Topics in Programming Languages HW2

Mo
MH>

Syntax
Variables Var x
Terms Tm en=gx

[n|—e
| Ax.e | ey e
| (e1,e5) | € .fst | e .snd
| inl. e | inr. e | case(ey, x.€q, y.€5)
|newe|le|e e

Statics

We restricts our type system to only allow first-order reference types. Defining logical relation for
type systems with higher-order state requires more advanced techniques such as step-indexing
(Dreyer et al. 2022) or parametric bisimulations (Hur et al. 2012).

First-order Types FTy T,0:=1int |TXo | T+ 0
Types Ty AB:=int | A—-B|AXxB| A+ B |refr
Contexts Ctx Fe=-|T,z: A

We skip the definition of type system.

Dynamics
While we restrict our type system to first-order references, our operational semantics supports full
higher-order references.

Locations Loc 14
Heaps Heap h
Environments Env P
Values Val vi=n| (Az.e,p) | (v1,v5) | inl.v | inr.v | ¢
Results Res r = (h,v) | err

The big-step evaluation relation h, p - e | r is inductively defined.

Variable:
x € dom(p) x ¢ dom(p)
h,pt x| (h,p(z)) h,ptz | err
Integer:
h,ptel (h,n) h,ptel err
h,ptn{ (h,n) h,pt—el (h',—n) h,pt—e | err
Function:
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h,pte | (h’, ()\x.ef,pf)) hi,pkFey 4 (M,v) R pelr=v]kFesr
h,pt Ax.e | (h, (Az.e,p)) h,pFe ey yr

h,pteg 4ry r ¢ {(h/, (/\w.ef,pf)) | h’,az,ef,pf} h,pte | (h’, ()\x.ef,pf)) h',pt eyl err

h,pFe ey | err h,pFej ey | err
Product:
hopte 4 (A v) R,pteyd (A" v,) h,pte | err h,pte 4 (b, v,) h,pteyerr
h”p - (61’62) ‘U (h//7 ('1}1,’[)2>) h)p = (61762) U’ err hap + (61762) U err
hapl_eu’(h,7(vl71}2)> h,pl‘@UT‘l "1 ¢{<h/,(’l)1,1)2>) ’ h/7vlav2}
h,pte fst | (b, vy) h,ptFe .fst | err
h,pf—eU,(h/,(Ul,’UQ)) haPFCUﬁ "1 ¢{(h/7(vlav2)) | hl,UDUQ}
h,pt e .snd | (h',vy) h,pt e .snd | err
Sum:
h,ptel (h,v) h,pte| err

h,pt inl. e | (h',inl. v) h,pt inl. e | err

h,ptel (h',v) h,ptel err
h,pt inr. e | (h/,inr. v) h,ptinr. e || err

h,ptey (h';inl.v) R plzr>v]ke §r h,pteyd (h';inr.v) R plyv]keydr

h,p - case(ey, x.€;,y.e5) 4 7 h,p - case(ey, z.€;,y.e5) 4 7

h,ptFeydry 1o ¢{(h,inl. v) | A',v} U{(R’,inr. v) | ', v}

h,p t- case(ey, x.e, y.ey) || err

Reference:

h,ptel (h',v) £ ¢ dom(h’) h,ptFel err
h,ptmnewe | (K¢ v],¥) h,pt newe | err

h,pFel (h,0) £¢€dom(h') h,ptFelr, r¢{(h,£)|¢ecdom(h’)}
h,ptElel (h',h'(¥)) h,pFlel err

h,pte 4 (R, €) R pkeyd (B v)
hypt e < ey | (K[l = v],v)

h,prFe dry 7 {(h,0)|h, ¢} h,pte 4 (h',€) h',pkeylerr
h,pte; < ey || err h,ptFe; < ey | err

Semantic model
We define the semantic model following (Dreyer et al. 2022). However, we use simpler definition of
worlds since we’re not interested in advanced properties of programs.

