
Topics in Programming Languages HW2 문순원

Syntax
Variables Var 𝑥

Terms Tm 𝑒 ⩴ 𝑥
| 𝑛 | − 𝑒
| 𝜆𝑥.𝑒 | 𝑒1 𝑒2

| (𝑒1, 𝑒2) | 𝑒 .𝚏𝚜𝚝 | 𝑒 .𝚜𝚗𝚍
| 𝚒𝚗𝚕. 𝑒 | 𝚒𝚗𝚛. 𝑒 | 𝚌𝚊𝚜𝚎(𝑒0, 𝑥.𝑒1, 𝑦.𝑒2)
| 𝚗𝚎𝚠 𝑒 | ! 𝑒 | 𝑒1 ← 𝑒2

Statics
We restricts our type system to only allow first-order reference types. Defining logical relation for
type systems with higher-order state requires more advanced techniques such as step-indexing
(Dreyer et al. 2022) or parametric bisimulations (Hur et al. 2012).

First-order Types FTy 𝜏, 𝜎 ⩴ 𝚒𝚗𝚝 | 𝜏 × 𝜎 | 𝜏 + 𝜎
Types Ty 𝐴, 𝐵 ⩴ 𝚒𝚗𝚝 | 𝐴 → 𝐵 | 𝐴 × 𝐵 | 𝐴 + 𝐵 | 𝚛𝚎𝚏 𝜏

Contexts Ctx Γ ⩴ · | Γ, 𝑥 : 𝐴

We skip the definition of type system.

Dynamics
While we restrict our type system to first-order references, our operational semantics supports full
higher-order references.

Locations Loc ℓ
Heaps Heap ℎ

Environments Env 𝜌
Values Val 𝑣 ⩴ 𝑛 | (𝜆𝑥.𝑒, 𝜌) | (𝑣1, 𝑣2) | 𝚒𝚗𝚕. 𝑣 | 𝚒𝚗𝚛. 𝑣 | ℓ
Results Res 𝑟 ⩴ (ℎ, 𝑣) | 𝚎𝚛𝚛

The big-step evaluation relation ℎ, 𝜌 ⊢ 𝑒 ⇓ 𝑟 is inductively defined.

Variable:

𝑥 ∈ dom(𝜌)
ℎ, 𝜌 ⊢ 𝑥 ⇓ (ℎ, 𝜌(𝑥))

𝑥 ∉ dom(𝜌)
ℎ, 𝜌 ⊢ 𝑥 ⇓ 𝚎𝚛𝚛

Integer:

ℎ, 𝜌 ⊢ 𝑛 ⇓ (ℎ, 𝑛)
ℎ, 𝜌 ⊢ 𝑒 ⇓ (ℎ′, 𝑛)

ℎ, 𝜌 ⊢ −𝑒 ⇓ (ℎ′, −𝑛)
ℎ, 𝜌 ⊢ 𝑒 ⇓ 𝚎𝚛𝚛

ℎ, 𝜌 ⊢ −𝑒 ⇓ 𝚎𝚛𝚛

Function:
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ℎ, 𝜌 ⊢ 𝜆𝑥.𝑒 ⇓ (ℎ, (𝜆𝑥.𝑒, 𝜌))
ℎ, 𝜌 ⊢ 𝑒1 ⇓ (ℎ′, (𝜆𝑥.𝑒𝑓 , 𝜌𝑓)) ℎ′, 𝜌 ⊢ 𝑒2 ⇓ (ℎ″, 𝑣) ℎ″, 𝜌𝑓 [𝑥 ↦ 𝑣] ⊢ 𝑒𝑓 ⇓ 𝑟

ℎ, 𝜌 ⊢ 𝑒1 𝑒2 ⇓ 𝑟

ℎ, 𝜌 ⊢ 𝑒1 ⇓ 𝑟1 𝑟1 ∉ {(ℎ′, (𝜆𝑥.𝑒𝑓 , 𝜌𝑓)) | ℎ′, 𝑥, 𝑒𝑓 , 𝜌𝑓}
ℎ, 𝜌 ⊢ 𝑒1 𝑒2 ⇓ 𝚎𝚛𝚛

ℎ, 𝜌 ⊢ 𝑒1 ⇓ (ℎ′, (𝜆𝑥.𝑒𝑓 , 𝜌𝑓)) ℎ′, 𝜌 ⊢ 𝑒2 ⇓ 𝚎𝚛𝚛
ℎ, 𝜌 ⊢ 𝑒1 𝑒2 ⇓ 𝚎𝚛𝚛

Product:

ℎ, 𝜌 ⊢ 𝑒1 ⇓ (ℎ′, 𝑣1) ℎ′, 𝜌 ⊢ 𝑒2 ⇓ (ℎ″, 𝑣2)
ℎ, 𝜌 ⊢ (𝑒1, 𝑒2) ⇓ (ℎ″, (𝑣1, 𝑣2))

ℎ, 𝜌 ⊢ 𝑒1 ⇓ 𝚎𝚛𝚛
ℎ, 𝜌 ⊢ (𝑒1, 𝑒2) ⇓ 𝚎𝚛𝚛

ℎ, 𝜌 ⊢ 𝑒1 ⇓ (ℎ′, 𝑣1) ℎ′, 𝜌 ⊢ 𝑒2 ⇓ 𝚎𝚛𝚛
ℎ, 𝜌 ⊢ (𝑒1, 𝑒2) ⇓ 𝚎𝚛𝚛

ℎ, 𝜌 ⊢ 𝑒 ⇓ (ℎ′, (𝑣1, 𝑣2))
ℎ, 𝜌 ⊢ 𝑒 .𝚏𝚜𝚝 ⇓ (ℎ′, 𝑣1)

ℎ, 𝜌 ⊢ 𝑒 ⇓ 𝑟1 𝑟1 ∉ {(ℎ′, (𝑣1, 𝑣2)) | ℎ′, 𝑣1, 𝑣2}
ℎ, 𝜌 ⊢ 𝑒 .𝚏𝚜𝚝 ⇓ 𝚎𝚛𝚛

ℎ, 𝜌 ⊢ 𝑒 ⇓ (ℎ′, (𝑣1, 𝑣2))
ℎ, 𝜌 ⊢ 𝑒 .𝚜𝚗𝚍 ⇓ (ℎ′, 𝑣2)

ℎ, 𝜌 ⊢ 𝑒 ⇓ 𝑟1 𝑟1 ∉ {(ℎ′, (𝑣1, 𝑣2)) | ℎ′, 𝑣1, 𝑣2}
ℎ, 𝜌 ⊢ 𝑒 .𝚜𝚗𝚍 ⇓ 𝚎𝚛𝚛

Sum:

ℎ, 𝜌 ⊢ 𝑒 ⇓ (ℎ′, 𝑣)
ℎ, 𝜌 ⊢ 𝚒𝚗𝚕. 𝑒 ⇓ (ℎ′, 𝚒𝚗𝚕. 𝑣)

ℎ, 𝜌 ⊢ 𝑒 ⇓ 𝚎𝚛𝚛
ℎ, 𝜌 ⊢ 𝚒𝚗𝚕. 𝑒 ⇓ 𝚎𝚛𝚛

ℎ, 𝜌 ⊢ 𝑒 ⇓ (ℎ′, 𝑣)
ℎ, 𝜌 ⊢ 𝚒𝚗𝚛. 𝑒 ⇓ (ℎ′, 𝚒𝚗𝚛. 𝑣)

ℎ, 𝜌 ⊢ 𝑒 ⇓ 𝚎𝚛𝚛
ℎ, 𝜌 ⊢ 𝚒𝚗𝚛. 𝑒 ⇓ 𝚎𝚛𝚛

ℎ, 𝜌 ⊢ 𝑒0 ⇓ (ℎ′, 𝚒𝚗𝚕. 𝑣) ℎ′, 𝜌[𝑥 ↦ 𝑣] ⊢ 𝑒1 ⇓ 𝑟
ℎ, 𝜌 ⊢ 𝚌𝚊𝚜𝚎(𝑒0, 𝑥.𝑒1, 𝑦.𝑒2) ⇓ 𝑟

ℎ, 𝜌 ⊢ 𝑒0 ⇓ (ℎ′, 𝚒𝚗𝚛. 𝑣) ℎ′, 𝜌[𝑦 ↦ 𝑣] ⊢ 𝑒2 ⇓ 𝑟
ℎ, 𝜌 ⊢ 𝚌𝚊𝚜𝚎(𝑒0, 𝑥.𝑒1, 𝑦.𝑒2) ⇓ 𝑟

ℎ, 𝜌 ⊢ 𝑒0 ⇓ 𝑟0 𝑟0 ∉ {(ℎ′, 𝚒𝚗𝚕. 𝑣) | ℎ′, 𝑣} ∪ {(ℎ′, 𝚒𝚗𝚛. 𝑣) | ℎ′, 𝑣}
ℎ, 𝜌 ⊢ 𝚌𝚊𝚜𝚎(𝑒0, 𝑥.𝑒1, 𝑦.𝑒2) ⇓ 𝚎𝚛𝚛

Reference:

ℎ, 𝜌 ⊢ 𝑒 ⇓ (ℎ′, 𝑣) ℓ ∉ dom(ℎ′)
ℎ, 𝜌 ⊢ 𝚗𝚎𝚠 𝑒 ⇓ (ℎ′[ℓ ↦ 𝑣], ℓ)

