
SNU 프로그래밍언어 특강

(2.2)

이 광근

kwangkeunyi.snu.ac.kr

1 / 38

안전한 실행전의미static semantics의 쓰임새

프로그램 실행미래 예측가능

◮ 오호: 프로그램 실행전의미static semantics를 –타입이

있는지를– 실행전에 확인할 수 있다면?

◮ 예측가능: 그 프로그램은 잘돌고, 끝나면 예측한 타입의

값을 내놓을 것이다

◮ 더군다나: 그 확인이 자동으로 + 현실적인 비용으로

된다면

◮ “2세대 SW검산 기술”

2 / 38

타입 유추type inference

실제 프로그래밍 언어 시스템에 장착하는 전자동 도구로

◮ 간단한 타입simple type의 경우

◮ 타입유추는 이런식으로

◮ 단, 간단한 타입만으론 많은 프로그램을 지원못함

◮ 여러모양 타입polymorphic type의 경우

◮ 그래야, 많은 프로그램을 지원할 수 있다
◮ “let-polymorphism” (Hindley-Milner)

◮ 제한적인 여러모양 타입 (rank 1, “prenex”)

◮ 자동유추 (“implicit let-polymophism”)

◮ 현실적인 비용

◮ ML, Haskell의 타입유추 엔진기술

3 / 38

실행전의미: 간단한 타입simple type 경우
용어) 실행전의미static semantics

≃ 타입규칙typing rule, type inference rule

≃ 타입시스템type system

식 E → n

| x

| E + E

| fn x E

| E E

타입 τ → int

| τ → τ

(타입환경type env Γ ∈ Var
fin
→ Type)

Γ ⊢ n : int
Γ ⊢ E1 : int Γ ⊢ E1 : int

Γ ⊢ E1 + E2 : int

Γ(x) = τ

Γ ⊢ x : τ

Γ + x : τ1 ⊢ E : τ2
Γ ⊢ fn x E : τ1 → τ2

Γ ⊢ E1 : τ1 → τ2 Γ ⊢ E2 : τ1
Γ ⊢ E1 E2 : τ2

4 / 38

타입규칙(실행전의미)의 안전성 증명

예측한대로 실행된다

(증명방법 I)

◮ 타입이 있으면

◮ Progress Lemma: 값이 나올 때까지 문제없이 진행한다

⊢ E : τ 이고 E가 값이 아니면 반드시 E → E ′.

◮ Preservation Lemma: 진행은 타입을 보존한다

⊢ E : τ 이고 E → E ′ 이면 ⊢ E ′ : τ .

5 / 38

바꿔치기 {v/x}E
프로그램 실행의 핵심: (fn x E) v → {v/x}e

{v/x}n = n

{v/x}x = v

{v/x}y = y if y 6= x

{v/x}(E1 + E2) = ({v/x}E1) + ({v/x}E2)

{v/x}(E1 E2) = ({v/x}E1) ({v/x}E2)

{v/x}(fn y E) = fn y ({v/x}E) y 6∈ {x} ∪ FV (v)

사실: 묶여있는 변수만 다른 fn x E와 fn x′ E ′는 같은 것;

서로 항상 대신할 수 있다.

◮ 따라서, {v/x}(fn y E)가 항상 정의 될 수 있는 fn y E

라고 (즉, y 6∈ {x} ∪ FV (v)라고) 간주 해도 무방.

6 / 38

타입이 있으면 문제없이 진행

Lemma (Progress)

⊢ E : τ 이고 E가 값이 아니면 반드시 진행 E → E ′ 한다.

Proof. ⊢ E : τ의 증명에 대한 귀납법으로. 1

E = E1 E2인 경우: ⊢ E1 E2 : τ이므로 타입추론 규칙에 의해

⊢ E1 : τ ′ → τ이고 ⊢ E2 : τ ′ 이다. 따라서, 귀납 가정에 의해서,

◮ E1이 값이 아니면 진행 E1 → E′

1
하고, 이는 곧 프로그램 실행 →의

정의에 의해 E1 E2 → E′

1
E2과 같다.

◮ 마찬가지로, E1이 값이고 E2가 값이 아니라면 진행 E2 → E′

2
하고,

이는 곧 프로그램 실행 →의 정의에 의해 E1 E2 → E1 E
′

2
과 같다.

◮ E1과 E2가 모두 값이라면, ⊢ E1 : τ ′ → τ일 수 있는 값 E1은 오직

fn x E′경우 뿐이다. 따라서 프로그램 실행 →의 정의에 의해

반드시 진행 E1 E2 = (fn x E′) E2 → {E2/x}e
′한다.

