[S<o1%)

OUTLINE OF A MATHEMATICAL
THEORY OF COMPUTATION

by

Dana Scott
Princeton University

The motivation for trying to formulate
a mathematical theory of computation is to
give mathematical semantics for high-level
computer languages. The word "mathemati=-
cal" is to be contrasted in this context
with some such term as "operational."
Thus the mathematical meaning of a proce-
dure ought to be the fupction from elements
of the data type of the input variables to
elements of the data type of the output,
On the other hand, the operational meaning
will generally provide a of the
whole history of the computation followlng
the sequencing stipulated in the stated
procedure definitlon and will invelve an
expllicit finitary choive of representations
of data =-- eventually in something close
to bit patterns, The point is that, math-
ematically speaking, functions are inde~
pendent of their means of computation and
hence are "simpler" than the explicitly
generated, step-by-step evolved sequences
of operations on representations, In give
ing precise definitions of operational
semantics there are always to be made more
or less arbitrary choices of schemes for
cataloging partial results and the links
between phases of the ealeulation (cf, the
formal definitions of such languages as
PL/I and ALGOL 68), and to a great extent
these choices are irrelevant for a true
"understanding" of a program. Mathematical
semantics tries to aveid these irrelevan-~
clies and should be more suitable to a
study of such proklems as the eguivalence
of programs.

It is all very well to aim for a more
"abstract" and a "cleaner" approach to
semantics, but if the plan is to be any
good, the operational aspects cannot be
completely ignored. The reason is obvious:
in the end the program still must be run
on a machine -- a machine which does not
possess the benefit of "abstract" human
understanding, a machine that must operate
with finite configurations., Therefore, a
mathematical semantics, which will repre-
sent the first major segment of the com-
plete, rigourous definition of a program-
ming language, must lead naturally to an
operational simulation of the abstract
entities, which -- if done properly --
will establish the practicality of the

169

language, and which is necessary for a full
presentation.

Thinking only of functions for the
moment, it is clear that a mathematically
defined function can be known to be com=-
putable without its being guite obvious
how to compute the function in a practical
gense ~- just as it is possible to know
that an infinite serles is convergent with-
out having a elear ldea of its sum, Even
though the abstract definition of the func-
tion is sufficlent to determine it, we can~
not really say that the function is known
untll the algorithm is revealed, (Even
then our knowledge is somewhat "indirect"
or "potential," but never mind.) The con-
clusion is, then, that an adequate theory
of computation must not only provide the
abstractions (what is computable) but also
their "physical" realizations (how to
compute them.)

What 1s new in the present theory is
exactly these abstractions; whereas the
means of realization, the techniques of
implementation, have been known for some
time, as the many, highly complex compilers
that are presently in operation demonstrate,
Of course, new concepts may require (or
suggest) new methede of implementation,
but that remains to be seen. However,
notice this essential point: unlesse there
is a prior, generally accepted mathemati-
cal definition of a language at hand, who
is to say whether a proposed implementation
is correct? Now it is often suggested that
the meaning of the language resides in one
particular compiler for it. But that idea
is wrong: the "same" language can have
many "different" compilers., The person
who wrote one of these compilers obviously
had a (hopefully) clear understanding of
the language to guide him, and it is the
purpose of mathematical semantics to make
this understanding "visible." This visi-
bility is to be achieved by abstracting
the central ideas into mathematical enti-
ties, which can then be "manipulated" in
the familiar mathematical manner. Even if
the compiler-oriented approach (even com-
piled to run on an "abstract" machine)
were transparent -- which it is not --=

there would still be interest in bringing
out the abstractions to connect the theory
with standard mathematical practice,

Having this obviously desirable mathe-
matical theory seems to require some new
structural notions, some new insights into
the nature of data types and the functions
(mappings) that are to be allowed f£rom one
to another. Moreover, it soon becomes
celear in thinking about "higher-type" pro-
gramming concepts (e.g. procedures) that
spaces of functions must also be consider-
ed as forming data types., Since a function
(say, mapping integers to integers) is
generally in itself an infinite object, it
also becomes necessary to introduce some
idea of finite approximation -=- just as we
do in a sense for real numbers. On top of
this there are already operationally "de-
fined" concepts of function which seem to
have no mathematical counterparts, In
particular it is not unknown in program-
ming languages to allow unrestricted pro=
cedures which can take any procedures as
arguments and whieh can very well produce
unrestricted procedures as values, Speak-
ing mathematically this is tantamount to
allowing a function that is to be well
defined on all allowable functions as argu-
ments -- a kind of super-functional == and
which ls even applicable to itself as an
argument, To date no mathematical theory
of functions has ever been able to supply
conveniently such a free-wheeling notion
of function =- except at the expense of
inconsistency., The main mathematical
novelty of the present study is the crea-
tion of the proper mathematical theory of
funetions which accomplishes these aims
(consistently!) and which can be used as
the basis for the metamathematical project
of providing the "correct" approach to
semantics,

It should be stressed at once that the
problem of self-application arises in ways
more crucial to the interpretation of pro-
gramuning languages than in the contempla-
tion of the (to some, impractical) unre-
stricted procedures. The problem concerns
the related questions of keeping track of

side effects and of the storage of commands.