ℎ, 𝜌 ⊢ 𝑒 ⇓ 𝚎𝚛𝚛
ℎ, 𝜌 ⊢ 𝚗𝚎𝚠 𝑒 ⇓ 𝚎𝚛𝚛

ℎ, 𝜌 ⊢ 𝑒 ⇓ (ℎ′, ℓ) ℓ ∈ dom(ℎ′)
ℎ, 𝜌 ⊢ ! 𝑒 ⇓ (ℎ′, ℎ′(ℓ))

ℎ, 𝜌 ⊢ 𝑒 ⇓ 𝑟1 𝑟 ∉ {(ℎ′, ℓ) | ℓ ∈ dom(ℎ′)}
ℎ, 𝜌 ⊢ ! 𝑒 ⇓ 𝚎𝚛𝚛

ℎ, 𝜌 ⊢ 𝑒1 ⇓ (ℎ′, ℓ) ℎ′, 𝜌 ⊢ 𝑒2 ⇓ (ℎ″, 𝑣)
ℎ, 𝜌 ⊢ 𝑒1 ← 𝑒2 ⇓ (ℎ″[ℓ ↦ 𝑣], 𝑣)

ℎ, 𝜌 ⊢ 𝑒1 ⇓ 𝑟1 𝑟1 ∉ {(ℎ′, ℓ) | ℎ′, ℓ}
ℎ, 𝜌 ⊢ 𝑒1 ← 𝑒2 ⇓ 𝚎𝚛𝚛

ℎ, 𝜌 ⊢ 𝑒1 ⇓ (ℎ′, ℓ) ℎ′, 𝜌 ⊢ 𝑒2 ⇓ 𝚎𝚛𝚛
ℎ, 𝜌 ⊢ 𝑒1 ← 𝑒2 ⇓ 𝚎𝚛𝚛

Semantic model
We define the semantic model following (Dreyer et al. 2022). However, we use simpler definition of
worlds since we’re not interested in advanced properties of programs.

For modeling reference types, we have to define Kripke world that keep tracks invariants on heap.
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Worlds 𝑊 ∈ World ≔ Loc ⇀
fin

𝒫(Val)
World Extension 𝑊1 ⊑ 𝑊2 ≔ ∀ℓ, 𝑋. 𝑊1(ℓ) = 𝑋 ⇒ 𝑊2(ℓ) = 𝑋

World Satisfaction wsat(𝑊, ℎ) ≔ ∀ℓ, 𝑋. 𝑊(ℓ) = 𝑋 ⇒ ℎ(ℓ) ∈ 𝑋

We define the value and term relation by structural recursion on the type syntax.

𝒱⟦−⟧ : Ty → 𝒫(World × Val)
ℰ⟦−⟧ : Ty → 𝒫(World × Env × Tm)
𝒢⟦−⟧ : Ctx → 𝒫(World × Env)

𝒱⟦𝚒𝚗𝚝⟧ ≔ {(𝑊, 𝑛) | 𝑊, 𝑛}
𝒱⟦𝐴 → 𝐵⟧ ≔ {(𝑊, (𝜆𝑥.𝑒, 𝜌)) | ∀𝑊 ′, 𝑣. 𝑊 ⊑ 𝑊 ′ ⇒ (𝑊 ′, 𝑣) ∈ 𝒱⟦𝐴⟧ ⇒ (𝑊 ′, 𝜌[𝑥 ↦ 𝑣], 𝑒) ∈ ℰ⟦𝐵⟧}
𝒱⟦𝐴 × 𝐵⟧ ≔ {(𝑊, (𝑣1, 𝑣2)) | (𝑊, 𝑣1) ∈ 𝒱⟦𝐴⟧ ∧ (𝑊, 𝑣2) ∈ 𝒱⟦𝐵⟧}
𝒱⟦𝐴 + 𝐵⟧ ≔ {(𝑊, 𝚒𝚗𝚕. 𝑣) | (𝑊, 𝑣) ∈ 𝒱⟦𝐴⟧} ∪ {(𝑊, 𝚒𝚗𝚛. 𝑣) | (𝑊, 𝑣) ∈ 𝒱⟦𝐵⟧}
𝒱⟦𝚛𝚎𝚏 𝜏⟧ ≔ {(𝑊, ℓ) | 𝑊(ℓ) = {𝑣 | ⊢ 𝑣 : 𝜏}}

ℰ⟦𝐴⟧ ≔ {(𝑊, 𝜌, 𝑒) | ∀𝑊 ′, ℎ, 𝑟. 𝑊 ⊑ 𝑊 ′ ⇒ wsat(𝑊 ′, ℎ) ⇒ ℎ, 𝜌 ⊢ 𝑒 ⇓ 𝑟 ⇒
∃ℎ𝑟, 𝑣𝑟, 𝑊𝑟. 𝑟 = (ℎ𝑟, 𝑣𝑟) ∧ 𝑊 ′ ⊑ 𝑊𝑟 ∧ wsat(𝑊𝑟, ℎ𝑟) ∧ (𝑊𝑟, 𝑣𝑟) ∈ 𝒱⟦𝐴⟧}

𝒢⟦Γ⟧ ≔ {(𝑊, 𝜌) | ∀𝑥 : 𝐴 ∈ Γ. (𝑊, 𝜌(𝑥)) ∈ 𝒱⟦𝐴⟧}

Now we define the semantic typing relation.

Γ ⊨ 𝑒 : 𝐴 ≔ ∀𝑊, 𝜌. (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧ ⇒ (𝑊, 𝜌, 𝑒) ∈ ℰ⟦𝐴⟧

Basic properties of logical relation
Lemma (first-order types) :
• If ⊢ 𝑣 : 𝜏 , then (𝑊, 𝑣) ∈ 𝒱⟦𝜏⟧ for all 𝑊 .
• If (𝑊, 𝑣) ∈ 𝒱⟦𝜏⟧, then ⊢ 𝑣 : 𝜏 .

Proof :  By induction on 𝜏 . □

Lemma (monotonicity) :
• If (𝑊, 𝑣) ∈ 𝒱⟦𝐴⟧ and 𝑊 ⊑ 𝑊 ′, then (𝑊 ′, 𝑣) ∈ 𝒱⟦𝐴⟧.
• If (𝑊, 𝜌, 𝑒) ∈ ℰ⟦𝐴⟧ and 𝑊 ⊑ 𝑊 ′, then (𝑊 ′, 𝜌, 𝑒) ∈ ℰ⟦𝐴⟧.
• If (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧ and 𝑊 ⊑ 𝑊 ′, then (𝑊 ′, 𝜌) ∈ 𝒢⟦Γ⟧.

Proof :  The third statement is an easy corollary of the first statement. We focus on the first and
the second statement. We prove these statements by mutual induction on 𝐴.

Case: Suppose (𝑊, 𝑣) ∈ 𝒱⟦𝚒𝚗𝚝⟧ and 𝑊 ⊑ 𝑊 ′ to show (𝑊 ′, 𝑣) ∈ 𝒱⟦𝚒𝚗𝚝⟧. This case is
immediate since worlds are irrelevant for 𝒱⟦𝚒𝚗𝚝⟧.

Case: Suppose (𝑊, 𝑣) ∈ 𝒱⟦𝐴 → 𝐵⟧ and 𝑊 ⊑ 𝑊 ′ to show (𝑊 ′, 𝑣) ∈ 𝒱⟦𝐴 → 𝐵⟧.

From (𝑊, 𝑣) ∈ 𝒱⟦𝐴 → 𝐵⟧, we have 𝑣 = (𝜆𝑥.𝑒, 𝜌) for some 𝑥, 𝑒, 𝜌.

Suppose 𝑊 ′ ⊑ 𝑊″ and (𝑊″, 𝑣′) ∈ 𝒱⟦𝐴⟧ to show (𝑊″, 𝜌[𝑥 ↦ 𝑣′], 𝑒) ∈ ℰ⟦𝐵⟧.

By instantiating (𝑊, (𝜆𝑥.𝑒, 𝜌)) ∈ 𝒱⟦𝐴 → 𝐵⟧ with 𝑊 ⊑ 𝑊 ′ ⊑ 𝑊″ and (𝑊″, 𝑣′) ∈ 𝒱⟦𝐴⟧, we
have (𝑊″, 𝜌[𝑥 ↦ 𝑣′], 𝑒) ∈ ℰ⟦𝐵⟧.

Case: Suppose (𝑊, 𝑣) ∈ 𝒱⟦𝐴 × 𝐵⟧ and 𝑊 ⊑ 𝑊 ′ to show (𝑊 ′, 𝑣) ∈ 𝒱⟦𝐴 × 𝐵⟧. This case is
immediate from induction hypothesis.
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Case: Suppose (𝑊, 𝑣) ∈ 𝒱⟦𝐴 + 𝐵⟧ and 𝑊 ⊑ 𝑊 ′ to show (𝑊 ′, 𝑣) ∈ 𝒱⟦𝐴 + 𝐵⟧. This case is
immediate from induction hypothesis.

Case: Suppose (𝑊, 𝑣) ∈ 𝚛𝚎𝚏 𝜏  and 𝑊 ⊑ 𝑊 ′ to show (𝑊 ′, 𝑣) ∈ 𝒱⟦𝚛𝚎𝚏 𝜏⟧. This case is
immediate since future world 𝑊 ′ contains all invariants of the current world 𝑊 .

Case: Suppose (𝑊, 𝜌, 𝑒) ∈ ℰ⟦𝐴⟧ and 𝑊 ⊑ 𝑊 ′ to show (𝑊 ′, 𝜌, 𝑒) ∈ ℰ⟦𝐴⟧.