다른 경우도 마찬가지로 증명.
7 / 38

실행은 타입을 보존

Lemma (Preservation)

⊢ E : τ 이고 E → E ′ 이면 ⊢ E ′ : τ .

Proof. ⊢ E : τ의 증명에 대한 귀납법으로 진행한다. 2

E = E1 E2인 경우: ⊢ E1 E2 : τ이므로 타입추론 규칙에 의해

⊢ E1 : τ ′ → τ이고 ⊢ E2 : τ ′ 이다. E1 E2 → E′이라면 세가지 경우밖에

없다:

◮ E1 → E′

1
이라서 E1 E2 → E′

1
E2 인 경우. 귀납 가정에 의해

⊢ E′

1
: τ ′ → τ . ⊢ E2 : τ ′이므로, 타입추론 규칙에 의해 ⊢ E′

1
E2 : τ .

◮ E1은 값이고 E2 → E′

2
이라서 E1 E2 → E1 E

′

2
인 경우. 위의 경우와

유사.

◮ E1과 E2가 모두 값인 경우. ⊢ E1 : τ ′ → τ인 값 E1은 타입추론

규칙에 의해 fn x E′ 밖에는 없다. 즉, E1 E2 = (fn x E′) v 이고,

(fn x E′) v → {v/x}E′ 이다. ⊢ fn x E′ : τ ′ → τ이라면 타입추론

규칙에 의햇 x : τ ′ ⊢ E′ : τ이다. ⊢ v : τ ′ 이므로, “Preservation

under Substitution Lemma”에 의해 ⊢ {v/x}E′ : τ이다.

8 / 38

바꿔치기는 타입을 보존

Lemma (Preservation under Substitution)

Γ ⊢ v : τ ′ 이고 Γ + x : τ ′ ⊢ E : τ 이면 Γ ⊢ {v/x}E : τ .

Proof. Γ + x : τ ′ ⊢ E : τ의 증명에 대한 귀납법으로 증명한다.

E = fn y E′ 인 경우: 항상 y 6∈ {x} ∪ FV v인 fn y E′로 간주할 수

있으므로 {v/x}(fn y E′) = fn y ({v/x}E′). 따라서, 보일 것은

Γ ⊢ fn y ({v/x}E′) : τ
let
= τ1 → τ2.

가정 Γ + x : τ ′ ⊢ fn y E′ : τ1 → τ2 으로부터 타입추론 규칙에 의해

Γ + x : τ ′ + y : τ1 ⊢ E′ : τ2 이고, Γ ⊢ v : τ ′와 y 6∈ FV (v) 으로부터

Γ + y : τ1 ⊢ v : τ ′3 이므로, 귀납 가정에 의해 Γ + y : τ1 ⊢ {v/x}E′ : τ2.

즉, 타입추론 규칙에 의해 Γ ⊢ fn y ({v/x}E′) : τ1 → τ2.

다른 경우는 더욱 단순한 귀납.

9 / 38

자동 타입유추type inference: 단순한타입simple type

타입에 대한 연립방정식 세우고 풀기

◮ 타입 연립 방정식 u

u → τ=̇τ 타입 방정식

| u ∧ u 연립

τ → α 타입 변수

| ι | τ → τ

10 / 38

타입 연립 방정식 세우기

V (Γ, E, τ) = u

이랬으면 좋은:

S |= V (Γ, E, τ) ⇔ SΓ ⊢ E : Sτ.

여기서:

S ∈ 바꿔치기 Subst = TyVar
fin
→ Type

S |= u
def
= “S는 방정식 u의 해model”

11 / 38

Sτ1 = Sτ2
S |= τ1=̇τ2

S |= u1 S |= u2

S |= u1 ∧ u2

Sα =

{

τ if α 7→ τ ∈ S

α if α 6∈ domain(S)

Sι = ι

S(τ → τ ′) = (Sτ) → (Sτ ′)

SΓ = {x : Sτ | x : τ ∈ Γ}

바꿔치기들은 오른쪽부터

Sn · · ·S0X
def
= Sn · · · (S0X)

12 / 38

타입 연립 방정식 세우기 V (Γ, E, τ)

V (Γ, n, τ) = τ=̇ι

V (Γ, x, τ) = τ=̇τ ′ if x : τ ′ ∈ Γ

V (Γ, E1 + E2, τ) = τ=̇ι ∧ V (Γ, e1, ι) ∧ V (Γ, e2, ι)

