
SNU 프로그래밍언어 특강

(2.3)

이 광근

kwangkeunyi.snu.ac.kr

1 / 39

여러모양타입polymorphism의 종류

타입에 상관없는parametric vs 타입에 민감한ad-hoc

▶ 타입에 상관없이 고르게 작동하는parametric polymorphism

▶ 예) 저울, id, list-length, g ◦ f (ftn compose)

▶ “진심인” 여러모양타입

▶ 타입에 민감한데 아닌척하는ad-hoc polymorphism, overloading

▶ 예) 1+2, 1.2+3.4, “a”+“b”, true+false

▶ 예) print 1, print “a”, print true

▶ 예) myreading.accel, myavante.accel, starship.accel

▶ “겉으로만” 여러모양타입

2 / 39

여러모양타입처럼 보이는 계산 지원하기
▶ 상식: 타입에 따라 다른 계산을 정의하도록

print x = case type(x) of int → ... | bool → ...

▶ 상식+디자인: 타입클래스type class

▶ 타입클래스 = 타입모음 + 타입마다 같은 이름의 다른

구현을 담음

▶ 타입클래스 사용법interface, 접속방안 = 타입인자 + 이름들

타입

class interface A a = (add: a→a→a, print: a→string)

(클래스 이름 “A”, 타입인자 “a”)

▶ 구체적인 타입마다 선언한 것들을 구현

class instance A int = (add n m = n+m, print n = ...)

▶ 따로따로 프로그래밍modular pgm’ng: 외부에선 타입클래스

사용법interface, 접속방안만 알고 프로래밍

3 / 39

타입클래스 선언과 구현

▶ 타입클래스 선언 = 타입언어로 사용법interface, 접속방안

정의

class interface A a = (add: a→a→a, print: a → string)

▶ 타입클래스를 타입별로 구현하기(타입클래스 식구로

포함시키기)

class instance A int =

(add n n’ = n+n’, print n = int2string n)

class instance A bool =

(add b b’ = b orelse b’, print b = bool2string b)

4 / 39

타입클래스 사용

따로따로 프로그래밍modular pgm’ng 지원

(부품 속구현 변동≠⇒ 외부 사용코드 변동)

▶ 외부에선 타입클래스 사용법interface, 접속방안에만 기대서

▶ 예)

▶ 사용법(타입)

class interface A a = (add: a→a→a, print: a → string)

▶ 외부사용

show x = print (add x x) :∀a ∈ A.a → string

show 3 · · · show false

▶ 타입 상관없는척ad-hoc polymorphism(show)

▶ 제한된 여러모양타입bounded polymorphism(show)

5 / 39

타입클래스 예: 모나드monad, 차례차례타입, 계산잇기타입

▶ 순서가 핵심인 계산(입출력/메모리사용/예외상황처리)

프로래밍을 위한 타입클래스

▶ 유용: 그런게 없는 –계산순서에 무심한– 언어에서

▶ 덜유용: 그런게 이미 있는 언어에서는

▶ 모나드 타입클래스 사용법interface, 접속방안 (타입)

class interface Monad (a monad) =

(

unit: a → a monad,

>>=: a monad → (a → a monad) → a monad

)

6 / 39

▶ maybe monad:

class interface Monad (a monad) =

(

unit: a → a monad,

>>=: a monad → (a → a monad) → a monad

)

class instance Monad (type a monad = Some of a | None) =

(

unit x = Some x,

None >>= = None

Some x >>= f = f x

)

div x y = if y = 0 then None else (x / y)

(* code for (a / b) / c is: *)

(div a b) >>= fn r1 (div r1 c) >>= fn r2 r2

7 / 39

▶ state monad:
class interface Monad (a monad) =

(

unit: a → a monad,

>>=: a monad → (a → a monad) → a monad

)

class instance Monad (type a monad = mem → a × mem) =

(

unit x = fn m (x,m),

f >>= g = fn m (let (v1, m1) = f m in

let (v2, m2) = g v1 m1 in (v2, m2))

