametric polymorphism, System F,

ad-hoc polymorphism, bounded polymorphism, type class,

let-polymorphic types, type checking, type inference

4 / 13

∀a.τ : 여러모양 타입polymorphic type, 다형 타입

간단한 타입 τ → ι (기본타입:int, bool, · · ·)
| τ → τ (함수타입)

타입 τ → ι

| τ → τ

| a (타입변수)

| ∀a.τ (여러모양 타입)

∀a.τ에서 a의 영역은?

▶ 간단한 타입들로 제한: “predicative polymorphism”

▶ 모든 타입들로 확장: “impredicative polymorphism”

5 / 13

여러모양 타입polymorphic type ∀a.τ의 의미
(“predicative polymorphism”)

직관적([[∀a.τ]] ⊆프로그램)으로는

[[∀a.τ]] def
=

⋂
t∈SimpleTypes

[[{t/a}τ]]

예)

[[∀a.a → a]]
def
=

⋂
t∈SimpleTypes

[[t → t]]

엄밀히([[∀a.τ]] ⊆함수)는 부족함

[[nat → nat]] ∩ [[bool → bool]] = ∅

6 / 13

여러모양 타입polymorphic type ∀a.τ의 의미
(John Reynolds’ model: parametric polymorphism)

[[∀a.τ]] def
= a가 어떤 타입이어도 상관없이parametricity

고르게 작동하는uniformly behave 계산들의 모임

예) [[∀a.a → int]]
def
=

{{λxint.1, λxbool.1, · · · }, {λxint.2, λxbool.2, · · · }, · · ·
{λxflesh.mass(x)× 9, λxliquid.mass(x)× 9, · · · }, · · · }

예) [[∀a.a → a]]
def
= {{λxint.x, λxbool.x, · · · }}

예) [[∀a.int → a]]
def
= {} (아직 부족함)

예) [[∀a.∀b.a → b]]
def
= {} (아직 부족함)

7 / 13

System F (aka Polymorphic Lambda Calculus)
(Girard, Reynolds)

여러모양타입polymorphic type을 만들고 사용하는 프로그래밍

언어

계산식 E → () | x

| λx : τ.E | E E

| Λa.E (여러모양타입 만들기type abstraction)

| E τ (여러모양타입 사용하기type application)

타입 τ → ι

| τ → τ

| a (타입변수)

| ∀a.τ (여러모양타입)

8 / 13

System F 프로그램 예
▶ λf : a → a.λx : a.f(f x) : (a → a) → (a → a)

▶ Λa.λf : a → a.λx : a.f(f x) : ∀a.(a → a) → (a → a)

▶ (Λa.λf : a → a.λx : a.f(f x))int

−→ λf : int → int.λx : int.f(f x)

▶ Λa.λf : a → a.λx : a.x : ∀a.(a → a) → (a → a)

▶ Λa.λf : a → a.λx : a.f x : ∀a.(a → a) → (a → a)

▶ λn : nat.Λa.λs : a → a.λz : a.s((n a) s z) : nat → nat

참고) 자연수/참거짓 표현가능

nat
def
= ∀a.(a → a) → (a → a)

1
def
= Λa.λs : a → a.λz : a.s z

succ
def
= λn : nat.Λa.λs : a → a.λz : a.s((n a) s z)

참고) (타입넣고) 재귀함수 표현불가

Y : ∀a.(a → a) → a 불가능

9 / 13

System F 실행의미dynamic semantics

적극적계산법call-by-value

실행문맥 K → []

| K E | v K

| K τ

값 v → () | λx : τ.E | Λa.E

▶ 다시 쓸 곳은 다시 쓰면 되고:

E → E ′

K[E] → K[E ′]

▶ 속에서 어떻게 다시 쓰여지는가 하면:

(λx : τ.E) v → {v/x}E
(Λa.E) τ → {τ/a}E

10 / 13

System F 실행전 의미static semantics
∆,Γ ⊢ E : τ

타입환경 Γ ∈ Var
fin→ Type

묶인타입변수 ∆ ⊆ TypeVar

FTV (τ) ⊆ ∆

∆ ⊢ τ

∆,Γ ⊢ () : ι

Γ(x) = τ

∆,Γ ⊢ x : τ

∆ ⊢ τ1 ∆,Γ + x : τ1 ⊢ E : τ2 ∆ ⊢ τ2
∆,Γ ⊢ λx : τ1.E : τ1 → τ2

∆,Γ ⊢ E1 : τ → τ ′ ∆,Γ ⊢ E2 : τ

∆,Γ ⊢ E1 E2 : τ
′

∆ ∪ {a},Γ ⊢ E : τ a ̸∈ ∆

∆,Γ ⊢ Λa.E : ∀a.τ
∆ ⊢ τ ∆,Γ ⊢ E : ∀a.τ ′
∆,Γ ⊢ E τ : {τ/a}τ ′

사실) 실행전의미(타입검사)는 안전함

사실) 타입 유추 알고리즘은 불가능함 (̸ ∃Algm(E)
let
=

decides if ∃E ′,Γ, τ.|E ′| = E ∧ Γ ⊢ E ′ : τ)

11 / 13

System F의 확장

▶ + rec f x E

▶ + 곱타입 + 합타입

▶ 작은타입subtype, 작은 여러모양 타입subtype polymorphism

τ <: τ ′ ∀a <: τ.τ ′

▶ 제한있는 여러모양 타입bounded polymorphism

∀a ∈ T.τ

(T “type class”)

12 / 13

지형도: 람다 큐브lambda cube

프로래밍언어에서 값과 타입을 섞는 8가지

▶ 원점: 값이 값계산에

▶ (λx.E) v −→ {v/a}E
▶ x축: 타입이 타입계산에

▶ 타입함수type function: 타입으로 타입 만들기

예) list(int), tree(apple), car(diesel)

▶ y축: 타입이 값계산에

▶ System F

▶ (Λa.E) τ −→ {τ/a}E
▶ z축: 값이 타입계산에

▶ 값에기댄 타입dependent type: 타입안에 값계산식

예) list(3), tree(λx.⊥),

∀m,n, l.mat(m,n) → mat(n, l) → mat(m, l)

13 / 13