For modeling reference types, we have to define Kripke world that keep tracks invariants on heap.
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Worlds W € World := Loc p (Val)
World Extension W, CEW,:=VLX. W, () =X =>W,({)=X
World Satisfaction wsat(W,h) =Vl X. W) =X = h(f) e X
We define the value and term relation by structural recursion on the type syntax.
V[-] : Ty — P(World x Val)
&[] : Ty — P(World x Env x Tm)
G[—] : Ctx — P(World x Env)

V[int] := {(W,n) | W,n}
V[A — B] :={(W,(Az.e,p)) | VYW, o WEW = (W, v) € V[A] = (W', p[z + v],e) € E[B]}
VIA x B] :=={(W, (v1,v3)) | (W,v,) € V[A] A (W, v,) € V[B[}
V[A+ B] := {(W, inl.v) | (W,v) € V[A]} U{(W, inr.v) | (W,v) € V[B]}
Vlret 7] :={(W,£) | W) ={v |Fv:7}}
E[A] ={(W,p,e) | VW' h,r. WE W' = wsat(W',h) = h,pFelr=

h,, v, W,.r = (h,,v,) \W' T W, Awsat(W,,h,.) A (W,,v,) € V[A]}

T ETr) ryYr Ty or YT

G ={(W,p) | Vx: AeT. (W,p(z)) € V[A]}
Now we define the semantic typing relation.

'Ee: A:=VW,p.(W,p) € G[I'] = (W, p,e) € [A]

Basic properties of logical relation
Lemma (first-order types):
« IfFv: 7, then (W,v) € V[r] for all W.
« If (W,v) € V[r], thent v : 7.

Proof: By induction on 7. O

Lemma (monotonicity):

« If (W,v) € V[A] and W C W, then (W', v) € V[A].

« If (W,p,e) € E[A] and W C W', then (W', p,e) € E[A].
« If (W,p) € G[I'] and W C W', then (W', p) € G[I'].

Proof: The third statement is an easy corollary of the first statement. We focus on the first and
the second statement. We prove these statements by mutual induction on A.

Case: Suppose (W,v) € V[int] and W C W’ to show (W', v) € V[int]. This case is
immediate since worlds are irrelevant for V[int].

Case: Suppose (W, v) € V[A — B] and W C W’ to show (W’,v) € V[A — B].
From (W,v) € V[A — B], we have v = (\z.e, p) for some z, e, p.
Suppose W’ C W” and (W”,v") € V[A] to show (W”, p[z = V'], e) € E[B].

By instantiating (W, (Az.e, p)) € V[A — Bl with W C W’ C W” and (W”,v") € V[A], we
have (W”, plx > '], e) € E[B].

Case: Suppose (W,v) € V[A x B] and W C W' to show (W’,v) € V[A x B]. This case is
immediate from induction hypothesis.
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Case: Suppose (W,v) € V[A+ B] and W C W' to show (W', v) € V[A + B]. This case is
immediate from induction hypothesis.

Case: Suppose (W, v) € ref 7and W C W’ to show (W', v) € V[ref 7]. This case is
immediate since future world W’ contains all invariants of the current world W.

Case: Suppose (W, p,e) € E[A] and W T W’ to show (W', p,e) € E[A].
We further suppose W' T W” wsat(W”, h), h,p e | rto show 3h,,v,., W,.r = (h,,v,) A
W” C W, ANwsat(W,.,h,) A (W,,v,) € V[A].

T Ur Ty UT

By instantiating (W, p,e) € E[A] with W C W' T W”, wsat(W”, h), h,pF e | r, we
conclude. 0

Compatibility lemmas
Variable
Lemma (variable): f x : A €T, thenT Ez: A.
Proof: Suppose z : A € I'and (W, p) € G[I'] to show (W, p,z) € E[A].
We further suppose W C W', wsat(W’, h) and h, p - z |} 7 to show 3h,,v,, W,.r =
(Byyv,) AW C W, Awsat(W,, h,) A (W, v,) € V[A].
By instantiating (W, p) € G[I'] withz : A € T, we have (W, p(z)) € V[A].
By case analysis on the derivation of h, p - z |} r, there are two cases to consider.