)

(* sequencing of e1 then e2 with memory m0 *)

(e1 >>= e2) m0

8 / 39

∃a.τ 속구현감춘 데이터타입abstract data type

식 E → · · ·
| abs τ E 만들기

| adt x E E 사용하기

Γ ⊢ E : {τ/a}τ ′

Γ ⊢ abs τ E : ∃a.τ ′

Γ ⊢ E1 : ∃a.τ Γ + a+ x : τ ⊢ E2 : τ
′

Γ ⊢ adt x E1 E2 : τ
′

abs/adt, package/open, pack/unpack, pack/open, pack/letpack, ...

예)

adt counter

(abs int (new:int = 0, inc x:int = x+1, check x:int=x<10))

counter.check(counter.inc(counter.new))

9 / 39

돌아보기: 타입의 효용 (1/2)

타입 τ → ι | a | τ → τ | τ × τ | τ + τ

| µa.τ | ∀a.τ | ∀a ∈ A.τ | ∃a.τ | · · ·

▶ 프로그래밍언어를 이해하는/디자인하는 틀

▶ 언어 구성자construct = 특정 타입의 값을 만들고

사용하는 방법

▶ 언어 구성자 디자인 가이드 = 타입으로 따지는 의미가

논리증명 규칙과 대응하는지 여부

▶ 프로그래밍언어 실행전의미static semantics의 어휘

(의미공간semantic domain)

Γ ⊢ E : τ

10 / 39

돌아보기: 타입의 효용 (2/2)

타입 τ → ι | a | τ → τ | τ × τ | τ + τ

| µa.τ | ∀a.τ | ∀a ∈ A.τ | ∃a.τ | · · ·

▶ 프로그램 실행전 검산기술의 단서: 안전한

타입유추sound type inference 알고리즘

M(Γ, E, α)

▶ 따로따로 프로그래밍modular pgm’ng의 기둥: 속구현 감춘,

사용법interface 서술언어

class interface A a = (add: a→a→a, print: a→string)

11 / 39

커리-하워드 대응curry-howard correspondence

프로그램과 증명은 동전의 양면

프로그램체계 ≡ 논리체계

프로그램
거울←→ 증명

타입
거울←→ 명제

▶ 프로그램
def
= 타입잡고 짜는 값중심언어applicative language식

▶ 증명
def
= 각잡고 하는 증명formal proof

▶ 정해진+기계적인 증명규칙proof rule만 사용:

논리추론의 징검다리

▶ 예) 직관논리intuitionistic logic, constructive logic,

고전논리classical logic

12 / 39

증명하기 ←→ 프로그램짜기

“논리적인 비약없이 새로운

사실을 확인해가는 과정이다.”

←→ 공짜없이 새로운 데이터를

만들어가는 과정이다.

“사실을 기반으로 해서 새로운

사실들을 만들어 간다.”

←→ 이미 만든 데이터를 가지고

새로운 데이터들을 만들어 간다.

“만들어가는 과정은 논리적으로

누구나 수긍하는 추론의

징검다리만을 밟고 가는 과정만

있다.”

←→ 새 데이터를 만드는 과정은

사용하는 프로그래밍 언어에서

제공하는 프로그램 조립방식만을

써서 만든다.