We further suppose 𝑊 ′ ⊑ 𝑊″, wsat(𝑊″, ℎ), ℎ, 𝜌 ⊢ 𝑒 ⇓ 𝑟 to show ∃ℎ𝑟, 𝑣𝑟, 𝑊𝑟. 𝑟 = (ℎ𝑟, 𝑣𝑟) ∧
𝑊″ ⊑ 𝑊𝑟 ∧ wsat(𝑊𝑟, ℎ𝑟) ∧ (𝑊𝑟, 𝑣𝑟) ∈ 𝒱⟦𝐴⟧.

By instantiating (𝑊, 𝜌, 𝑒) ∈ ℰ⟦𝐴⟧ with 𝑊 ⊑ 𝑊 ′ ⊑ 𝑊″, wsat(𝑊″, ℎ), ℎ, 𝜌 ⊢ 𝑒 ⇓ 𝑟, we
conclude. □

Compatibility lemmas
Variable

Lemma (variable) :  If 𝑥 : 𝐴 ∈ Γ, then Γ ⊨ 𝑥 : 𝐴.

Proof :  Suppose 𝑥 : 𝐴 ∈ Γ and (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧ to show (𝑊, 𝜌, 𝑥) ∈ ℰ⟦𝐴⟧.

We further suppose 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ) and ℎ, 𝜌 ⊢ 𝑥 ⇓ 𝑟 to show ∃ℎ𝑟, 𝑣𝑟, 𝑊𝑟. 𝑟 =
(ℎ𝑟, 𝑣𝑟) ∧ 𝑊 ′ ⊑ 𝑊𝑟 ∧ wsat(𝑊𝑟, ℎ𝑟) ∧ (𝑊𝑟, 𝑣𝑟) ∈ 𝒱⟦𝐴⟧.

By instantiating (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧ with 𝑥 : 𝐴 ∈ Γ, we have (𝑊, 𝜌(𝑥)) ∈ 𝒱⟦𝐴⟧.

By case analysis on the derivation of ℎ, 𝜌 ⊢ 𝑥 ⇓ 𝑟, there are two cases to consider.

Case:

𝑥 ∈ dom(𝜌)
ℎ, 𝜌 ⊢ 𝑥 ⇓ (ℎ, 𝜌(𝑥))

By monotonicity, 𝑊 ⊑ 𝑊 ′, and (𝑊, 𝜌(𝑥)) ∈ 𝒱⟦𝐴⟧, we have (𝑊 ′, 𝜌(𝑥)) ∈ 𝒱⟦𝐴⟧.

Choose ℎ𝑟 = ℎ, 𝑣𝑟 = 𝜌(𝑥), 𝑊𝑟 = 𝑊 ′ to conclude.

Case:

𝑥 ∉ dom(𝜌)
ℎ, 𝜌 ⊢ 𝑥 ⇓ 𝚎𝚛𝚛

(𝑊, 𝜌(𝑥)) ∈ 𝒱⟦𝐴⟧ contradicts with 𝑥 ∉ dom(𝜌). □

Integer
Lemma (integer literal) :  Γ ⊨ 𝑛 : 𝚒𝚗𝚝.

Proof :  Suppose (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧ to show (𝑊, 𝜌, 𝑛) ∈ ℰ⟦𝐴⟧.

We further suppose 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ) and ℎ, 𝜌 ⊢ 𝑛 ⇓ 𝑟 to show ∃ℎ𝑟, 𝑣𝑟, 𝑊𝑟. 𝑟 =
(ℎ𝑟, 𝑣𝑟) ∧ 𝑊 ′ ⊑ 𝑊𝑟 ∧ wsat(𝑊𝑟, ℎ𝑟) ∧ (𝑊𝑟, 𝑣𝑟) ∈ 𝒱⟦𝚒𝚗𝚝⟧.

By case analysis on the derivation of ℎ, 𝜌 ⊢ 𝑛 ⇓ 𝑟, there is one case to consider.

Case:

ℎ, 𝜌 ⊢ 𝑛 ⇓ (ℎ, 𝑛)

Choose ℎ𝑟 = ℎ, 𝑣𝑟 = 𝑛, 𝑊𝑟 = 𝑊 ′ to conclude. □
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Lemma (negation) :  If Γ ⊨ 𝑒 : 𝚒𝚗𝚝, then Γ ⊨ −𝑒 : 𝚒𝚗𝚝.

Proof :  Suppose Γ ⊨ 𝑒 : 𝚒𝚗𝚝 and (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧ to show (𝑊, 𝜌, −𝑒) ∈ ℰ⟦𝚒𝚗𝚝⟧.

We further suppose 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ) and ℎ, 𝜌 ⊢ −𝑒 ⇓ 𝑟 to show ∃ℎ𝑟, 𝑣𝑟, 𝑊𝑟. 𝑟 =
(ℎ𝑟, 𝑣𝑟) ∧ 𝑊 ′ ⊑ 𝑊𝑟 ∧ wsat(𝑊𝑟, ℎ𝑟) ∧ (𝑊𝑟, 𝑣𝑟) ∈ 𝒱⟦𝚒𝚗𝚝⟧.

By instantiating Γ ⊨ 𝑒 : 𝚒𝚗𝚝 with (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧, we have (𝑊, 𝜌, 𝑒) ∈ ℰ⟦𝚒𝚗𝚝⟧.

By case analysis on the derivation of ℎ, 𝜌 ⊢ −𝑒 ⇓ 𝑟, there are two cases to consider.

Case:

ℎ, 𝜌 ⊢ 𝑒 ⇓ (ℎ′, 𝑛)
ℎ, 𝜌 ⊢ −𝑒 ⇓ (ℎ′, −𝑛)

By instantiating (𝑊, 𝜌, 𝑒) ∈ ℰ⟦𝚒𝚗𝚝⟧ with 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), and ℎ, 𝜌 ⊢ 𝑒 ⇓ (ℎ′, 𝑛), we
have 𝑊 ′ ⊑ 𝑊″ ∧ wsat(𝑊″, ℎ′) ∧ (𝑊″, 𝑛) ∈ 𝒱⟦𝚒𝚗𝚝⟧ for some 𝑊″.

Choose ℎ𝑟 = ℎ′, 𝑣𝑟 = −𝑛, 𝑊𝑟 = 𝑊″ to conclude.

Case:

ℎ, 𝜌 ⊢ 𝑒 ⇓ 𝚎𝚛𝚛
ℎ, 𝜌 ⊢ −𝑒 ⇓ 𝚎𝚛𝚛

By instantiating (𝑊, 𝜌, 𝑒) ∈ ℰ⟦𝚒𝚗𝚝⟧ with 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), and ℎ, 𝜌 ⊢ 𝑒 ⇓ 𝚎𝚛𝚛, we
conclude contradiction. □

Function
Lemma (𝜆-abstraction) :  If Γ, 𝑥 : 𝐴 ⊨ 𝑒 : 𝐵, then Γ ⊨ 𝜆𝑥.𝑒 : 𝐴 → 𝐵.

Proof :  Suppose Γ, 𝑥 : 𝐴 ⊨ 𝑒 : 𝐵 and (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧ to show (𝑊, 𝜌, 𝜆𝑥.𝑒) ∈ ℰ⟦𝐴 → 𝐵⟧.

We further suppose 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ) and ℎ, 𝜌 ⊢ 𝜆𝑥.𝑒 ⇓ 𝑟 to show ∃ℎ𝑟, 𝑣𝑟, 𝑊𝑟. 𝑟 =
(ℎ𝑟, 𝑣𝑟) ∧ 𝑊 ′ ⊑ 𝑊𝑟 ∧ wsat(𝑊𝑟, ℎ𝑟) ∧ (𝑊𝑟, 𝑣𝑟) ∈ 𝒱⟦𝐴 → 𝐵⟧.

By case analysis on the derivation of ℎ, 𝜌 ⊢ 𝜆𝑥.𝑒 ⇓ 𝑟, there is one case to consider.

Case:

ℎ, 𝜌 ⊢ 𝜆𝑥.𝑒 ⇓ (ℎ, (𝜆𝑥.𝑒, 𝜌))

Choose ℎ𝑟 = ℎ, 𝑣𝑟 = (𝜆𝑥.𝑒, 𝜌), 𝑊𝑟 = 𝑊 ′.

The only non-trivial proof obligation is (𝑊 ′, (𝜆𝑥.𝑒, 𝜌)) ∈ 𝒱⟦𝐴 → 𝐵⟧.

Suppose 𝑊 ′ ⊑ 𝑊″ and (𝑊″, 𝑣) ∈ 𝒱⟦𝐴⟧ to show (𝑊″, 𝜌[𝑥 ↦ 𝑣], 𝑒) ∈ ℰ⟦𝐵⟧.

By monotonicity, 𝑊 ⊑ 𝑊 ′ ⊑ 𝑊″, and (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧, we have (𝑊″, 𝜌) ∈ 𝒢⟦Γ⟧.

By adjoining (𝑊″, 𝜌) ∈ 𝒢⟦Γ⟧ with (𝑊″, 𝑣) ∈ 𝒱⟦𝐴⟧, we have (𝑊″, 𝜌[𝑥 ↦ 𝑣]) ∈ 𝒢⟦Γ, 𝑥 : 𝐴⟧.