V (Γ, fn x E, τ) = τ =̇ α1 → α2 ∧ V (Γ + x : α1, e, α2)

new α1,α2

V (Γ, E1 E2, τ) = V (Γ, e1, α → τ) ∧ V (Γ, e2, α)

new α

13 / 38

V (Γ, E, τ)는 옳은가?
즉,

S |= V (Γ, E, τ) ⇔ SΓ ⊢ E : Sτ

인가?
Proof. E의 구조에 대한 귀납법으로.

fn x E인 경우: S |= V (Γ, fn x E, τ) 은

= S |= τ =̇ α1 → α2 ∧ V (Γ + x : α1, e, α2) new α1, α2

⇔ S |= τ =̇ α1 → α2

∧ S |= V (Γ + x : α1, e, α2)

⇔ Sτ = Sα1 → Sα2

∧ SΓ + x : Sα1 ⊢ E : Sα2 (귀납가정)

⇔ Sτ = Sα1 → Sα2

∧ SΓ ⊢ fn x E : Sα1 → Sα2

⇔ SΓ ⊢ fn x E : Sτ.

다른 경우도 비슷하게.
14 / 38

연립 방정식의 해 구하기

동일화 알고리즘unification algorithm:

“A Machine-Oriented Logic Based on the Resolution

Principle”, J.A.Robinson, Journal of ACM, Vol.12,

No.1, pp.23-41, 1965.

◮ 타입 방정식들(τ=̇τ ′)과 해 공간(Type)은 위 논문의

동일화unification 알고리즘으로 풀 수 있는 클래스

◮ 알고리즘 U는 T |= u인 T 중에서 가장 일반적인

해most general unifier를 구해준다.

◮ (U(u)
let
= S) |= u 이고

◮ T |= u 이면 ∃R.T = RS.

15 / 38

알고리즘 U(V (Γ, E, α))

U(u) ∈ Subst = TyVar
fin
→ Type

U(τ=̇τ ′) = unify(τ, τ ′)

U(u ∧ u′) = let S = U(u)

S ′ = U(Su′)

in S ′S

동일화 알고리즘 unify

unify(τ, τ ′) ∈ Subst

unify(τ, τ) = ∅

unify(α, τ) ∨ unifty(τ, α) =

{

{α 7→ τ} if α 6∈ τ

fail else

unify(τ1 → τ2, τ
′

1
→ τ ′

2
) = let S = unify(τ1, τ

′

1
)

S ′ = unify(Sτ2, Sτ
′

2
)

in S ′S

unify() = fail

16 / 38

알고리즘은 충실한sound & complete 구현

안전sound U(V (Γ, E, α)) = S ⇒ SΓ ⊢ E : Sα

완전complete

U(V (Γ, E, α)) = S

∧ Γ′ = RSΓ

∧ τ ′ = RSα







⇐ Γ′ ⊢ E : τ ′

17 / 38

다른 알고리즘 I: V와 unify를 동시에

M : TyEnv × Exp × Type → Subst

M(Γ, n, τ) = unify(ι, τ)

M(Γ, x, τ) = unify(τ, τ ′) if x : τ ′ ∈ Γ

M(Γ, fn x E, τ) = let S = unify(α1 → α2, τ) new α1, α2

S ′ = M(SΓ + x : Sα1, E, Sα2)

in S ′S

M(Γ, E E ′, τ) = let S = M(Γ, E, α → τ) new α

S ′ = M(SΓ, E ′, Sα)

in S ′S

M(Γ, E + E ′, τ) = let S = unify(ι, τ)

S ′ = M(SΓ, E, ι)

S ′′ = M(S ′SΓ, E ′, ι)

in S ′′S ′S

안전sound M(Γ, E, α) = S ⇒ SΓ ⊢ E : Sα

완전complete

M(Γ, E, α) = S

∧ Γ′ = RSΓ

∧ τ ′ = RSα







⇐ Γ′ ⊢ E : τ ′

18 / 38

다른 알고리즘 II: V와 unify를 동시에

W : TyEnv × Exp → Type × Subst

W (Γ, n) = (ι, ∅)

W (Γ, x) = (τ, ∅) if x : τ ∈ Γ

W (Γ, fn x E) = let (τ, S) = W (Γ + x : α,E) new α

in (Sα → τ, S)

W (Γ, E E ′) = let (τ, S) = W (Γ, E)