13 / 39

직관논리intuitionistic/constructive propositional logic

논리식 f → T | F | f ∧ f | f ∨ f | f ⇒ f

증명규칙 Γ ⊢ f (Γ ⊆논리식, [[∧Γ⇒ f]] = true인)

Γ ⊢ T Γ ⊢ f
f ∈ Γ Γ ⊢ F

Γ ⊢ f

Γ ⊢ f1 Γ ⊢ f2
Γ ⊢ f1 ∧ f2

Γ ⊢ f1 ∧ f2
Γ ⊢ f1

Γ ⊢ f1
Γ ⊢ f1 ∨ f2

Γ ⊢ f1 ∨ f2 Γ ∪ {f1} ⊢ f3 Γ ∪ {f2} ⊢ f3
Γ ⊢ f3

Γ ∪ {f1} ⊢ f2
Γ ⊢ f1 ⇒ f2

Γ ⊢ f1 ⇒ f2 Γ ⊢ f1
Γ ⊢ f2

14 / 39

증명: 증명나무proof tree

Γ
let
= {(A⇒ B) ∧ (A⇒ C), A},

Γ ⊢ (A⇒ B) ∧ (A⇒ C)

Γ ⊢ A⇒ B Γ ⊢ A
Γ ⊢ B

...
Γ ⊢ A⇒ C Γ ⊢ A

Γ ⊢ C
Γ ⊢ B ∧ C

Γ \ {A} ⊢ A⇒ (B ∧ C)

⊢ (A⇒ B) ∧ (A⇒ C)⇒ (A⇒ (B ∧ C))

15 / 39

커리-하워드 대응curry-howard correspondence I

식 E → () | x | fn x E | E E

| (E,E) | E.l | E.r

| inl E | inr E | case E (inl x E) (inr x E)

타입 τ → ι | τ → τ | τ × τ | τ + τ

▶ 직관논리intuitionistic logic시스템과

커리-하워드 대응curry-howard correspondence:

Γ ⊢ E : τ ⇐⇒ |Γ| ⊢ |τ |

▶ ⊢ E : τ인 프로그램 E는 곧, ⊢ |τ |의 증명나무
참고) “Proofs are Programs: 19th Century Logic and 21st Century Computing”, P.

Wadler. “Lectures on the Curry-Howard Isomorphism”, M. Sørensen and P.

Urzyczyn

16 / 39

|Γ| = {|τ | | x : τ ∈ Γ}
|ι| = T

τ → τ ′	=	τ	⇒	τ ′
τ × τ ′	=	τ	∧	τ ′
τ + τ ′	=	τ	∨	τ ′

17 / 39

고전논리classical propositional logic

논리식 f → T | F | f ∧ f | f ∨ f | f ⇒ f

| ¬f (f ⇒ F 의 설탕)

증명규칙 Γ ⊢ f (Γ ⊆논리식, [[∧Γ⇒ f]] = true인)

Γ ⊢ T Γ ⊢ f
f ∈ Γ

Γ ⊢ ¬¬f
Γ ⊢ f

Γ ⊢ f1 Γ ⊢ f2
Γ ⊢ f1 ∧ f2

Γ ⊢ f1 ∧ f2
Γ ⊢ f1

Γ ⊢ f1
Γ ⊢ f1 ∨ f2

Γ ⊢ f1 ∨ f2 Γ ∪ {f1} ⊢ f3 Γ ∪ {f2} ⊢ f3
Γ ⊢ f3

Γ ∪ {f1} ⊢ f2
Γ ⊢ f1 ⇒ f2

Γ ⊢ f1 ⇒ f2 Γ ⊢ f1
Γ ⊢ f2

18 / 39

Γ ⊢ ¬¬f
Γ ⊢ f 하나면 아래 규칙들 불필요:

Γ ⊢ F
Γ ⊢ f

Γ ∪ {f} ⊢ F

Γ ⊢ ¬f
Γ ⊢ f Γ ⊢ ¬f

Γ ⊢ F

왜) ¬f def
= (f ⇒ F) 이고,

Γ ⊢ F
Γ ∪ {¬f} ⊢ F

Γ ⊢ ¬¬f
Γ ⊢ f

참고) ⊢ f ∨ ¬f (모아니면도excluded middle) 증명가능, 직관논리에서는 불가능.