Case:

x € dom(p)
h,pt a4 (h,p(z))
By monotonicity, W T W', and (W, p(z)) € V[A], we have (W', p(z)) € V[A].
Choose h,. = h, v, = p(x), W,, = W’ to conclude.

Case:
z ¢ dom(p)
h,pFax | err
(W, p(x)) € V[A] contradicts with ¢ dom(p). O
Integer

Lemma (integer literal): I' E n : int.

Proof: Suppose (W, p) € G[I'] to show (W, p,n) € E[A].

We further suppose W C W', wsat(W’, h) and h, p - n | r to show 3h,.,v,, W,.r =
(hyy0,) AW C W, Awsat(W,, h,) A (W, v,) € V[int].

By case analysis on the derivation of h, p - n | r, there is one case to consider.

Case:

h,ptFnl (h,n)
Choose h,. = h,v,, = n, W, = W’ to conclude. O
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Lemma (negation): IfI' F e : int, then ' F —e : int.

Proof: Suppose I' E e : int and (W, p) € G[I'] to show (W, p, —e) € £[int].

We further suppose W C W', wsat(W’ h) and h, p = —e |} 7 to show 3h,, v, W,.r =
(hy,v,) N\W' T W, Awsat(W,,h,.) A (W,,v,) € V[int].

By instantiating I F e : int with (W, p) € G[I'], we have (W, p,e) € &[int].

By case analysis on the derivation of h, p = —e | r, there are two cases to consider.

Case:

h,ptel (h',n)
h,pt—el (h',—n)

By instantiating (W, p,e) € E[int] with W C W', wsat(W’',h),and h,p F e | (h’,n), we
have W’ C W” A wsat(W”,h") A (W”,n) € V[int] for some W”.

Choose h, = h/, v, = —n, W, = W” to conclude.

Case:
h,pFel err
h,pF —e | err
By instantiating (W, p,e) € [int] with W C W', wsat(W’, h), and h,p - e || err, we
conclude contradiction. O
Function

Lemma (A-abstraction): f ',z : AF e: B,then' F Ax.e: A — B.

Proof: Suppose ',z : AE e: Band (W, p) € G[I'] to show (W, p, \z.e) € E[A — BJ.
We further suppose W C W', wsat(W’, h) and h, p - Az.e | r to show 3h,, v, W,.r =
(h.,v,) N\W' T W, Awsat(W,.,h,.) AN (W,,v,) € V[A— B.

By case analysis on the derivation of h, p - Ax.e | 7, there is one case to consider.

Case:

h,pt Ax.e | (h,(Az.e,p))
Choose h, = h,v, = (Az.e,p), W, =W'.
The only non-trivial proof obligation is (W', (Az.e, p)) € V[A — B].
Suppose W’ C W” and (W”,v) € V[A] to show (W”, p[z = v],e) € E[B].
By monotonicity, W C W’ C W”, and (W, p) € G[I'], we have (W”,p) € G[I'].
By adjoining (W”, p) € G[I'] with (W”,v) € V[A], we have (W”, p[zx  v]) € [T,z : A].

By instantiating ',z : A F e : Bwith (W”, p[z = v]) € G[T', z : A], we conclude
(W’ plz = v],e) € E[B]. O

Lemma (application): fT’'Fe; : A— BandI'Fe,: A then'Fe e, : B.