By instantiating Γ, 𝑥 : 𝐴 ⊨ 𝑒 : 𝐵 with (𝑊″, 𝜌[𝑥 ↦ 𝑣]) ∈ 𝒢⟦Γ, 𝑥 : 𝐴⟧, we conclude
(𝑊″, 𝜌[𝑥 ↦ 𝑣], 𝑒) ∈ ℰ⟦𝐵⟧. □

Lemma (application) :  If Γ ⊨ 𝑒1 : 𝐴 → 𝐵 and Γ ⊨ 𝑒2 : 𝐴, then Γ ⊨ 𝑒1 𝑒2 : 𝐵.

Proof :  Suppose Γ ⊨ 𝑒1 : 𝐴 → 𝐵 and Γ ⊨ 𝑒2 : 𝐴 and (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧ to show (𝑊, 𝜌, 𝑒1 𝑒2) ∈
ℰ⟦𝐵⟧.
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We further suppose 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ) and ℎ, 𝜌 ⊢ 𝑒1 𝑒2 ⇓ 𝑟 to show ∃ℎ𝑟, 𝑣𝑟, 𝑊𝑟. 𝑟 =
(ℎ𝑟, 𝑣𝑟) ∧ 𝑊 ′ ⊑ 𝑊𝑟 ∧ wsat(𝑊𝑟, ℎ𝑟) ∧ (𝑊𝑟, 𝑣𝑟) ∈ 𝒱⟦𝐵⟧.

By instantiating Γ ⊨ 𝑒1 : 𝐴 → 𝐵 with (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧, we have (𝑊, 𝜌, 𝑒1) ∈ ℰ⟦𝐴 → 𝐵⟧.

By instantiating Γ ⊨ 𝑒2 : 𝐴 with (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧, we have (𝑊, 𝜌, 𝑒2) ∈ ℰ⟦𝐴⟧.

By case analysis on the derivation of ℎ, 𝜌 ⊢ 𝑒1 𝑒2 ⇓ 𝑟, there are three cases to consider.

Case:

ℎ, 𝜌 ⊢ 𝑒1 ⇓ (ℎ′, (𝜆𝑥.𝑒𝑓 , 𝜌𝑓)) ℎ′, 𝜌 ⊢ 𝑒2 ⇓ (ℎ″, 𝑣) ℎ″, 𝜌𝑓 [𝑥 ↦ 𝑣] ⊢ 𝑒𝑓 ⇓ 𝑟
ℎ, 𝜌 ⊢ 𝑒1 𝑒2 ⇓ 𝑟

By instantiating (𝑊, 𝜌, 𝑒1) ∈ ℰ⟦𝐴 → 𝐵⟧ with 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), and ℎ, 𝜌 ⊢ 𝑒1 ⇓
(ℎ′, (𝜆𝑥.𝑒𝑓 , 𝜌𝑓)), we have 𝑊 ′ ⊑ 𝑊″ ∧ wsat(𝑊″, ℎ′) ∧ (𝑊″, (𝜆𝑥.𝑒𝑓 , 𝜌𝑓)) ∈ 𝒱⟦𝐴 → 𝐵⟧ for
some 𝑊″.

By instantiating (𝑊, 𝜌, 𝑒2) ∈ ℰ⟦𝐴⟧ with 𝑊 ⊑ 𝑊 ′ ⊑ 𝑊″, wsat(𝑊″, ℎ′), and ℎ′, 𝜌 ⊢ 𝑒2 ⇓
(ℎ″, 𝑣), we have 𝑊″ ⊑ 𝑊‴ ∧ wsat(𝑊‴, ℎ″) ∧ (𝑊‴, 𝑣) ∈ 𝒱⟦𝐴⟧ for some 𝑊‴.

By instantiating (𝑊″, (𝜆𝑥.𝑒𝑓 , 𝜌𝑓)) ∈ 𝒱⟦𝐴 → 𝐵⟧ with 𝑊″ ⊑ 𝑊‴ and (𝑊‴, 𝑣) ∈ 𝒱⟦𝐴⟧, we
have (𝑊‴, 𝜌𝑓 [𝑥 ↦ 𝑣], 𝑒𝑓) ∈ ℰ⟦𝐵⟧.

By instantiating (𝑊‴, 𝜌𝑓 [𝑥 ↦ 𝑣], 𝑒𝑓) ∈ ℰ⟦𝐵⟧ with 𝑊‴ ⊑ 𝑊‴ and wsat(𝑊‴, ℎ″), we have
𝑟 = (ℎ‴, 𝑣′) ∧ 𝑊‴ ⊑ 𝑊⁗ ∧ wsat(𝑊⁗, ℎ‴) ∧ (𝑊⁗, 𝑣′) ∈ 𝒱⟦𝐵⟧ for some ℎ‴, 𝑣′, 𝑊⁗.

Choose ℎ𝑟 = ℎ‴, 𝑣𝑟 = 𝑣′, 𝑊𝑟 = 𝑊⁗ to conclude.

Case:

ℎ, 𝜌 ⊢ 𝑒1 ⇓ 𝑟1 𝑟1 ∉ {(ℎ′, (𝜆𝑥.𝑒𝑓 , 𝜌𝑓)) | ℎ′, 𝑥, 𝑒𝑓 , 𝜌𝑓}
ℎ, 𝜌 ⊢ 𝑒1 𝑒2 ⇓ 𝚎𝚛𝚛

By instantiating (𝑊, 𝜌, 𝑒1) ∈ ℰ⟦𝐴 → 𝐵⟧ with 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), and ℎ, 𝜌 ⊢ 𝑒1 ⇓ 𝑟1, we
conclude contradiction.

Case:

ℎ, 𝜌 ⊢ 𝑒1 ⇓ (ℎ′, (𝜆𝑥.𝑒𝑓 , 𝜌𝑓)) ℎ′, 𝜌 ⊢ 𝑒2 ⇓ 𝚎𝚛𝚛
ℎ, 𝜌 ⊢ 𝑒1 𝑒2 ⇓ 𝚎𝚛𝚛

By instantiating (𝑊, 𝜌, 𝑒1) ∈ ℰ⟦𝐴 → 𝐵⟧ with 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), and ℎ, 𝜌 ⊢ 𝑒1 ⇓
(ℎ′, (𝜆𝑥.𝑒𝑓 , 𝜌𝑓)), we have 𝑊 ′ ⊑ 𝑊″ ∧ wsat(𝑊″, ℎ′) ∧ (𝑊″, (𝜆𝑥.𝑒𝑓 , 𝜌𝑓)) ∈ 𝒱⟦𝐴 → 𝐵⟧ for
some 𝑊″.

By instantiating (𝑊, 𝜌, 𝑒2) ∈ ℰ⟦𝐴⟧ with 𝑊 ⊑ 𝑊 ′ ⊑ 𝑊″, wsat(𝑊″, ℎ′), and ℎ′, 𝜌 ⊢ 𝑒2 ⇓
𝚎𝚛𝚛, we conclude contradiction. □

Product
Lemma (pair) :  If Γ ⊨ 𝑒1 : 𝐴 and Γ ⊨ 𝑒2 : 𝐵, then Γ ⊨ (𝑒1, 𝑒2) : 𝐴 × 𝐵.

Proof :  Suppose Γ ⊨ 𝑒1 : 𝐴, Γ ⊨ 𝑒2 : 𝐵, and (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧ to show (𝑊, 𝜌, (𝑒1, 𝑒2)) ∈ ℰ⟦𝐴 ×
𝐵⟧.

We further suppose 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ) and ℎ, 𝜌 ⊢ (𝑒1, 𝑒2) ⇓ 𝑟 to show ∃ℎ𝑟, 𝑣𝑟, 𝑊𝑟. 𝑟 =
(ℎ𝑟, 𝑣𝑟) ∧ 𝑊 ′ ⊑ 𝑊𝑟 ∧ wsat(𝑊𝑟, ℎ𝑟) ∧ (𝑊𝑟, 𝑣𝑟) ∈ 𝒱⟦𝐴 × 𝐵⟧.

By instantiating Γ ⊨ 𝑒1 : 𝐴 with (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧, we have (𝑊, 𝜌, 𝑒1) ∈ ℰ⟦𝐴⟧.
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By instantiating Γ ⊨ 𝑒2 : 𝐵 with (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧, we have (𝑊, 𝜌, 𝑒2) ∈ ℰ⟦𝐵⟧.

By case analysis on the derivation of ℎ, 𝜌 ⊢ (𝑒1, 𝑒2) ⇓ 𝑟, there are three cases to consider.

Case:

ℎ, 𝜌 ⊢ 𝑒1 ⇓ (ℎ′, 𝑣1) ℎ′, 𝜌 ⊢ 𝑒2 ⇓ (ℎ″, 𝑣2)
ℎ, 𝜌 ⊢ (𝑒1, 𝑒2) ⇓ (ℎ″, (𝑣1, 𝑣2))

By instantiating (𝑊, 𝜌, 𝑒1) ∈ ℰ⟦𝐴⟧ with 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), and ℎ, 𝜌 ⊢ 𝑒1 ⇓ (ℎ′, 𝑣1), we
have 𝑊 ′ ⊑ 𝑊″ ∧ wsat(𝑊″, ℎ′) ∧ (𝑊″, 𝑣1) ∈ 𝒱⟦𝐴⟧ for some 𝑊″.

By instantiating (𝑊, 𝜌, 𝑒2) ∈ ℰ⟦𝐵⟧ with 𝑊 ⊑ 𝑊 ′ ⊑ 𝑊″, wsat(𝑊″, ℎ′), and ℎ′, 𝜌 ⊢ 𝑒2 ⇓
(ℎ″, 𝑣2), we have 𝑊″ ⊑ 𝑊‴ ∧ wsat(𝑊‴, ℎ″) ∧ (𝑊‴, 𝑣2) ∈ 𝒱⟦𝐵⟧ for some 𝑊‴.