19 / 39

Γ ⊢ ¬¬f
Γ ⊢ f 대신, 아래 두개로 대체가능:

Γ ⊢ F
Γ ⊢ f

Γ ∪ {f ⇒ F} ⊢ f

Γ ⊢ f

왜)

Γ ⊢ ¬¬f
즉

Γ ⊢ f ⇒ F ⇒ F

Γ ∪ {f ⇒ F} ⊢ f ⇒ F ⇒ F Γ ∪ {f ⇒ F} ⊢ f ⇒ F

Γ ∪ {f ⇒ F} ⊢ F

Γ ∪ {f ⇒ F} ⊢ f

Γ ⊢ f

20 / 39

커리-하워드 대응curry-howard correspondence II

식 E → · · ·
| catch x E | throw x E

타입 τ → ι | τ → τ | τ × τ | τ + τ

▶ 고전논리classical logic시스템과

커리-하워드 대응curry-howard correspondence:

Γ ⊢ E : τ ⇐⇒ |Γ| ⊢ |τ |

▶

Γ + x : τ → τ ′ ⊢ E : τ ′

Γ ⊢ catch x E : τ
거울←→ Γ ⊢ ¬¬A

Γ ⊢ A
Γ(x) = τ → τ ′ Γ ⊢ E : τ

Γ ⊢ throw x E : τ ′′
거울←→ Γ ⊢ F

Γ ⊢ A

▶ ⊢ E : τ인 프로그램 E는 곧, ⊢ |τ |의 증명나무
참고) “A Formulae-as-Types Notion of Control”, POPL’90, T. Griffin

21 / 39

다시: 어느 디자인이 “좋은가”? (“맞을까”?)

C[catch x E] → C[{λv.C[v]/x}E]

vs

C[catch x E] → {λv.C[v]/x}E

▶ 두번째 디자인:

Γ + x : τ → τ ′ ⊢ E : τ ′

Γ ⊢ catch x E : τ
거울←→ Γ ⊢ ¬¬A

Γ ⊢ A

▶ 첫번째 디자인:

Γ + x : τ → τ ′ ⊢ E : τ
Γ ⊢ catch x E : τ

거울←→
Γ ∪ {A⇒ F} ⊢ A

Γ ⊢ A

22 / 39

커리-하워드 대응curry-howard correspondence

⊢ E : τ

이면

▶ 프로그램 E는, 증명 `

⊢ |τ |

를 표현

▶ τ는 증명한 명제 |τ |
따라서,

▶ 증명하기 = 프로그램짜기

▶ 증명이 맞는지 검사하기 = 프로그램 타입 검사하기

▶ 증명한 명제 = 프로그램의 타입
23 / 39

값에기댄 타입dependent type: 쓰임새

▶ 증명도우미 시스템proof-assistant system,

증명중심 프로그래밍proof-oriented pgm’ng에서

▶ 증명대상인 명제가·타입이 값(계산식)도 품을 수 있어야

▶ inc : ∀n ∈ Z.int(n)→ int(n+ 1)

inc 프로그램

= 증명[정수 n이 있다고하자. 그러면 정수 n+ 1을 만들수있다]

▶ mul : ∀m,n, l ∈ N.mat(m,n)→ mat(n, l)→ mat(m, l)

mul 프로그램

= 증명[m× n, n× l 행렬이 있으면 m× l 행렬을 만들수있다]

▶ sort : ∀n ∈ N. i:int array(n)→
o:int array(n)× sorted(o)× permute(i,o)

sort 프로그램

= 증명[크기 n인 정수열이 있으면 정열된 결과를 만들수 있다]

24 / 39

값에기댄 타입dependent type의 완결판
CoCcalculus of constructions

def
= λ× ω × F × Π

▶ 하나된 계산세계: 값/타입 구분없이 계산 대상/결과

▶ {값, 타입}이 {값, 타입}계산에
▶ 증명도우미proof assistant 시스템의 핵

* 람다큐브lambda cube (값과 타입을 섞는 8가지)

▶ 원점: 값이 값계산에 λ

▶ x축: 타입이 타입계산에 ω

▶ y축: 타입이 값계산에 F

▶ z축: 값이 타입계산에 Π

참고) “Lambda Calculi with Types”, H. Barendregt, in Handbook of Logic in

Computer Science, Vol.II, 1992. “The calculus of constructions”, T. Coquand and G.