Proof: SupposeI'Fe; : A— BandT' Fe,: Aand (W, p) € G[I'] to show (W, p, e, e5) €
&[B].
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We further suppose W C W', wsat(W’,h) and h, p - ey e, || 7 to show 3h,., v, W,.r =
(Byyv,) AW’ C W, Awsat(W,, h,) A (W,,v,) € V[B].
By instantiating I F e; : A — B with (W, p) € G[I'], we have (W, p,e,) € £[A — B]J.
By instantiating I E e, : A with (W, p) € G[T'], we have (W, p,e,) € E[A].
By case analysis on the derivation of h, p - e; e5 || 7, there are three cases to consider.
Case:

hopte b (B, (Azes,pp)) h,pkey 4 (B, 0) B pslzo]be;r

h,pFeiey |

By instantiating (W, p,e;) € [A — B] with W C W', wsat(W’, h),and h,p Fe; J
(B, (Az.€y,pf)), we have W C W” Awsat(W”,h') A (W”, (Az.e,p;)) € V[A — B] for

some W”.

By instantiating (W, p,e5) € E[A] with W C W' T W”, wsat(W”,h'),and ', p - ey |
(h”,v), we have W” T W"” A wsat(W”,h") AN (W",v) € V[A] for some W”.

By instantiating (W”, (Az.e;, ps)) € V[A — B] with W” & W” and (W”,v) € V[A], we
have (W”, p;[x = v],e;) € E[B].

By instantiating (W”, p;[z > v],e;) € £[B] with W” C W” and wsat(W”, h”), we have
r = (hll/’ UI) /\ W/// E W//// /\ WSat(W/”/, h///) /\ (W//”’ U/) e ’V[[B]] for some h///’ U/7 W////'

Choose h,. = h"” v, =v',W,. = W" to conclude.
Case:
h,pteg 4ry r ¢ {(h/, (/\w.ef,pf)) ] h’,x,ef,pf}
h,pte ey | err

By instantiating (W, p,e;) € £[A — B] with W C W', wsat(W’, h), and h,p F e; | 71, we
conclude contradiction.

Case:
h,pte | (h/, ()\x.ef,pf)) h',pt eyl err
h,pte ey | err

By instantiating (W, p,e;) € [A — B] with W C W', wsat(W’, h),and h,p Fe; J
(B, (Az.€y,pf)), we have W C W” Awsat(W”,h') A (W”, (Az.e;,p;)) € V[A — B] for

some W”.

By instantiating (W, p,e,) € E[A] with W C W' T W”, wsat(W”,h'),and ', p ey |
err, we conclude contradiction. O

Product
Lemma (pair): fT'Fe; : Aand'F e, : B,then'F (e, e,) : A X B.
Proof: Suppose ' Fe; : A, T'E e, : B,and (W, p) € G[I'] to show (W, p, (e1,€5)) € E[A %
B].
We further suppose W C W', wsat(W’ h) and h, p - (eq, e5) | 7 to show 3h,.,v,, W,.r =
(hy,v,) N\W'E W, Awsat(W,, h,.) A (W,,v,) € V[A x B].

VT T r VT

By instantiating I' E e; : A with (W, p) € G[T'], we have (W, p,e;) € E[A].
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By instantiating I' E e, : B with (W, p) € G[I'], we have (W, p,e,) € £[B].
By case analysis on the derivation of h, p F (e, e5) | 7, there are three cases to consider.

Case:
h,ptbe J (0, v) Rh,pkey (b, vy)
h’)p |_ (61a62) U’ (h//a ('Ul,’U2))

By instantiating (W, p,e;) € E[A] with W C W', wsat(W’, h), and h,p e, | (R',v;), we
have W’ C W” A wsat(W”,h") A (W”,vy) € V[A] for some W”.

By instantiating (W, p,e5) € E[B] with W C W' C W”, wsat(W”,h’),and ', p e, |
(h",vy), we have W” C W” A wsat(W” h") N (W” vy) € V[B] for some W".

Choose h,. = h" v, = (vy,vy), W, = W".

The only non-trivial proof obligation is (W"”, (v, v,)) € V[A x B].
By monotonicity, W” C W, and (W”,v,) € V[A], we have (W"” v,) € V[A]

By combining (W"”,v;) € V[A] and (W”,v,) € V[B], we conclude (W"”, (v,v,)) € V[A X
B].