(τ ′, S ′) = W (SΓ, E ′)

S ′′ = unify(τ ′ → α, S ′τ) new α

in (S ′′α, S ′′S ′S)

W (Γ, E + E ′) = let (τ, S) = W (Γ, E)

S ′ = unify(τ, ι)

(τ ′, S ′′) = W (S ′SΓ, E ′)

S ′′′ = unify(τ ′, ι)

in (ι, S ′′′S ′′S ′S)

안전sound W (Γ, E) = (τ, S) ⇒ SΓ ⊢ E : τ

완전complete

W (Γ, E) = (τ, S)

∧ Γ′ = RSΓ

∧ τ ′ = Rτ







⇐ Γ′ ⊢ E : τ ′

19 / 38

타입규칙 쓸모 향상시키기

간단한타입 시스템simple type system이 “잘 모르겠다”고 하는

경우를 줄여보자.

◮ 타입 시스템에서는

“잘 모르겠다” = “타입방정식의 해가 없다”

◮ 여러모양타입 시스템polymorphic type system(⊢p)에서는 “잘

모르겠다”고 하는 경우가 적다, 단순한타입

시스템simple type system(⊢) 보다:

Γ ⊢ E : τ ⇒ Γ ⊢p E : τ

◮ ⊢p는 ⊢의 “conservative extension”이라고 함.

20 / 38

쓸모가 적은 간단한타입 시스템

...
{f : τ → τ ′} ⊢ f : τ → τ ′

...
{f : τ → τ ′} ⊢ f : τ

τ = τ → τ ′

{f : τ → τ ′} ⊢ f f : τ ′

⊢ fn f (f f) : (τ → τ ′) → τ ′

...
{f : τ → τ} ⊢ f : τ → τ

...
{f : τ → τ} ⊢ f : τ

τ = τ → τ

{f : τ → τ} ⊢ f f : τ → τ
...

⊢ fn f (f f) : (τ → τ) → (τ → τ)

⊢ (fn f (f f))(fn x x) : τ → τ

21 / 38

여러모양타입polymorphic type을 이용하자
여러모양타입 이용하기: 타입을 일반화type generalization 시키는

작업

∀α.α → ι, ∀α1, α2.α1 → α2, · · ·

그래서

...
{f : ∀α.α → α} ⊢ f : (ι → ι) → (ι → ι)

...
{f : ∀α.α → α} ⊢ f : ι → ι

{f : ∀α.α → α} ⊢ f f : ι

⊢ fn f (f f) : (∀α.α → α) → ι

이고

...
⊢ fn f (f f) : (∀α.α → α) → (ι → ι)

...
⊢ fn x x : ι → ι

⊢ (fn f (f f))(fn x x) : ι → ι

22 / 38

하지만 함부로 일반화를 이용하면

◮ 안전하지 않을 뿐더러

◮ 충실한 구현이 불가능undecidable:

◮ 맘대로인 여러모양타입은 피해야

◮ “∀”이 맨 바깥prenex form인 여러모양타입만

23 / 38

함부로 일반화하면 불안전

...
{f : ∀α.α → ι} ⊢ f : ι → ι · · ·

{f : ∀α.α → ι} ⊢ f 1 : ι · · ·

{f : ∀α.α → ι} ⊢ (f 1, f true) : ι× ι

⊢ fn f (f 1, f true) : (∀α.α → ι) → (ι× ι)

...
⊢ fn x x + 1 : ι → ι

⊢ (fn f (f 1, f true))(fn x x + 1) : ι× ι

혹은

...
⊢ (fn x (let y x (y 1, y true)))(fn z z + 1) : ι× bool

24 / 38

안전한 타입규칙 디자인: let-여러모양타입
Hindley-Milner style let-polymorphism

◮ 프로그램이 특별히 생긴 경우만 그렇게 정교한 유추가

작동하도록

◮ 함수가 어디서 무슨 인자로 어떻게 사용되는 지를 알 수

있는 경우 즉,

(fn x · · · x · · · x · · ·
︸ ︷︷ ︸

E

)E ′

즉,

let x E ′ E

인 경우만

◮ 이 경우, E ′이 여러모양타입일 수 있는 지 “보수적으로”

확인한 후에, E안에서 x가 어떻게 사용되는지 유추.

◮ 여러모양타입은 ∀이 맨 바깥에만:

ι → ι, ∀α.α → α, ∀α1α2.α1 → α2

25 / 38

여러모양타입 규칙

◮ 타입type과 타입틀type scheme

타입 τ → ι | τ → τ | α

타입틀 σ → τ | ∀α.σ

타입틀type scheme은 단순한타입과 여러모양타입을 포함.