Huet, 1986, 1988.

25 / 39

구분: 값, 타입, 타입의i타입

...

Type2, · · ·
Type1,Type1 → Type1, · · ·

nat, bool, nat→ bool, nat× bool, nat+ bool

∀a.a→ nat, ∃a.a× nat, µa.nat+ a, λa.a list, · · ·
1, 2, true, (1, false), Leaf 8

λx.x, λx.λy.x+ y, [1, 2], · · ·

26 / 39

구분: 값, 타입, 타입의i타입

2

Type,Type→ Type, · · ·
nat, bool, nat→ bool, nat× bool, nat+ bool

∀a.a→ nat, ∃a.a× nat, µa.nat+ a, λa.a list, · · ·
1, 2, true, (1, false), Leaf 8

λx.x, λx.λy.x+ y, [1, 2], · · ·

26 / 39

하나로: 값, 타입, 타입의i타입

2

Type,Type→ Type, · · ·
nat, bool, nat→ bool, nat× bool, nat+ bool

∀x:A.x→ nat, ∃x:A.x× nat, λx:A.x list, · · ·
1, 2, true, (1, false), Leaf 8

λx:A.x, λx:A.λy:B.x+ y, [1, 2], · · ·

표기법

▶ A→ B, ∀x:A.B 은 설탕 모두 Πx:A.B로

▶ A→ B ≡ Πx:A.B (x ̸∈ B 이면)

▶ A×B, ∃x:A.B, A+B 은 설탕 모두 Σx:A.B로

▶ A×B ≡ Σx:A.B (x ̸∈ B 이면)

▶ C(l) + C(r) ≡ Σx:Tag.C(x) (Tag = {l, r})

27 / 39

하나로: 값, 타입, 타입의i타입

2

Type,Type→ Type, · · ·
nat, bool, nat→ bool, nat× bool, nat+ bool

∀x:A.x→ nat, ∃x:A.x× nat, λx:A.x list, · · ·
1, 2, true, (1, false), Leaf 8

λx:A.x, λx:A.λy:B.x+ y, [1, 2], · · ·

표기법

▶ A→ B, ∀x:A.B 은 설탕 모두 Πx:A.B로

▶ A→ B ≡ Πx:A.B (x ̸∈ B 이면)

▶ A×B, ∃x:A.B, A+B 은 설탕 모두 Σx:A.B로

▶ A×B ≡ Σx:A.B (x ̸∈ B 이면)

▶ C(l) + C(r) ≡ Σx:Tag.C(x) (Tag = {l, r})
27 / 39

CoCcalculus of constructions: 하나된 계산법
값식value term 타입식type term 구분없이 E

식 E → n | nat 기본값 |기본타입
| Πx:E.E | Type | 2 타입 |타입의+타입

| x 값|타입 변수
| λx:E.E 값|타입 함수
| E E 값|타입 적용

제약사항:

* (Π | λ)x:E.E ′ 에서 x ̸∈ E

* 묶인이름은 모두 고유함 (x · · ·λy · · ·Πz · · ·)
식 중에서 타입식type term은 A,B 로

28 / 39

CoC 식의 예

▶ 값으로 값

λx:nat.x : Πx:nat.nat

▶ 타입으로 값

λa:Type.λx:a.x : Πa:Type.Πx:a.a

▶ 타입으로 타입

λa:Type.a list : Πa:Type.Type

▶ 값으로 타입

λn:nat.int list(n) : Πn:nat.Type

▶ 값계산

(λa:Type.λx:a.x) nat 3 →∗ 3

▶ 타입계산

(λa:Type.λn:nat.a list(n+1)) int 3 →∗ int list(4)