Case:

h,pte; | err
h,pt(e1,ep) § err

By instantiating (W, p,e;) € E[A] with W T W', wsat(W’, h), and h, p - e; || err, we
conclude contradiction.

Case:
h,p'_€1U(h'7U1) h/ap|_62‘uerr
h,pt(e1,ep) § err

By instantiating (W, p,e;) € E[A] with W C W', wsat(W’, h),and h,p ey | (R',v;), we
have W’ C W” A wsat(W”,h") A (W”,vy) € V[A] for some W”.

By instantiating (W, p,e,) € E[B] with W C W' C W”, wsat(W”,h’),and b, p e, |
err, we conclude contradiction.

Lemma (fst): fI'Fe: AXx B,thenT' Fe .fst: A.

Proof: Suppose ' Fe: Ax Band (W,p) € G[I'] to show (W, p,e .fst) € E[A].

We further suppose W C W', wsat(W’, h), and h, p - e .£st || r to show 3h,.,v,, W, .r =
(hyyv,) N\WE W, Awsat(W,, h,.) A (W,,v,) € V[A].

By instantiating I' F e : A x B with (W, p) € G[I'], we have (W, p,e) € £[A x B].

By case analysis on the derivation of h, p e .£st | 7, there two cases to consider.

Case:

h,ﬂ Fe ‘U' (h/, (U17v2)>
h,pFe .fst | (h',vy)
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By instantiating (W, p,e) € E[A x B] with W C W', wsat(W’, h),and h,p e |

(h', (v1,v,)), we have W T W” Awsat(W” h') A (W”, (vq,v,)) € V[A x B] for some
w”.

By unfolding the definition of (W”, (vy,v,)) € V[A x B], we have (W”,v,) € V[A].
Choose h,. = h',v,, = vy, W, = W’ to conclude.

Case:

hpFedr, ri g {(h,(vi,v5)) | B 01,05}
h,pFe .fst | err

By instantiating (W, p,e) € [A x B] with W T W', wsat(W’, h), and h,p e | r{, we
conclude contradiction. O
Lemma (snd): fI'Fe: Ax B, thenI'F e .snd : B.

Proof: SupposeI' Fe: A x Band (W,p) € G[I'] to show (W, p,e .snd) € E[B].

We further suppose W C W', wsat(W’, h), and h, p - e .snd |} r to show 3h,, v, W,.r =
(hy0,) AW’ © W, Awsat(W,, ) A (W, v,) € V[B].

By instantiating I' E e : A x B with (W, p) € G[I'], we have (W, p,e) € £[A x B].

By case analysis on the derivation of h, p - e .snd |} r, there two cases to consider.

Case:
h;P + € ‘U‘ (h/7 (7)1,1}2))
h,pte .snd | (h',vy)

By instantiating (W, p,e) € E[A x B] with W C W', wsat(W’, h),and h,p e |

(b, (vy,vy)), we have W' T W” A wsat(W”, h") A (W”, (vy,v5)) € V[A x B] for some
w”.

By unfolding the definition of (W”, (vy,v5)) € V[A x B], we have (W” v,) € V[B].

Choose h, = h',v,, = vy, W, = W’ to conclude.
Case:

hap Fe ‘U'Tl ™ ¢ {(h,7(vl7v2)) | h’/v")l’v?}
h,pF e .snd | err

By instantiating (W, p,e) € £[A x B] with W C W', wsat(W’',h),and h,p e || 1, we
conclude contradiction. O

Sum
Lemma (inl): fT'Fe: A thenT'F inl. e: A+ B.
Proof: SupposeI' E e : Aand (W, p) € G[I'] to show (W, p,inl. e) € £[A + B].
We further suppose W C W', wsat(W’ h) and h, p I inl. e | r to show Jh,.,v,, W,.r =
(hyyv,) NW B W, A wsat(W,, h,) A (W,,v,) € V[A+ B].
By instantiating I' F e : A with (W, p) € G[I'], we have (W, p,e) € E[A].