Choose ℎ𝑟 = ℎ″, 𝑣𝑟 = (𝑣1, 𝑣2), 𝑊𝑟 = 𝑊‴.

The only non-trivial proof obligation is (𝑊‴, (𝑣1, 𝑣2)) ∈ 𝒱⟦𝐴 × 𝐵⟧.

By monotonicity, 𝑊″ ⊑ 𝑊‴, and (𝑊″, 𝑣1) ∈ 𝒱⟦𝐴⟧, we have (𝑊‴, 𝑣1) ∈ 𝒱⟦𝐴⟧

By combining (𝑊‴, 𝑣1) ∈ 𝒱⟦𝐴⟧ and (𝑊‴, 𝑣2) ∈ 𝒱⟦𝐵⟧, we conclude (𝑊‴, (𝑣1, 𝑣2)) ∈ 𝒱⟦𝐴 ×
𝐵⟧.

Case:

ℎ, 𝜌 ⊢ 𝑒1 ⇓ 𝚎𝚛𝚛
ℎ, 𝜌 ⊢ (𝑒1, 𝑒2) ⇓ 𝚎𝚛𝚛

By instantiating (𝑊, 𝜌, 𝑒1) ∈ ℰ⟦𝐴⟧ with 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), and ℎ, 𝜌 ⊢ 𝑒1 ⇓ 𝚎𝚛𝚛, we
conclude contradiction.

Case:

ℎ, 𝜌 ⊢ 𝑒1 ⇓ (ℎ′, 𝑣1) ℎ′, 𝜌 ⊢ 𝑒2 ⇓ 𝚎𝚛𝚛
ℎ, 𝜌 ⊢ (𝑒1, 𝑒2) ⇓ 𝚎𝚛𝚛

By instantiating (𝑊, 𝜌, 𝑒1) ∈ ℰ⟦𝐴⟧ with 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), and ℎ, 𝜌 ⊢ 𝑒1 ⇓ (ℎ′, 𝑣1), we
have 𝑊 ′ ⊑ 𝑊″ ∧ wsat(𝑊″, ℎ′) ∧ (𝑊″, 𝑣1) ∈ 𝒱⟦𝐴⟧ for some 𝑊″.

By instantiating (𝑊, 𝜌, 𝑒2) ∈ ℰ⟦𝐵⟧ with 𝑊 ⊑ 𝑊 ′ ⊑ 𝑊″, wsat(𝑊″, ℎ′), and ℎ′, 𝜌 ⊢ 𝑒2 ⇓
𝚎𝚛𝚛, we conclude contradiction.

□

Lemma (fst) :  If Γ ⊨ 𝑒 : 𝐴 × 𝐵, then Γ ⊨ 𝑒 .𝚏𝚜𝚝 : 𝐴.

Proof :  Suppose Γ ⊨ 𝑒 : 𝐴 × 𝐵 and (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧ to show (𝑊, 𝜌, 𝑒 .𝚏𝚜𝚝) ∈ ℰ⟦𝐴⟧.

We further suppose 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), and ℎ, 𝜌 ⊢ 𝑒 .𝚏𝚜𝚝 ⇓ 𝑟 to show ∃ℎ𝑟, 𝑣𝑟, 𝑊𝑟. 𝑟 =
(ℎ𝑟, 𝑣𝑟) ∧ 𝑊 ′ ⊑ 𝑊𝑟 ∧ wsat(𝑊𝑟, ℎ𝑟) ∧ (𝑊𝑟, 𝑣𝑟) ∈ 𝒱⟦𝐴⟧.

By instantiating Γ ⊨ 𝑒 : 𝐴 × 𝐵 with (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧, we have (𝑊, 𝜌, 𝑒) ∈ ℰ⟦𝐴 × 𝐵⟧.

By case analysis on the derivation of ℎ, 𝜌 ⊢ 𝑒 .𝚏𝚜𝚝 ⇓ 𝑟, there two cases to consider.

Case:

ℎ, 𝜌 ⊢ 𝑒 ⇓ (ℎ′, (𝑣1, 𝑣2))
ℎ, 𝜌 ⊢ 𝑒 .𝚏𝚜𝚝 ⇓ (ℎ′, 𝑣1)
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By instantiating (𝑊, 𝜌, 𝑒) ∈ ℰ⟦𝐴 × 𝐵⟧ with 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), and ℎ, 𝜌 ⊢ 𝑒 ⇓
(ℎ′, (𝑣1, 𝑣2)), we have 𝑊 ′ ⊑ 𝑊″ ∧ wsat(𝑊″, ℎ′) ∧ (𝑊″, (𝑣1, 𝑣2)) ∈ 𝒱⟦𝐴 × 𝐵⟧ for some
𝑊″.

By unfolding the definition of (𝑊″, (𝑣1, 𝑣2)) ∈ 𝒱⟦𝐴 × 𝐵⟧, we have (𝑊″, 𝑣1) ∈ 𝒱⟦𝐴⟧.

Choose ℎ𝑟 = ℎ′, 𝑣𝑟 = 𝑣1, 𝑊𝑟 = 𝑊″ to conclude.

Case:

ℎ, 𝜌 ⊢ 𝑒 ⇓ 𝑟1 𝑟1 ∉ {(ℎ′, (𝑣1, 𝑣2)) | ℎ′, 𝑣1, 𝑣2}
ℎ, 𝜌 ⊢ 𝑒 .𝚏𝚜𝚝 ⇓ 𝚎𝚛𝚛

By instantiating (𝑊, 𝜌, 𝑒) ∈ ℰ⟦𝐴 × 𝐵⟧ with 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), and ℎ, 𝜌 ⊢ 𝑒 ⇓ 𝑟1, we
conclude contradiction. □

Lemma (snd) :  If Γ ⊨ 𝑒 : 𝐴 × 𝐵, then Γ ⊨ 𝑒 .𝚜𝚗𝚍 : 𝐵.

Proof :  Suppose Γ ⊨ 𝑒 : 𝐴 × 𝐵 and (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧ to show (𝑊, 𝜌, 𝑒 .𝚜𝚗𝚍) ∈ ℰ⟦𝐵⟧.

We further suppose 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), and ℎ, 𝜌 ⊢ 𝑒 .𝚜𝚗𝚍 ⇓ 𝑟 to show ∃ℎ𝑟, 𝑣𝑟, 𝑊𝑟. 𝑟 =
(ℎ𝑟, 𝑣𝑟) ∧ 𝑊 ′ ⊑ 𝑊𝑟 ∧ wsat(𝑊𝑟, ℎ𝑟) ∧ (𝑊𝑟, 𝑣𝑟) ∈ 𝒱⟦𝐵⟧.

By instantiating Γ ⊨ 𝑒 : 𝐴 × 𝐵 with (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧, we have (𝑊, 𝜌, 𝑒) ∈ ℰ⟦𝐴 × 𝐵⟧.

By case analysis on the derivation of ℎ, 𝜌 ⊢ 𝑒 .𝚜𝚗𝚍 ⇓ 𝑟, there two cases to consider.

Case:

ℎ, 𝜌 ⊢ 𝑒 ⇓ (ℎ′, (𝑣1, 𝑣2))
ℎ, 𝜌 ⊢ 𝑒 .𝚜𝚗𝚍 ⇓ (ℎ′, 𝑣2)

By instantiating (𝑊, 𝜌, 𝑒) ∈ ℰ⟦𝐴 × 𝐵⟧ with 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), and ℎ, 𝜌 ⊢ 𝑒 ⇓
(ℎ′, (𝑣1, 𝑣2)), we have 𝑊 ′ ⊑ 𝑊″ ∧ wsat(𝑊″, ℎ′) ∧ (𝑊″, (𝑣1, 𝑣2)) ∈ 𝒱⟦𝐴 × 𝐵⟧ for some
𝑊″.

By unfolding the definition of (𝑊″, (𝑣1, 𝑣2)) ∈ 𝒱⟦𝐴 × 𝐵⟧, we have (𝑊″, 𝑣2) ∈ 𝒱⟦𝐵⟧.

Choose ℎ𝑟 = ℎ′, 𝑣𝑟 = 𝑣2, 𝑊𝑟 = 𝑊″ to conclude.

Case:

ℎ, 𝜌 ⊢ 𝑒 ⇓ 𝑟1 𝑟1 ∉ {(ℎ′, (𝑣1, 𝑣2)) | ℎ′, 𝑣1, 𝑣2}
ℎ, 𝜌 ⊢ 𝑒 .𝚜𝚗𝚍 ⇓ 𝚎𝚛𝚛

By instantiating (𝑊, 𝜌, 𝑒) ∈ ℰ⟦𝐴 × 𝐵⟧ with 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), and ℎ, 𝜌 ⊢ 𝑒 ⇓ 𝑟1, we
conclude contradiction. □

Sum
Lemma (inl) :  If Γ ⊨ 𝑒 : 𝐴, then Γ ⊨ 𝚒𝚗𝚕. 𝑒 : 𝐴 + 𝐵.

Proof :  Suppose Γ ⊨ 𝑒 : 𝐴 and (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧ to show (𝑊, 𝜌, 𝚒𝚗𝚕. 𝑒) ∈ ℰ⟦𝐴 + 𝐵⟧.