29 / 39

▶ inc :

Πn:nat.Πx:nat(n).nat(n+ 1)

즉, ∀n ∈ N.nat(n)→ nat(n+ 1)

▶ mul :

Πm,n, l:nat.Πx:mat(m,n).Πy:mat(n, l).mat(m, l)

즉, ∀m,n, l ∈ N.mat(m,n)→ mat(n, l)→ mat(m, l)

▶ cons :

Πn ∈ nat.Πx:int.Πl:int list(n).int list(n+ 1)

즉, ∀n ∈ N.int→ int list(n)→ int list(n+ 1)

30 / 39

▶ sort :

Πn:nat.Πx:array(n).sorted-array(x)

즉, ∀n ∈ N.x:array(n) → sorted-array(x)

▶ sort :

Πn:nat.Πx:array(n).Σy:array(n).permuted-sorted(x, y)

즉,

∀n ∈ N.x:array(n)→ (y:array(n)∧permuted-sorted(x, y))

▶ sort :

Πn:nat.Πx:array(n).Σy:array(n).Σz:sorted(y).permuted(x, y)

즉, ∀n ∈ N.x:array(n) →
(y:array(n) ∧ sorted(y) ∧ permuted(x, y))

31 / 39

CoCcalculus of constructions: 하나된 계산법
값식value term 타입식type term 구분없이 E

식 E → n | nat 기본값 |기본타입
| Πx:E.E | Type | 2 타입 |타입의+타입

| x 값|타입 변수
| λx:E.E 값|타입 함수
| E E 값|타입 적용

제약사항:

* (Π | λ)x:E.E ′ 에서 x ̸∈ E

* 묶인이름은 모두 고유함 (x · · ·λy · · ·Πz · · ·)
식 중에서 타입식type term은 A,B 로

32 / 39

CoC 실행전의미static semantics, type rules Γ ⊢ E : A
Γ ∈ Var

fin→ TypeTerm s ∈ {Type,2}

Γ ⊢ n : nat Γ ⊢ nat : Type Γ ⊢ Type : 2

Γ ⊢ A : s Γ + x:A ⊢ B : s′

Γ ⊢ Πx:A.B : s′

x:A ∈ Γ
Γ ⊢ x : A

Γ + x:A ⊢ E : B Γ ⊢ Πx:A.B : s
Γ ⊢ λx:A.E : Πx:A.B

Γ ⊢ E1 : Πx:A.B Γ ⊢ E2 : A

Γ ⊢ E1 E2 : {E2/x}B

Γ ⊢ E : A Γ ⊢ B : s A =βB

Γ ⊢ E : B

33 / 39

바꿔치기substitution {E′/x}E

Sn | Snat | SType = n | nat | Type

Sx =

E if E/x ∈ S

x if E/x ̸∈ S

S(Πx:E.E′) = Πx:(SE).(SE′) (x ̸∈ S)

S(λx:E.E′) = λx:(SE).(SE′) (x ̸∈ S)

S(E1E2) = (SE1)(SE2)

▶ 타입시스템은 안전함type safety

▶ 타입갖춘 식은 항상 끝나고strong normalization

타입이 유지됨type preservation

34 / 39

CoC 실행의미dynamic semantics E → E ′

(λx:A.E) E ′ → {E ′/x}E

E1 → E ′1
E1 E2 → E ′1 E2

E2 → E ′2
E1 E2 → E1 E

′
2

A → A′

Πx:A.E → Πx:A′.E
E → E ′

Πx:A.E → Πx:A.E ′

계산은

▶ 베타계산β-reduction뿐이고

▶ 순서 상관없이 만나게 됨confluence

35 / 39

CoC 쓰임새: 증명도우미proof assistant 시스템의

실현

커리-하워드 대응curry-howard correspondence과

값에기댄 타입dependent type 덕에

CoC의 풍부한 타입 = 풍부한 명제

그 타입의 CoC 식 = 그 명제의 증명

그 CoC 식의 타입검사 = 그 증명의 검산

36 / 39

CoC 타입으로 논리명제를 표현

▶ 성질predicate P = 어떤 집합 X의 원소들에 대한 명제

CoC에서 P는 아래 타입의 이름

P : X → Type

▶ 따라서,
명제 CoC 타입

∀x ∈ X.P (x) Πx : X.P (x)