By case analysis on the derivation of h, p I inl. e | r, there are two cases to consider.

Case:
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h,ptel (h',v)
h,ptF inl. e | (h',inl. v)

By instantiating (W, p,e) € E[A] with W C W', wsat(W’,h),and h,p F e | (h',v), we
have W’ C W” Awsat(W”,h") A (W”,v) € V[A] for some W”.

From (W”,v) € V[A], we have (W”,inl. v) € V[A + B].

Choose h, = h',v,, = inl. v, W, = W” to conclude.
Case:

h,pFel err
h,pF inl. e |} err

By instantiating (W, p,e) € E[A] with W T W', wsat(W’,h), and h,p F e || err, we

conclude contradiction.
Lemma (inr): fT'Ee: B,thenT F inr.e: A+ B.
Proof: SupposeI' F e : Band (W, p) € G[I'] to show (W, p, inr. e) € £[A + B].

We further suppose W C W', wsat(W’ h) and h, p - inr. e |} r to show 3h,., v, W,.r =
(hyy0,) AW © W, A wsat(W,, h,) A (W, v,) € V[A+ B].
By instantiating I' F e : B with (W, p) € G[I'], we have (W, p,e) € E[B].
By case analysis on the derivation of h, p I inr. e |} r, there are two cases to consider.
Case:
h,ptel (h',v)

h,pF inr. e | (A, inr. v)
By instantiating (W, p,e) € E[B] with W C W', wsat(W’, h),and h,p - e | (h',v), we
have W' T W” A wsat(W”,h") A (W”,v) € V[B] for some W”.

From (W”,v) € V[B], we have (W” inr. v) € V[A + B].

Choose h,. = h',v,, = inr. v, W, = W” to conclude.
Case:

h,ptel err
h,pF inr. e |} err

By instantiating (W, p,e) € E[B] with W T W', wsat(W’, h), and h, p - e || err, we
conclude contradiction.

Lemma (case): fI'Fey: A+ BandI',z: AFe; : C,and',y: BF e, : C,
then I" F case(eg, z.€1,y.e5) : C.

Proof: SupposeI'Fey: A+ BandI',z: AEe; :CandI',y: BFe,:C,and (W,p) €
G[I'] to show (W, p, case(ey, z.€1, y.e5)) € E[C].

We further suppose W C W', wsat(W’, h), and h, p I case(eg, z.€;, y.e5) | 7 to show
3h,, v, W,.r = (h,,v,) \W' T W, Awsat(W,,h,.) A (W,,v,) € V[C].

ry Yry ry¥r ™) T YT

By instantiating I' F e, : A+ B with (W, p) € G[I'], we have (W, p,e,) € [A + B].
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By case analysis on the derivation of h, p - case(eg, z.€;, y.e5) | 7, there are three cases to
consider.

Case:

h,ptey | (h',inl. v) R’ plz>v]Fe §r
h,p - case(ey, z.€;,y.e5) 4 7

By instantiating (W, p, e) € E[A + B] with W C W', wsat(W’,h),and h,p I ¢, | inl. v,
we have W' C W” A wsat(W”,h") A (W”,inl. v) € V[A + B] for some W”.

From (W”,inl. v) € V[A + B], we have (W”,v) € V[A].
By monotonicity, W C W' C W”, and (W, p) € G[I'], we have (W”, p) € G[I].
By adjoining (W”, p) € G[I'] with (W”,v) € V[A], we have (W”, p[z = v]) € G[I', z : A].

By instantiating I', x : AF e, : C with (W”, p[x > v]) € G[I', z : A], we have (W”, p[z
v],e;) € E[C].

By instantiating (W’ plz = v],e;) € E[C] with W” T W”, wsat(W”,h’), and h', p[z -

v ey | r,wehaver = (R”,v") A\W” T W” Awsat(W”,h") A (W”,v") € V[C] for some
h//’ v/, W///‘

Choose h, = h",v, =", W, = W" to conclude.