여러모양타입은 ∀이 맨 바깥에만(prenex form).

◮ 추론규칙inference rules은 “Γ ⊢ E : τ”꼴을 유추하는 규칙들

◮ 가정들 Γ

◮ 변수들의 타입틀type scheme에 대한 가정

◮ x + 1 : ι, 가정 x : ι 아래서.

◮ (f 1, f true) : ι× bool , 가정 f : ∀α.α → α 아래서

26 / 38

Γ ⊢ E : τ 타입규칙

Γ ⊢ n : ι Γ ⊢ x : τ
σ ≻ τ, x : σ ∈ Γ

Γ ⊢ E : τ Γ + x : GenΓ(τ) ⊢ E ′ : τ ′

Γ ⊢ let x E E ′ : τ ′

Γ ⊢ E1 : ι Γ ⊢ E2 : ι
Γ ⊢ E1 + E2 : ι

Γ ⊢ E1 : τ
′ → τ Γ ⊢ E2 : τ

′

Γ ⊢ E1 E2 : τ
Γ + x : τ ⊢ E : τ ′

Γ ⊢ fn x E : τ → τ ′

GenΓ(τ) = ∀α1 · · ·αn.τ {α1, · · · , αn} = FTV (τ) \ FTV (Γ)

σ ≻ τ σ = ∀α1 · · ·αn.τ
′ ∧ τ = {τi/αi}iτ

FTV (τ) = TV (τ)

FTV (∀α.σ) = FTV σ \ {α}

FTV (Γ) = ∪x:σ∈ΓFTV (σ)

27 / 38

타입규칙의 안전성: GenΓ(τ)
왜 타입 τ를 여러모양타입 ∀α.τ 으로 만들때 α가 Γ 에

나타나면 제외?

GenΓ(τ) = ∀α1, · · · , αn.τ 여기서 {α1, · · · , αn} = FTV (τ)\FTV (Γ)

◮ Γ에 가정(x : σ)이 첨가 되는 경우는 fn x E 의 경우

◮ Γ에 있는 가정을 사용하는 경우? 함수안에서 함수의

인자를 사용할때

◮ 함수의 인자 타입을 특별히 일반화시킨 후 함수안

타입을 유추? 곤란

◮ 실행중 전달되는 인자는 여러모양타입 값이 아닐 수 있음

예)

fn x (let y x (y 1, y true))

이 함수가 그런 특별한(여러모양타입) 함수만 x에

전달될것을 확인해야하는데!
28 / 38

타입규칙(실행전의미)의 안전성 증명

예측한대로 실행된다

(증명방법 I)

◮ 타입이 있으면

◮ Progress Lemma: 값이 나올 때까지 문제없이 진행한다

⊢ E : τ 이고 E가 값이 아니면 반드시 E → E ′.

◮ Preservation Lemma: 진행은 타입을 보존한다

⊢ E : τ 이고 E → E ′ 이면 ⊢ E ′ : τ .

29 / 38

자동 타입유추: 여러모양 타입polymorphic type 경우

◮ 간단한타입simple type 유추 알고리즘 M과 W의

“자연스러운” 확장

◮ M나 W도 모두 충실한 구현. 예를들어,

안전sound W(Γ, E) = (τ, S) ⇒ SΓ ⊢ E : τ

완전complete

W(Γ, E) = (τ, S)

∧ Γ′ = RSΓ

∧ R(GenSΓ(τ)) ≻ τ ′







⇐ Γ′ ⊢ E : τ ′

참고) “Proofs about a Folklore Let-Polymorphic Type Inference Algorithm”, Oukseh

Lee and Kwangkeun Yi, ACM Transactions on Programming Langauges and Systems

30 / 38

let-여러모양타입 유추 알고리즘 W

W : TyEnv × Exp → Type × (TyVar
fin
→ Type)

W(Γ, n) = (ι, ∅)

W(Γ, x) = ({αi 7→ βi}
n
i=1

τ, ∅) where Γ(x) = ∀~α.τ, new ~β

W(Γ, fn x E) = let (S1, τ1) = W(Γ + x : β,E), new β

in (S1β → τ1, S1)

W(Γ, E1 E2) = let (S1, τ1) = W(Γ, E1)

(S2, τ2) = W(S1Γ, E2)