37 / 39

커리-하워드 대응curry-howard correspondence

CoC
거울←→명제논리predicate logic, 술어논리, 성질논리, 모든어떤논리

CoC타입규칙 논리증명규칙

Γ + x:X ⊢ P (x)

Γ ⊢ ∀x:X.P (x)

Γ ⊢ ∀x:X.P (x) Γ ⊢ t : X

Γ ⊢ P (t)

주의) 정확한 양방향 대응은 아님 (회색
거울←→ 인 이유). ←−는 사실이지만 −→는 아님.

예를들어, CoC 식에서 Πa:Type의 a는 자기 타입을 포함한impredicative 모든 타입에

걸치지만, 명제논리에서 ∀a의 a는 하위 공간에만predicative 걸침.

38 / 39

커리-하워드 대응curry-howard correspondence

CoC
거울←→명제논리predicate logic, 술어논리, 성질논리, 모든어떤논리

CoC타입규칙 논리증명규칙

Γ + x:A ⊢ E : B Γ ⊢ Πx:A.B : s
Γ ⊢ λx:A.E : Πx:A.B

Γ + x:X ⊢ P (x)

Γ ⊢ ∀x:X.P (x)

Γ ⊢ E1 : Πx:A.B Γ ⊢ E2 : A

Γ ⊢ E1 E2 : {E2/x}B
Γ ⊢ ∀x:X.P (x) Γ ⊢ t : X

Γ ⊢ P (t)

주의) 정확한 양방향 대응은 아님 (회색
거울←→ 인 이유). ←−는 사실이지만 −→는 아님.

예를들어, CoC 식에서 Πa:Type의 a는 자기 타입을 포함한impredicative 모든 타입에

걸치지만, 명제논리에서 ∀a의 a는 하위 공간에만predicative 걸침.

38 / 39

커리-하워드 대응curry-howard correspondence

CoC
거울←→명제논리predicate logic, 술어논리, 성질논리, 모든어떤논리

CoC타입규칙 논리증명규칙

Γ + x:A ⊢ E : P (x) Γ ⊢ Πx:A.P (x) : s

Γ ⊢ λx:A.E : Πx:A.P (x)

Γ + x:X ⊢ P (x)

Γ ⊢ ∀x:X.P (x)

Γ ⊢ E1 : Πx:A.P (x) Γ ⊢ E2 : A

Γ ⊢ E1 E2 : P (E2)

Γ ⊢ ∀x:X.P (x) Γ ⊢ t : X

Γ ⊢ P (t)

주의) 정확한 양방향 대응은 아님 (회색
거울←→ 인 이유). ←−는 사실이지만 −→는 아님.

예를들어, CoC 식에서 Πa:Type의 a는 자기 타입을 포함한impredicative 모든 타입에

걸치지만, 명제논리에서 ∀a의 a는 하위 공간에만predicative 걸침.

38 / 39

CoC 식으로 명제증명을 표현
▶ 명제 (∀x:X.∀y:X.P x y)⇒ (∀x:X.P x x) 는

CoC 타입으로 (Πx:X.Πy:X.P x y)→ (Πz:X.P z z)

▶ 위 명제의 증명은 h
(칠판)

이고, CoC 식으로는

(λk:(Πx:X.Πy:X.P x y).λz:X.k z z)
let
= E

이다. 왜냐면,

X:Type, P :X → X → Type

⊢
E : (Πx:X.Πy:X.P x y)→ (Πz:X.P z z)

39 / 39