Case:

h,pFeyd (B inr. v) R plyr>v)key §r
h,p - case(ey, z.€;,y.ex) 4 7

By instantiating (W, p,ey) € E[A + B] with W C W', wsat(W’, h), and h, p - ¢y |} inr. v,
we have W' C W” A wsat(W” h") A (W”, inr. v) € V[A + B] for some W”.

From (W’ inr. v) € V[A + B], we have (W”,v) € V[B].
By monotonicity, W C W' T W”, and (W, p) € G[I'], we have (W”,p) € G[I'].
By adjoining (W”, p) € G[I'] with (W”,v) € V[B], we have (W”, p[y > v]) € G[I',y : B].

By instantiating I',y : BFE e, : C with (W”, p[y  v]) € G[T',y : B], we have (W’ p[y
v],eq) € E[C].

By instantiating (W’ ply = v], e5) € E[C] with W” T W”, wsat(W” k"), and b, p[y -
v ey | r,wehaver = (B”,v") A\W” T W” Awsat(W”,h") A (W”,v") € V[C] for some
hl/’ v/’ W///.
Choose h, = h”,v, =v', W, = W” to conclude.
Case:
h,ptFeydry 19 ¢ {(h,inl. v) | K',v} U{(R’,inr. v) | ', v}

h,p t- case(ey, x.e, y.ey) || err

By instantiating (W, p, e;) € [A + B] with W C W', wsat(W’, h),and h, p - e | 7y, we
conclude contradiction. |

Reference

Lemma (new): f ' Fe: 7,then' F new e : ref 7.

Proof: Suppose I' E e : 7 and (W, p) € G[I'] to show (W, p,new e) € E[ref 7].
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We further suppose W C W', wsat(W’, h), h, p - new e || r to show 3h,.,v,., W, ..r =
(hyyv,) N\WE W, Awsat(W,, h,.) A (W,,v,) € V[ref 7].

By instantiating I" F e : 7 with (W, p) € G[I'], we have (W, p,e) € &[7].

By case analysis on the derivation of h, p - new e |} r, there are two cases to consider.

Case:

h,pFel (h,v) £¢dom(h’)
h,ptFnewe | (h'[¢— v],¢)

By instantiating (W, p,e) € E[7] with W T W', wsat(W’, h), and h,p F e | (h’,v), we have
W' CW” Awsat(W” h") AN (W”,v) € V[r] for some W”.

From (W”,v) € V[r], we have - v : 7.
From ¢ ¢ dom(h’) and wsat(W”, h"), we have £ ¢ dom(W")
Let W” :=W"[l = {v|Fv:7}].

Since we allocated to a fresh location, we have W” C W”.

By combining wsat(W” h’) and - v : 7, we have wsat(W”, h'[{ = v]).
From the definition of value relation, we have (W"” £) € V[ref 7].
Choose h, = h'[£ = v],v, = £, W, = W" to conclude.

Case:

h,pFel err
h,pFnewel err

By instantiating (W, p,e) € E[7] with W C W', wsat(W’', h),and h,p F e | err, we
conclude contradiction. O

Lemma (load): T Ee: ref 7,thenT Fle: 1.

Proof: Suppose I' E e : ref 7 and (W, p) € G[I'] to show (W, p,!e) € &[7].

We further suppose W T W' wsat(W’, h),h,p F e | r to show 3h,, v, W,.r = (h,,v,) A
W' C W, Awsat(W,, h,) A (W,,v,) € V[1].

By instantiating I' F e : ref 7 with (W, p) € G[I'], we have (W, p,e) € E[ref 7].

By case analysis on the derivation of h, p ! e || 7, there are two cases to consider.

Case:

h,pFel (h,0) £ dom(h)
h,ptlel (B, b (£))

By instantiating (W, p,e) € &[ref 7] with W T W', wsat(W’,h),h,pF el (h',£), we have
W' CW” wsat(W”,h"),(W”,£) € V[ref 7] for some W”.