S3 = unify(S2τ1, τ2 → β), new β

in (S3β, S3S2S1)

W(Γ, let x E1 E2) =

let (S1, τ1) = W(Γ, E1)

(S2, τ2) = W(S1Γ + x : GEN S1Γ
(τ1), E2)

in (τ2, S2S1)

31 / 38

let-여러모양타입 유추 알고리즘M

M : TyEnv × Exp × Type → (TyVar
fin
→ Type)

M(Γ, n, τ) = unify(τ, ι)

M(Γ, x, τ) = unify(τ, {αi 7→ βi}
n
i=1

τ ′) where Γ(x) = ∀~α.τ ′, new ~β

M(Γ, fn x E, τ) = let S1 = unify(τ, β1 → β2), new β1, β2

S2 = M(S1Γ + x : S1β1, E, S1β2)

in S2S1

M(Γ, E1 E2, τ) = let S1 = M(Γ, E1, β → τ), new β

S2 = M(S1Γ, E2, S1β)

in S2S1

M(Γ, let x E1 E2, τ) =

let S1 = M(Γ, E1, β), new β

S2 = M(S1Γ + x : GEN S1Γ
(S1β), E2, S1τ)

in S2S1

32 / 38

M, W 알고리즘 성질

|f |
let
= 재귀함수 f의 실행 반복횟수

◮ |M| ≤ |W|: M은 W보다 일찍끝난다(타입없는

프로그램의 경우)

◮ |M|, |W| ∼ |E| 입력 프로그램 크기 (linear complexity)

◮ 단, 타입(unify의 인자) 크기가 기하급수로 커질 수 있음:

예)

let f1 = fn x (x,x) : ∀a.a → a× a

f2 = fn x (f1(f1 x)) : ∀a.a → (a× a)× (a× a)

...
◮ 사람 프로래밍에는 출현하지않는 패턴

33 / 38

메모리주소가 값인 언어

식 E →
...

| malloc E

| !E

| E := E

타입 τ → ι 기본타입

| α 타입변수

| τ → τ

| τ loc

타입틀 σ → τ 단순한타입

| ∀α.σ 여러모양타입 (prenex form)

34 / 38

let-여러모양타입 규칙: 자연스런 확장

Γ ⊢ E : τ
Γ ⊢ malloc E : τ loc

Γ ⊢ E : τ loc
Γ ⊢ !E : τ

Γ ⊢ E1 : τ loc Γ ⊢ E2 : τ
Γ ⊢ E1 := E2 : τ

그리고 예전그대로

· · ·

Γ ⊢ E1 : τ Γ + x : GEN Γ(τ) ⊢ E2 : τ
′

Γ ⊢ let x E1 E2 : τ
′

35 / 38

그러나, 안전하지 않은

let

f = malloc (λx.x)

in

f := λx.x+1;

(!f) true

◮ 실행중 타입 에러.

◮ 그러나 우리의 타입 시스템은 타입이 있는 것으로 허용.

36 / 38

let x E1 E2

◮ E1 실행중에 메모리 주소를 새롭게 할당받는 일이 없는

경우에만 안전

◮ 식 E1이 실행중에 메모리를 할당받을지 예측해야

◮ 실행전 정확히는 예측불가능, 안전하게는 가능

expansive(n) = false

expansive(x) = false

expansive(fn x E) = false

expansive(E1 E2) = true

expansive(E1 + E2) = expansive(E1) ∨ expansive(E2)

expansive(let x E1 E2) = expansive(E1) ∨ expansive(E2)

(너무 안전/보수적?)

37 / 38

let-여러모양타입 규칙: 메모리주소가 값일때

Γ ⊢ E : τ
Γ ⊢ malloc E : τ loc

Γ ⊢ E : τ loc
Γ ⊢ !E : τ

Γ ⊢ E1 : τ loc Γ ⊢ E2 : τ
Γ ⊢ E1 := E2 : τ

Γ ⊢ E1 : τ Γ + x : GEN Γ(τ) ⊢ E2 : τ
′

Γ ⊢ let x E1 E2 : τ
′

¬expansive(E)

Γ ⊢ E1 : τ Γ + x : τ ⊢ E2 : τ
′

Γ ⊢ let x E1 E2 : τ
′

expansive(E)

expansive(n | x | fn x E) = false

expansive(E1 E2) = true

expansive(E1 + E2) = expansive(E1) ∨ expansive(E2)

expansive(let x E1 E2) = expansive(E1) ∨ expansive(E2)

38 / 38