We further suppose 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ) and ℎ, 𝜌 ⊢ 𝚒𝚗𝚕. 𝑒 ⇓ 𝑟 to show ∃ℎ𝑟, 𝑣𝑟, 𝑊𝑟. 𝑟 =
(ℎ𝑟, 𝑣𝑟) ∧ 𝑊 ′ ⊑ 𝑊𝑟 ∧ wsat(𝑊𝑟, ℎ𝑟) ∧ (𝑊𝑟, 𝑣𝑟) ∈ 𝒱⟦𝐴 + 𝐵⟧.

By instantiating Γ ⊨ 𝑒 : 𝐴 with (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧, we have (𝑊, 𝜌, 𝑒) ∈ ℰ⟦𝐴⟧.

By case analysis on the derivation of ℎ, 𝜌 ⊢ 𝚒𝚗𝚕. 𝑒 ⇓ 𝑟, there are two cases to consider.

Case:
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ℎ, 𝜌 ⊢ 𝑒 ⇓ (ℎ′, 𝑣)
ℎ, 𝜌 ⊢ 𝚒𝚗𝚕. 𝑒 ⇓ (ℎ′, 𝚒𝚗𝚕. 𝑣)

By instantiating (𝑊, 𝜌, 𝑒) ∈ ℰ⟦𝐴⟧ with 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), and ℎ, 𝜌 ⊢ 𝑒 ⇓ (ℎ′, 𝑣), we
have 𝑊 ′ ⊑ 𝑊″ ∧ wsat(𝑊″, ℎ′) ∧ (𝑊″, 𝑣) ∈ 𝒱⟦𝐴⟧ for some 𝑊″.

From (𝑊″, 𝑣) ∈ 𝒱⟦𝐴⟧, we have (𝑊″, 𝚒𝚗𝚕. 𝑣) ∈ 𝒱⟦𝐴 + 𝐵⟧.

Choose ℎ𝑟 = ℎ′, 𝑣𝑟 = 𝚒𝚗𝚕. 𝑣, 𝑊𝑟 = 𝑊″ to conclude.

Case:

ℎ, 𝜌 ⊢ 𝑒 ⇓ 𝚎𝚛𝚛
ℎ, 𝜌 ⊢ 𝚒𝚗𝚕. 𝑒 ⇓ 𝚎𝚛𝚛

By instantiating (𝑊, 𝜌, 𝑒) ∈ ℰ⟦𝐴⟧ with 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), and ℎ, 𝜌 ⊢ 𝑒 ⇓ 𝚎𝚛𝚛, we
conclude contradiction. □

Lemma (inr) :  If Γ ⊨ 𝑒 : 𝐵, then Γ ⊨ 𝚒𝚗𝚛. 𝑒 : 𝐴 + 𝐵.

Proof :  Suppose Γ ⊨ 𝑒 : 𝐵 and (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧ to show (𝑊, 𝜌, 𝚒𝚗𝚛. 𝑒) ∈ ℰ⟦𝐴 + 𝐵⟧.

We further suppose 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ) and ℎ, 𝜌 ⊢ 𝚒𝚗𝚛. 𝑒 ⇓ 𝑟 to show ∃ℎ𝑟, 𝑣𝑟, 𝑊𝑟. 𝑟 =
(ℎ𝑟, 𝑣𝑟) ∧ 𝑊 ′ ⊑ 𝑊𝑟 ∧ wsat(𝑊𝑟, ℎ𝑟) ∧ (𝑊𝑟, 𝑣𝑟) ∈ 𝒱⟦𝐴 + 𝐵⟧.

By instantiating Γ ⊨ 𝑒 : 𝐵 with (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧, we have (𝑊, 𝜌, 𝑒) ∈ ℰ⟦𝐵⟧.

By case analysis on the derivation of ℎ, 𝜌 ⊢ 𝚒𝚗𝚛. 𝑒 ⇓ 𝑟, there are two cases to consider.

Case:

ℎ, 𝜌 ⊢ 𝑒 ⇓ (ℎ′, 𝑣)
ℎ, 𝜌 ⊢ 𝚒𝚗𝚛. 𝑒 ⇓ (ℎ′, 𝚒𝚗𝚛. 𝑣)

By instantiating (𝑊, 𝜌, 𝑒) ∈ ℰ⟦𝐵⟧ with 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), and ℎ, 𝜌 ⊢ 𝑒 ⇓ (ℎ′, 𝑣), we
have 𝑊 ′ ⊑ 𝑊″ ∧ wsat(𝑊″, ℎ′) ∧ (𝑊″, 𝑣) ∈ 𝒱⟦𝐵⟧ for some 𝑊″.

From (𝑊″, 𝑣) ∈ 𝒱⟦𝐵⟧, we have (𝑊″, 𝚒𝚗𝚛. 𝑣) ∈ 𝒱⟦𝐴 + 𝐵⟧.

Choose ℎ𝑟 = ℎ′, 𝑣𝑟 = 𝚒𝚗𝚛. 𝑣, 𝑊𝑟 = 𝑊″ to conclude.

Case:

ℎ, 𝜌 ⊢ 𝑒 ⇓ 𝚎𝚛𝚛
ℎ, 𝜌 ⊢ 𝚒𝚗𝚛. 𝑒 ⇓ 𝚎𝚛𝚛

By instantiating (𝑊, 𝜌, 𝑒) ∈ ℰ⟦𝐵⟧ with 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), and ℎ, 𝜌 ⊢ 𝑒 ⇓ 𝚎𝚛𝚛, we
conclude contradiction. □

Lemma (case) :  If Γ ⊨ 𝑒0 : 𝐴 + 𝐵 and Γ, 𝑥 : 𝐴 ⊨ 𝑒1 : 𝐶 , and Γ, 𝑦 : 𝐵 ⊨ 𝑒2 : 𝐶 ,
then Γ ⊨ 𝚌𝚊𝚜𝚎(𝑒0, 𝑥.𝑒1, 𝑦.𝑒2) : 𝐶 .

Proof :  Suppose Γ ⊨ 𝑒0 : 𝐴 + 𝐵 and Γ, 𝑥 : 𝐴 ⊨ 𝑒1 : 𝐶 and Γ, 𝑦 : 𝐵 ⊨ 𝑒2 : 𝐶 , and (𝑊, 𝜌) ∈
𝒢⟦Γ⟧ to show (𝑊, 𝜌, 𝚌𝚊𝚜𝚎(𝑒0, 𝑥.𝑒1, 𝑦.𝑒2)) ∈ ℰ⟦𝐶⟧.

We further suppose 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), and ℎ, 𝜌 ⊢ 𝚌𝚊𝚜𝚎(𝑒0, 𝑥.𝑒1, 𝑦.𝑒2) ⇓ 𝑟 to show
∃ℎ𝑟, 𝑣𝑟, 𝑊𝑟. 𝑟 = (ℎ𝑟, 𝑣𝑟) ∧ 𝑊 ′ ⊑ 𝑊𝑟 ∧ wsat(𝑊𝑟, ℎ𝑟) ∧ (𝑊𝑟, 𝑣𝑟) ∈ 𝒱⟦𝐶⟧.

By instantiating Γ ⊨ 𝑒0 : 𝐴 + 𝐵 with (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧, we have (𝑊, 𝜌, 𝑒0) ∈ ℰ⟦𝐴 + 𝐵⟧.
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By case analysis on the derivation of ℎ, 𝜌 ⊢ 𝚌𝚊𝚜𝚎(𝑒0, 𝑥.𝑒1, 𝑦.𝑒2) ⇓ 𝑟, there are three cases to
consider.

Case:

ℎ, 𝜌 ⊢ 𝑒0 ⇓ (ℎ′, 𝚒𝚗𝚕. 𝑣) ℎ′, 𝜌[𝑥 ↦ 𝑣] ⊢ 𝑒1 ⇓ 𝑟
ℎ, 𝜌 ⊢ 𝚌𝚊𝚜𝚎(𝑒0, 𝑥.𝑒1, 𝑦.𝑒2) ⇓ 𝑟

By instantiating (𝑊, 𝜌, 𝑒0) ∈ ℰ⟦𝐴 + 𝐵⟧ with 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), and ℎ, 𝜌 ⊢ 𝑒0 ⇓ 𝚒𝚗𝚕. 𝑣,
we have 𝑊 ′ ⊑ 𝑊″ ∧ wsat(𝑊″, ℎ′) ∧ (𝑊″, 𝚒𝚗𝚕. 𝑣) ∈ 𝒱⟦𝐴 + 𝐵⟧ for some 𝑊″.

From (𝑊″, 𝚒𝚗𝚕. 𝑣) ∈ 𝒱⟦𝐴 + 𝐵⟧, we have (𝑊″, 𝑣) ∈ 𝒱⟦𝐴⟧.

By monotonicity, 𝑊 ⊑ 𝑊 ′ ⊑ 𝑊″, and (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧, we have (𝑊″, 𝜌) ∈ 𝒢⟦Γ⟧.

By adjoining (𝑊″, 𝜌) ∈ 𝒢⟦Γ⟧ with (𝑊″, 𝑣) ∈ 𝒱⟦𝐴⟧, we have (𝑊″, 𝜌[𝑥 ↦ 𝑣]) ∈ 𝒢⟦Γ, 𝑥 : 𝐴⟧.

By instantiating Γ, 𝑥 : 𝐴 ⊨ 𝑒1 : 𝐶 with (𝑊″, 𝜌[𝑥 ↦ 𝑣]) ∈ 𝒢⟦Γ, 𝑥 : 𝐴⟧, we have (𝑊″, 𝜌[𝑥 ↦
𝑣], 𝑒1) ∈ ℰ⟦𝐶⟧.