From (W”,¢) € V[ref 7], we have W”(£) = {v | F v : 7}

By instantiating wsat(W”,h") with W”(¢) = {v | F v : 7}, we have - h'({) : T.
Then we have (W” k' (£)) € V[1].

Choose h, = h',v, = h'(£), W, = W” to conclude.
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Case:

h,ptFelr, r¢{(h,£)|£edom(h)}
h,pklel err

By instantiating (W, p,e) € E[ref 7] with W C W’ wsat(W’, h), h,p e | r;, we conclude
contradiction. O

Lemma (store): fI' Fe; :ref rand'F e, : 7,then'Fe; ¢ ey : 7.

Proof: Suppose ' Fe; : ref 7,I'F e, : 7, and (W, p) € G[I'] to show (W, p,e; < ey) €
&l

We further suppose W C W’ wsat(W’, h),h,p e; < ey | 7 to show 3h,, v, W,.. 1 =
(hyyv,) N\WE W, Awsat(W,, h,.) A (W,,v,) € V[r].

By instantiating I' E e; : ref 7 with (W, p) € G[I'], we have (W, p,e;) € E[ref 7].

By instantiating I" F e, : 7 with (W, p) € G[I'], we have (W, p,e,) € &[7].

By case analysis on the derivation of h, p - e; < e4 |} 7, there are three cases to consider.

Case:

h,pFe 4 (R, ) Rk, pkey | (h”,v)
h,pk e ey (M[0 — v],v)

By instantiating (W, p,e;) € E[ref 7] with W C W’ wsat(W’, h), and h,p Fe; | (R, £),
we have W' C W” wsat(W” k"), (W”,¢) € V[ref 7] for some W”.

By instantiating (W, p,e,) € E[7] with W C W’ C W”, wsat(W”,h'),and ', p F ey |
(h”,v), we have W” C W"” wsat(W"” k"), (W"” ,v) € V[r] for some W".

From (W”,v) € V[r], we have - v : 7.
By monotonicity, W” C W”, and (W”,¢) € V[ref 7], we have (W"” {) € V[ref 7].
From (W”,¢) € V[ref 7], we have W” ({) = {v |Fv:T}.

By combining wsat(W” h”), W”(£) = {v |Fv:7},and F v : 7, we have wsat(W"” A" [{ >
v]).

Choose h, = h"[l > v],v, = v, W,, = W” to conclude.

Case:

h7p H €1 U T T ¢ {(h/ag) | h/7€}
h,ptFe < ey | err

By instantiating (W, p,e;) € E[ref 7] with W C W’ wsat(W’, h),and h,p e, | r{, we
conclude contradiction.

Case:
h,pl—elll(h/,f) h/7p}_62lierr
h,ptFe < ey | err

By instantiating (W, p,e;) € &[ref 7] with W T W’ wsat(W’, h),and h,p e, | (R, ),
we have W' C W” wsat(W” h"),(W”,£) € V[ref 7] for some W”.

By instantiating (W, p,e,) € E[7] with W T W’ C W”, wsat(W”,h’),and h’,p I e, || err,
we conclude contradiction. O
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Fundamental theorem and safety
Theorem (Fundamental theorem of logical relation): f ' Fe: A,then'Fe: A

Proof: The proof is by induction on the typing derivation. For each case, apply the matching
compatibility lemma. O

Theorem (Adequacy): If F e: Aand (), - e || r, then there are W, h, and v such that r =
(h,v), wsat(W, h), and (W,v) € V[A].

Proof: Immediate from the definition of semantic typing and expression relation. O

Theorem (Safety): If-e: Aand 0,0 b e || r, then there are W, h, and v such that r = (h,v),
wsat(W, h), and (W, v) € V[A].

Proof: Corollary of the fundamental theorem and adequacy. O
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