In the first place, what is a store?
Physically, we have several remarkable
answers, but mathematically it comes down
to being simply an assignment (a function)
which connects gontents to locations,
Speaking more precisely, the (current)
state of the store, call it g, is mathe-

matically a functiong
g: L — V

which assigns to each location LEL (the
set of all locations) its (current) con-
tents o(L)E€V (the set of all allowable
values). Let ¥ be the set of all states,
What is a side effect? Obviously a change
of state, What 1s a command? A reguest
for a side effect; more mathematically, a
command 1s a functien

Yy L=> T

which transforms (ocld)
states,

states to (new)

Question: can a command be stored?
Answer: well, we do 1t operationally all
the time. Question: is that mathemati-
cally justified? Let's see, Suppose ¢ is
the current state of the store, and suppose
LEL is a location at which a command is

stored. Then g(4) is a command; that is,
gl{d): T—> T
Hence, o¢(4) (o) 12 well defined, Or ils it?

This is just an ineignificant step away
from the self-application problem p(p) for
"unrestricted" procedures p, and it ie just
as hard to justify mathematically. Of
course, in the operational approach we do
not store the command iteelf as a function
but rather a "code word" or "piece of text"
that stands for the command in an unambigu=-
ous way. But to carry out the formal
description of how this works == especially
for compound commands depending on para-
meters -- involves us in most of the nasty
questions of programming language seman-
ties and is not really a satisfactory con-
ceptual way out.

Getting down to particulars, we must
ask: what exactly is a data type? To
gimplify matters, we can identify a data
type with the set D of all objects of that
type. But this is in itself too simple:
the objects are structured and bear cer-
tain relations to one another, so the type
is something more than a set, Now this
structuring must not be confused with the
idea of data structures (lists, trees,
graphs, etc.); these will come in later.
The kind of structure being discussed here
is much more primitive and more general
and has to do with the basic sense of
approximation. Suppose x, Yy €D are two
elements of the data type, then the idea is
not immediately to think of them as being
completely separate entities just because

170

they may be different. Instead y, say,
may be a better version of what x is try-
ing to approximate. In fact, let us write
the relationship

XY

to mean intuitively that y is gonsistent
with x and is (possibly) more accurate
than ¥x. This intuitively understood rela-
tionship exists on most data types natural-
ly, and if part of the thesis of this
paper that a data type should always be
provided with such a relationship. This
may require some adjustment of thought to
accommodate certain standard ideas, but it
seoms worth the offort to unify the treat-
ment of various types.

g0 let us agree for the sake of argu-
ment that types D are structured by rela=
tions = (at least). What can we say ab-
stractly about such a relationship? With
reference to the intuitive understanding,
it is eclear that we want to assume that =
is reflexive, transitive, and antisym-
metric., We can make this into an axiom:

AXIOM 1.

A data type is partially
ordered set.

That may not seem like much (partially
ordered sets are so very general), but it
ie slight progress, The next hit of pro-
greas should concorn mapplngs .

suppose D and D' are two data types
(with appropriate partial orderings = and
£='). sSuppose f: D=»D' 18 a reasonable
mapping of the elements of the one into
the other. Should there be anything to
gay in general about propertiees of map-
pings? Well, suppose X, ¥ €D and X =¥
Tf f were a function defined by a program
in any of the usual ways, it would be
sensitive to the accuracy of its arguments

(inputs) in a special way: the more accu-
rate the input, the more accurate the out-
put, In symbols:

x =y implies £ (x)&='f (v):

in other words, with respect to the partial
orderings £ is monotonic. We make this an
axiom also:

AXIOM 2. Mappings between data types

are monotonic.

Note that such a condition easily general-
izes to functions of several variables,
even variables of mixed types.

In numerical computation Axiom 2 is

sometimes denied, but this is a confusion
about the use of the word accuracy. It is
true that we know some clever asymptotic
algorithms which give better answers when
the accuracy is cruder, but they should be
considered as functions of two variables:
the usual input data together with a para-
meter indicating the degree of accuracy--
or maybe better the number of "terms" to

be selected from the "expansion." It can
certainly happen that taking more terms
just ruins the already good approximation,
but note that the input and the number of
terms are already supposed known perfectly,
The notion of accuracy we are trying to
capture with the g relation is something
else and does not depend on thils presuppo-
sition. Maybe it would be better to talk W
about information; thus x = y means that
x and y want to approximate the same entity
but y gives more information about it. 4
This means we have to allow "incomplete"
entities, like x, containing only "partial®
information., (The way to do this in numer-
ical ecalculation is called interval analy-
gis, but we do not have the space here to
be more specific.,) Allowing for partial-
ity of arguments and values has the good
effect that our functions become partial
too; for even if the arguments are perfect,
the values may only be partial. This is
necessary in considering algorithmically
dofined functions, since for some combina=-
tions of arguments it may happen that the
algorithm does not "converge.," As a conse-
guence of this point of view, then, there
can be no numerical function of the kind
allowed by Axlom 2 which maps a “partial"
real number to an integexr exponent repre-
senting the degree of accuracy. But this
is not a drawback, ae can be seen when one
examines the detalls of the method: there
are sufficiently many monotonic functions.

The theory based on Axioms 1 and 2
would be too abstract, though it is not
vacuous. We need to be more specific
about the behavior of approximations for
the applications we leave in mind. Thus
suppose an infinite sequence of approxima-
tions is such that

. o
X E e =X E K

then it seems reasonable to suppose that

el S e

the x, are tending to a limit. cCcall the
limit y, and we write
(=]
Y=|_l xn.v
n=o

171