By instantiating (𝑊″, 𝜌[𝑥 ↦ 𝑣], 𝑒1) ∈ ℰ⟦𝐶⟧ with 𝑊″ ⊑ 𝑊″, wsat(𝑊″, ℎ′), and ℎ′, 𝜌[𝑥 ↦
𝑣] ⊢ 𝑒1 ⇓ 𝑟, we have 𝑟 = (ℎ″, 𝑣′) ∧ 𝑊″ ⊑ 𝑊‴ ∧ wsat(𝑊‴, ℎ″) ∧ (𝑊‴, 𝑣′) ∈ 𝒱⟦𝐶⟧ for some
ℎ″, 𝑣′, 𝑊‴.

Choose ℎ𝑟 = ℎ″, 𝑣𝑟 = 𝑣′, 𝑊𝑟 = 𝑊‴ to conclude.

Case:

ℎ, 𝜌 ⊢ 𝑒0 ⇓ (ℎ′, 𝚒𝚗𝚛. 𝑣) ℎ′, 𝜌[𝑦 ↦ 𝑣] ⊢ 𝑒2 ⇓ 𝑟
ℎ, 𝜌 ⊢ 𝚌𝚊𝚜𝚎(𝑒0, 𝑥.𝑒1, 𝑦.𝑒2) ⇓ 𝑟

By instantiating (𝑊, 𝜌, 𝑒0) ∈ ℰ⟦𝐴 + 𝐵⟧ with 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), and ℎ, 𝜌 ⊢ 𝑒0 ⇓ 𝚒𝚗𝚛. 𝑣,
we have 𝑊 ′ ⊑ 𝑊″ ∧ wsat(𝑊″, ℎ′) ∧ (𝑊″, 𝚒𝚗𝚛. 𝑣) ∈ 𝒱⟦𝐴 + 𝐵⟧ for some 𝑊″.

From (𝑊″, 𝚒𝚗𝚛. 𝑣) ∈ 𝒱⟦𝐴 + 𝐵⟧, we have (𝑊″, 𝑣) ∈ 𝒱⟦𝐵⟧.

By monotonicity, 𝑊 ⊑ 𝑊 ′ ⊑ 𝑊″, and (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧, we have (𝑊″, 𝜌) ∈ 𝒢⟦Γ⟧.

By adjoining (𝑊″, 𝜌) ∈ 𝒢⟦Γ⟧ with (𝑊″, 𝑣) ∈ 𝒱⟦𝐵⟧, we have (𝑊″, 𝜌[𝑦 ↦ 𝑣]) ∈ 𝒢⟦Γ, 𝑦 : 𝐵⟧.

By instantiating Γ, 𝑦 : 𝐵 ⊨ 𝑒2 : 𝐶 with (𝑊″, 𝜌[𝑦 ↦ 𝑣]) ∈ 𝒢⟦Γ, 𝑦 : 𝐵⟧, we have (𝑊″, 𝜌[𝑦 ↦
𝑣], 𝑒2) ∈ ℰ⟦𝐶⟧.

By instantiating (𝑊″, 𝜌[𝑦 ↦ 𝑣], 𝑒2) ∈ ℰ⟦𝐶⟧ with 𝑊″ ⊑ 𝑊″, wsat(𝑊″, ℎ′), and ℎ′, 𝜌[𝑦 ↦
𝑣] ⊢ 𝑒2 ⇓ 𝑟, we have 𝑟 = (ℎ″, 𝑣′) ∧ 𝑊″ ⊑ 𝑊‴ ∧ wsat(𝑊‴, ℎ″) ∧ (𝑊‴, 𝑣′) ∈ 𝒱⟦𝐶⟧ for some
ℎ″, 𝑣′, 𝑊‴.

Choose ℎ𝑟 = ℎ″, 𝑣𝑟 = 𝑣′, 𝑊𝑟 = 𝑊‴ to conclude.

Case:

ℎ, 𝜌 ⊢ 𝑒0 ⇓ 𝑟0 𝑟0 ∉ {(ℎ′, 𝚒𝚗𝚕. 𝑣) | ℎ′, 𝑣} ∪ {(ℎ′, 𝚒𝚗𝚛. 𝑣) | ℎ′, 𝑣}
ℎ, 𝜌 ⊢ 𝚌𝚊𝚜𝚎(𝑒0, 𝑥.𝑒1, 𝑦.𝑒2) ⇓ 𝚎𝚛𝚛

By instantiating (𝑊, 𝜌, 𝑒0) ∈ ℰ⟦𝐴 + 𝐵⟧ with 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), and ℎ, 𝜌 ⊢ 𝑒0 ⇓ 𝑟0, we
conclude contradiction. □

Reference
Lemma (new) :  If Γ ⊨ 𝑒 : 𝜏 , then Γ ⊨ 𝚗𝚎𝚠 𝑒 : 𝚛𝚎𝚏 𝜏 .

Proof :  Suppose Γ ⊨ 𝑒 : 𝜏  and (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧ to show (𝑊, 𝜌, 𝚗𝚎𝚠 𝑒) ∈ ℰ⟦𝚛𝚎𝚏 𝜏⟧.
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We further suppose 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), ℎ, 𝜌 ⊢ 𝚗𝚎𝚠 𝑒 ⇓ 𝑟 to show ∃ℎ𝑟, 𝑣𝑟, 𝑊𝑟. 𝑟 =
(ℎ𝑟, 𝑣𝑟) ∧ 𝑊 ′ ⊑ 𝑊𝑟 ∧ wsat(𝑊𝑟, ℎ𝑟) ∧ (𝑊𝑟, 𝑣𝑟) ∈ 𝒱⟦𝚛𝚎𝚏 𝜏⟧.

By instantiating Γ ⊨ 𝑒 : 𝜏  with (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧, we have (𝑊, 𝜌, 𝑒) ∈ ℰ⟦𝜏⟧.

By case analysis on the derivation of ℎ, 𝜌 ⊢ 𝚗𝚎𝚠 𝑒 ⇓ 𝑟, there are two cases to consider.

Case:

ℎ, 𝜌 ⊢ 𝑒 ⇓ (ℎ′, 𝑣) ℓ ∉ dom(ℎ′)
ℎ, 𝜌 ⊢ 𝚗𝚎𝚠 𝑒 ⇓ (ℎ′[ℓ ↦ 𝑣], ℓ)

By instantiating (𝑊, 𝜌, 𝑒) ∈ ℰ⟦𝜏⟧ with 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), and ℎ, 𝜌 ⊢ 𝑒 ⇓ (ℎ′, 𝑣), we have
𝑊 ′ ⊑ 𝑊″ ∧ wsat(𝑊″, ℎ′) ∧ (𝑊″, 𝑣) ∈ 𝒱⟦𝜏⟧ for some 𝑊″.

From (𝑊″, 𝑣) ∈ 𝒱⟦𝜏⟧, we have ⊢ 𝑣 : 𝜏 .

From ℓ ∉ dom(ℎ′) and wsat(𝑊″, ℎ′), we have ℓ ∉ dom(𝑊″)

Let 𝑊‴ ≔ 𝑊″[ℓ ↦ {𝑣 | ⊢ 𝑣 : 𝜏}].

Since we allocated to a fresh location, we have 𝑊″ ⊑ 𝑊‴.

By combining wsat(𝑊″, ℎ′) and ⊢ 𝑣 : 𝜏 , we have wsat(𝑊‴, ℎ′[ℓ ↦ 𝑣]).

From the definition of value relation, we have (𝑊‴, ℓ) ∈ 𝒱⟦𝚛𝚎𝚏 𝜏⟧.

Choose ℎ𝑟 = ℎ′[ℓ ↦ 𝑣], 𝑣𝑟 = ℓ, 𝑊𝑟 = 𝑊‴ to conclude.

Case:

ℎ, 𝜌 ⊢ 𝑒 ⇓ 𝚎𝚛𝚛
ℎ, 𝜌 ⊢ 𝚗𝚎𝚠 𝑒 ⇓ 𝚎𝚛𝚛

By instantiating (𝑊, 𝜌, 𝑒) ∈ ℰ⟦𝜏⟧ with 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), and ℎ, 𝜌 ⊢ 𝑒 ⇓ 𝚎𝚛𝚛, we
conclude contradiction. □

Lemma (load) :  If Γ ⊨ 𝑒 : 𝚛𝚎𝚏 𝜏 , then Γ ⊨ ! 𝑒 : 𝜏 .

Proof :  Suppose Γ ⊨ 𝑒 : 𝚛𝚎𝚏 𝜏  and (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧ to show (𝑊, 𝜌, ! 𝑒) ∈ ℰ⟦𝜏⟧.

We further suppose 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), ℎ, 𝜌 ⊢ ! 𝑒 ⇓ 𝑟 to show ∃ℎ𝑟, 𝑣𝑟, 𝑊𝑟. 𝑟 = (ℎ𝑟, 𝑣𝑟) ∧
𝑊 ′ ⊑ 𝑊𝑟 ∧ wsat(𝑊𝑟, ℎ𝑟) ∧ (𝑊𝑟, 𝑣𝑟) ∈ 𝒱⟦𝜏⟧.

By instantiating Γ ⊨ 𝑒 : 𝚛𝚎𝚏 𝜏  with (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧, we have (𝑊, 𝜌, 𝑒) ∈ ℰ⟦𝚛𝚎𝚏 𝜏⟧.

By case analysis on the derivation of ℎ, 𝜌 ⊢ ! 𝑒 ⇓ 𝑟, there are two cases to consider.

Case:

ℎ, 𝜌 ⊢ 𝑒 ⇓ (ℎ′, ℓ) ℓ ∈ dom(ℎ′)
ℎ, 𝜌 ⊢ ! 𝑒 ⇓ (ℎ′, ℎ′(ℓ))

By instantiating (𝑊, 𝜌, 𝑒) ∈ ℰ⟦𝚛𝚎𝚏 𝜏⟧ with 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), ℎ, 𝜌 ⊢ 𝑒 ⇓ (ℎ′, ℓ), we have
𝑊 ′ ⊑ 𝑊″, wsat(𝑊″, ℎ′), (𝑊″, ℓ) ∈ 𝒱⟦𝚛𝚎𝚏 𝜏⟧ for some 𝑊″.

From (𝑊″, ℓ) ∈ 𝒱⟦𝚛𝚎𝚏 𝜏⟧, we have 𝑊″(ℓ) = {𝑣 | ⊢ 𝑣 : 𝜏}.

By instantiating wsat(𝑊″, ℎ′) with 𝑊″(ℓ) = {𝑣 | ⊢ 𝑣 : 𝜏}, we have ⊢ ℎ′(ℓ) : 𝜏 .

Then we have (𝑊″, ℎ′(ℓ)) ∈ 𝒱⟦𝜏⟧.

Choose ℎ𝑟 = ℎ′, 𝑣𝑟 = ℎ′(ℓ), 𝑊𝑟 = 𝑊″ to conclude.

11 / 13



Case:

ℎ, 𝜌 ⊢ 𝑒 ⇓ 𝑟1 𝑟 ∉ {(ℎ′, ℓ) | ℓ ∈ dom(ℎ′)}
ℎ, 𝜌 ⊢ ! 𝑒 ⇓ 𝚎𝚛𝚛

By instantiating (𝑊, 𝜌, 𝑒) ∈ ℰ⟦𝚛𝚎𝚏 𝜏⟧ with 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), ℎ, 𝜌 ⊢ 𝑒 ⇓ 𝑟1, we conclude
contradiction. □

Lemma (store) :  If Γ ⊨ 𝑒1 : 𝚛𝚎𝚏 𝜏  and Γ ⊨ 𝑒2 : 𝜏 , then Γ ⊨ 𝑒1 ← 𝑒2 : 𝜏 .

Proof :  Suppose Γ ⊨ 𝑒1 : 𝚛𝚎𝚏 𝜏 , Γ ⊨ 𝑒2 : 𝜏 , and (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧ to show (𝑊, 𝜌, 𝑒1 ← 𝑒2) ∈
ℰ⟦𝜏⟧.

We further suppose 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), ℎ, 𝜌 ⊢ 𝑒1 ← 𝑒2 ⇓ 𝑟 to show ∃ℎ𝑟, 𝑣𝑟, 𝑊𝑟. 𝑟 =
(ℎ𝑟, 𝑣𝑟) ∧ 𝑊 ′ ⊑ 𝑊𝑟 ∧ wsat(𝑊𝑟, ℎ𝑟) ∧ (𝑊𝑟, 𝑣𝑟) ∈ 𝒱⟦𝜏⟧.

By instantiating Γ ⊨ 𝑒1 : 𝚛𝚎𝚏 𝜏  with (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧, we have (𝑊, 𝜌, 𝑒1) ∈ ℰ⟦𝚛𝚎𝚏 𝜏⟧.

By instantiating Γ ⊨ 𝑒2 : 𝜏  with (𝑊, 𝜌) ∈ 𝒢⟦Γ⟧, we have (𝑊, 𝜌, 𝑒2) ∈ ℰ⟦𝜏⟧.

By case analysis on the derivation of ℎ, 𝜌 ⊢ 𝑒1 ← 𝑒2 ⇓ 𝑟, there are three cases to consider.

Case:

ℎ, 𝜌 ⊢ 𝑒1 ⇓ (ℎ′, ℓ) ℎ′, 𝜌 ⊢ 𝑒2 ⇓ (ℎ″, 𝑣)
ℎ, 𝜌 ⊢ 𝑒1 ← 𝑒2 ⇓ (ℎ″[ℓ ↦ 𝑣], 𝑣)

By instantiating (𝑊, 𝜌, 𝑒1) ∈ ℰ⟦𝚛𝚎𝚏 𝜏⟧ with 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), and ℎ, 𝜌 ⊢ 𝑒1 ⇓ (ℎ′, ℓ),
we have 𝑊 ′ ⊑ 𝑊″, wsat(𝑊″, ℎ′), (𝑊″, ℓ) ∈ 𝒱⟦𝚛𝚎𝚏 𝜏⟧ for some 𝑊″.

By instantiating (𝑊, 𝜌, 𝑒2) ∈ ℰ⟦𝜏⟧ with 𝑊 ⊑ 𝑊 ′ ⊑ 𝑊″, wsat(𝑊″, ℎ′), and ℎ′, 𝜌 ⊢ 𝑒2 ⇓
(ℎ″, 𝑣), we have 𝑊″ ⊑ 𝑊‴, wsat(𝑊‴, ℎ″), (𝑊‴, 𝑣) ∈ 𝒱⟦𝜏⟧ for some 𝑊‴.

From (𝑊‴, 𝑣) ∈ 𝒱⟦𝜏⟧, we have ⊢ 𝑣 : 𝜏 .

By monotonicity, 𝑊″ ⊑ 𝑊‴, and (𝑊″, ℓ) ∈ 𝒱⟦𝚛𝚎𝚏 𝜏⟧, we have (𝑊‴, ℓ) ∈ 𝒱⟦𝚛𝚎𝚏 𝜏⟧.

From (𝑊‴, ℓ) ∈ 𝒱⟦𝚛𝚎𝚏 𝜏⟧, we have 𝑊‴(ℓ) = {𝑣 | ⊢ 𝑣 : 𝜏}.

By combining wsat(𝑊‴, ℎ″), 𝑊‴(ℓ) = {𝑣 | ⊢ 𝑣 : 𝜏}, and ⊢ 𝑣 : 𝜏 , we have wsat(𝑊‴, ℎ″[ℓ ↦
𝑣]).

Choose ℎ𝑟 = ℎ″[ℓ ↦ 𝑣], 𝑣𝑟 = 𝑣, 𝑊𝑟 = 𝑊‴ to conclude.

Case:

ℎ, 𝜌 ⊢ 𝑒1 ⇓ 𝑟1 𝑟1 ∉ {(ℎ′, ℓ) | ℎ′, ℓ}
ℎ, 𝜌 ⊢ 𝑒1 ← 𝑒2 ⇓ 𝚎𝚛𝚛

By instantiating (𝑊, 𝜌, 𝑒1) ∈ ℰ⟦𝚛𝚎𝚏 𝜏⟧ with 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), and ℎ, 𝜌 ⊢ 𝑒1 ⇓ 𝑟1, we
conclude contradiction.

Case:

ℎ, 𝜌 ⊢ 𝑒1 ⇓ (ℎ′, ℓ) ℎ′, 𝜌 ⊢ 𝑒2 ⇓ 𝚎𝚛𝚛
ℎ, 𝜌 ⊢ 𝑒1 ← 𝑒2 ⇓ 𝚎𝚛𝚛

By instantiating (𝑊, 𝜌, 𝑒1) ∈ ℰ⟦𝚛𝚎𝚏 𝜏⟧ with 𝑊 ⊑ 𝑊 ′, wsat(𝑊 ′, ℎ), and ℎ, 𝜌 ⊢ 𝑒1 ⇓ (ℎ′, ℓ),
we have 𝑊 ′ ⊑ 𝑊″, wsat(𝑊″, ℎ′), (𝑊″, ℓ) ∈ 𝒱⟦𝚛𝚎𝚏 𝜏⟧ for some 𝑊″.

By instantiating (𝑊, 𝜌, 𝑒2) ∈ ℰ⟦𝜏⟧ with 𝑊 ⊑ 𝑊 ′ ⊑ 𝑊″, wsat(𝑊″, ℎ′), and ℎ′, 𝜌 ⊢ 𝑒2 ⇓ 𝚎𝚛𝚛,
we conclude contradiction. □
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Fundamental theorem and safety
Theorem (Fundamental theorem of logical relation) :  If Γ ⊢ 𝑒 : 𝐴, then Γ ⊨ 𝑒 : 𝐴

Proof :  The proof is by induction on the typing derivation. For each case, apply the matching
compatibility lemma. □

Theorem (Adequacy) :  If ⊨ 𝑒 : 𝐴 and ∅, ∅ ⊢ 𝑒 ⇓ 𝑟, then there are 𝑊 , ℎ, and 𝑣 such that 𝑟 =
(ℎ, 𝑣), wsat(𝑊, ℎ), and (𝑊, 𝑣) ∈ 𝒱⟦𝐴⟧.

Proof :  Immediate from the definition of semantic typing and expression relation. □

Theorem (Safety) :  If ⊢ 𝑒 : 𝐴 and ∅, ∅ ⊢ 𝑒 ⇓ 𝑟, then there are 𝑊 , ℎ, and 𝑣 such that 𝑟 = (ℎ, 𝑣),
wsat(𝑊, ℎ), and (𝑊, 𝑣) ∈ 𝒱⟦𝐴⟧.

Proof :  Corollary of the fundamental theorem and adequacy. □
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